xemu/hw/lance.c
bellard e80cfcfc88 SPARC merge
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1179 c046a42c-6fe2-441c-8c8c-71466251a162
2004-12-19 23:18:01 +00:00

490 lines
14 KiB
C

/*
* QEMU Lance emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
/* debug LANCE card */
//#define DEBUG_LANCE
#ifndef LANCE_LOG_TX_BUFFERS
#define LANCE_LOG_TX_BUFFERS 4
#define LANCE_LOG_RX_BUFFERS 4
#endif
#define CRC_POLYNOMIAL_BE 0x04c11db7UL /* Ethernet CRC, big endian */
#define CRC_POLYNOMIAL_LE 0xedb88320UL /* Ethernet CRC, little endian */
#define LE_CSR0 0
#define LE_CSR1 1
#define LE_CSR2 2
#define LE_CSR3 3
#define LE_MAXREG (LE_CSR3 + 1)
#define LE_RDP 0
#define LE_RAP 1
#define LE_MO_PROM 0x8000 /* Enable promiscuous mode */
#define LE_C0_ERR 0x8000 /* Error: set if BAB, SQE, MISS or ME is set */
#define LE_C0_BABL 0x4000 /* BAB: Babble: tx timeout. */
#define LE_C0_CERR 0x2000 /* SQE: Signal quality error */
#define LE_C0_MISS 0x1000 /* MISS: Missed a packet */
#define LE_C0_MERR 0x0800 /* ME: Memory error */
#define LE_C0_RINT 0x0400 /* Received interrupt */
#define LE_C0_TINT 0x0200 /* Transmitter Interrupt */
#define LE_C0_IDON 0x0100 /* IFIN: Init finished. */
#define LE_C0_INTR 0x0080 /* Interrupt or error */
#define LE_C0_INEA 0x0040 /* Interrupt enable */
#define LE_C0_RXON 0x0020 /* Receiver on */
#define LE_C0_TXON 0x0010 /* Transmitter on */
#define LE_C0_TDMD 0x0008 /* Transmitter demand */
#define LE_C0_STOP 0x0004 /* Stop the card */
#define LE_C0_STRT 0x0002 /* Start the card */
#define LE_C0_INIT 0x0001 /* Init the card */
#define LE_C3_BSWP 0x4 /* SWAP */
#define LE_C3_ACON 0x2 /* ALE Control */
#define LE_C3_BCON 0x1 /* Byte control */
/* Receive message descriptor 1 */
#define LE_R1_OWN 0x80 /* Who owns the entry */
#define LE_R1_ERR 0x40 /* Error: if FRA, OFL, CRC or BUF is set */
#define LE_R1_FRA 0x20 /* FRA: Frame error */
#define LE_R1_OFL 0x10 /* OFL: Frame overflow */
#define LE_R1_CRC 0x08 /* CRC error */
#define LE_R1_BUF 0x04 /* BUF: Buffer error */
#define LE_R1_SOP 0x02 /* Start of packet */
#define LE_R1_EOP 0x01 /* End of packet */
#define LE_R1_POK 0x03 /* Packet is complete: SOP + EOP */
#define LE_T1_OWN 0x80 /* Lance owns the packet */
#define LE_T1_ERR 0x40 /* Error summary */
#define LE_T1_EMORE 0x10 /* Error: more than one retry needed */
#define LE_T1_EONE 0x08 /* Error: one retry needed */
#define LE_T1_EDEF 0x04 /* Error: deferred */
#define LE_T1_SOP 0x02 /* Start of packet */
#define LE_T1_EOP 0x01 /* End of packet */
#define LE_T1_POK 0x03 /* Packet is complete: SOP + EOP */
#define LE_T3_BUF 0x8000 /* Buffer error */
#define LE_T3_UFL 0x4000 /* Error underflow */
#define LE_T3_LCOL 0x1000 /* Error late collision */
#define LE_T3_CLOS 0x0800 /* Error carrier loss */
#define LE_T3_RTY 0x0400 /* Error retry */
#define LE_T3_TDR 0x03ff /* Time Domain Reflectometry counter */
#define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
#define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
#define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29)
#define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
#define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
#define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29)
#define PKT_BUF_SZ 1544
#define RX_BUFF_SIZE PKT_BUF_SZ
#define TX_BUFF_SIZE PKT_BUF_SZ
struct lance_rx_desc {
unsigned short rmd0; /* low address of packet */
unsigned char rmd1_bits; /* descriptor bits */
unsigned char rmd1_hadr; /* high address of packet */
short length; /* This length is 2s complement (negative)!
* Buffer length
*/
unsigned short mblength; /* This is the actual number of bytes received */
};
struct lance_tx_desc {
unsigned short tmd0; /* low address of packet */
unsigned char tmd1_bits; /* descriptor bits */
unsigned char tmd1_hadr; /* high address of packet */
short length; /* Length is 2s complement (negative)! */
unsigned short misc;
};
/* The LANCE initialization block, described in databook. */
/* On the Sparc, this block should be on a DMA region */
struct lance_init_block {
unsigned short mode; /* Pre-set mode (reg. 15) */
unsigned char phys_addr[6]; /* Physical ethernet address */
unsigned filter[2]; /* Multicast filter. */
/* Receive and transmit ring base, along with extra bits. */
unsigned short rx_ptr; /* receive descriptor addr */
unsigned short rx_len; /* receive len and high addr */
unsigned short tx_ptr; /* transmit descriptor addr */
unsigned short tx_len; /* transmit len and high addr */
/* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
struct lance_rx_desc brx_ring[RX_RING_SIZE];
struct lance_tx_desc btx_ring[TX_RING_SIZE];
char tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
char pad[2]; /* align rx_buf for copy_and_sum(). */
char rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
};
#define LEDMA_REGS 4
#define LEDMA_MAXADDR (LEDMA_REGS * 4 - 1)
#if 0
/* Structure to describe the current status of DMA registers on the Sparc */
struct sparc_dma_registers {
uint32_t cond_reg; /* DMA condition register */
uint32_t st_addr; /* Start address of this transfer */
uint32_t cnt; /* How many bytes to transfer */
uint32_t dma_test; /* DMA test register */
};
#endif
typedef struct LANCEState {
NetDriverState *nd;
uint32_t leptr;
uint16_t addr;
uint16_t regs[LE_MAXREG];
uint8_t phys[6]; /* mac address */
int irq;
unsigned int rxptr, txptr;
uint32_t ledmaregs[LEDMA_REGS];
} LANCEState;
static void lance_send(void *opaque);
static void lance_reset(void *opaque)
{
LANCEState *s = opaque;
memcpy(s->phys, s->nd->macaddr, 6);
s->rxptr = 0;
s->txptr = 0;
memset(s->regs, 0, LE_MAXREG * 2);
s->regs[LE_CSR0] = LE_C0_STOP;
memset(s->ledmaregs, 0, LEDMA_REGS * 4);
}
static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr)
{
LANCEState *s = opaque;
uint32_t saddr;
saddr = addr & LE_MAXREG;
switch (saddr >> 1) {
case LE_RDP:
return s->regs[s->addr];
case LE_RAP:
return s->addr;
default:
break;
}
return 0;
}
static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
LANCEState *s = opaque;
uint32_t saddr;
uint16_t reg;
saddr = addr & LE_MAXREG;
switch (saddr >> 1) {
case LE_RDP:
switch(s->addr) {
case LE_CSR0:
if (val & LE_C0_STOP) {
s->regs[LE_CSR0] = LE_C0_STOP;
break;
}
reg = s->regs[LE_CSR0];
// 1 = clear for some bits
reg &= ~(val & 0x7f00);
// generated bits
reg &= ~(LE_C0_ERR | LE_C0_INTR);
if (reg & 0x7100)
reg |= LE_C0_ERR;
if (reg & 0x7f00)
reg |= LE_C0_INTR;
// direct bit
reg &= ~LE_C0_INEA;
reg |= val & LE_C0_INEA;
// exclusive bits
if (val & LE_C0_INIT) {
reg |= LE_C0_IDON | LE_C0_INIT;
reg &= ~LE_C0_STOP;
}
else if (val & LE_C0_STRT) {
reg |= LE_C0_STRT | LE_C0_RXON | LE_C0_TXON;
reg &= ~LE_C0_STOP;
}
s->regs[LE_CSR0] = reg;
// trigger bits
//if (val & LE_C0_TDMD)
if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
pic_set_irq(s->irq, 1);
break;
case LE_CSR1:
s->leptr = (s->leptr & 0xffff0000) | (val & 0xffff);
s->regs[s->addr] = val;
break;
case LE_CSR2:
s->leptr = (s->leptr & 0xffff) | ((val & 0xffff) << 16);
s->regs[s->addr] = val;
break;
case LE_CSR3:
s->regs[s->addr] = val;
break;
}
break;
case LE_RAP:
if (val < LE_MAXREG)
s->addr = val;
break;
default:
break;
}
lance_send(s);
}
static CPUReadMemoryFunc *lance_mem_read[3] = {
lance_mem_readw,
lance_mem_readw,
lance_mem_readw,
};
static CPUWriteMemoryFunc *lance_mem_write[3] = {
lance_mem_writew,
lance_mem_writew,
lance_mem_writew,
};
/* return the max buffer size if the LANCE can receive more data */
static int lance_can_receive(void *opaque)
{
LANCEState *s = opaque;
uint32_t dmaptr = s->leptr + s->ledmaregs[3];
struct lance_init_block *ib;
int i;
uint16_t temp;
if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
return 0;
ib = (void *) iommu_translate(dmaptr);
for (i = 0; i < RX_RING_SIZE; i++) {
cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
temp &= 0xff;
if (temp == (LE_R1_OWN)) {
#ifdef DEBUG_LANCE
fprintf(stderr, "lance: can receive %d\n", RX_BUFF_SIZE);
#endif
return RX_BUFF_SIZE;
}
}
#ifdef DEBUG_LANCE
fprintf(stderr, "lance: cannot receive\n");
#endif
return 0;
}
#define MIN_BUF_SIZE 60
static void lance_receive(void *opaque, const uint8_t *buf, int size)
{
LANCEState *s = opaque;
uint32_t dmaptr = s->leptr + s->ledmaregs[3];
struct lance_init_block *ib;
unsigned int i, old_rxptr, j;
uint16_t temp;
if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
return;
ib = (void *) iommu_translate(dmaptr);
old_rxptr = s->rxptr;
for (i = s->rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) {
cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
if (temp == (LE_R1_OWN)) {
s->rxptr = (s->rxptr + 1) & RX_RING_MOD_MASK;
temp = size;
bswap16s(&temp);
cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].mblength, (void *) &temp, 2);
#if 0
cpu_physical_memory_write((uint32_t)&ib->rx_buf[i], buf, size);
#else
for (j = 0; j < size; j++) {
cpu_physical_memory_write(((uint32_t)&ib->rx_buf[i]) + j, &buf[j], 1);
}
#endif
temp = LE_R1_POK;
cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR;
if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
pic_set_irq(s->irq, 1);
#ifdef DEBUG_LANCE
fprintf(stderr, "lance: got packet, len %d\n", size);
#endif
return;
}
}
}
static void lance_send(void *opaque)
{
LANCEState *s = opaque;
uint32_t dmaptr = s->leptr + s->ledmaregs[3];
struct lance_init_block *ib;
unsigned int i, old_txptr, j;
uint16_t temp;
char pkt_buf[PKT_BUF_SZ];
if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
return;
ib = (void *) iommu_translate(dmaptr);
old_txptr = s->txptr;
for (i = s->txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) {
cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
if (temp == (LE_T1_POK|LE_T1_OWN)) {
cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].length, (void *) &temp, 2);
bswap16s(&temp);
temp = (~temp) + 1;
#if 0
cpu_physical_memory_read((uint32_t)&ib->tx_buf[i], pkt_buf, temp);
#else
for (j = 0; j < temp; j++) {
cpu_physical_memory_read((uint32_t)&ib->tx_buf[i] + j, &pkt_buf[j], 1);
}
#endif
#ifdef DEBUG_LANCE
fprintf(stderr, "lance: sending packet, len %d\n", temp);
#endif
qemu_send_packet(s->nd, pkt_buf, temp);
temp = LE_T1_POK;
cpu_physical_memory_write((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
s->txptr = (s->txptr + 1) & TX_RING_MOD_MASK;
s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR;
}
}
}
static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr)
{
LANCEState *s = opaque;
uint32_t saddr;
saddr = (addr & LEDMA_MAXADDR) >> 2;
return s->ledmaregs[saddr];
}
static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
LANCEState *s = opaque;
uint32_t saddr;
saddr = (addr & LEDMA_MAXADDR) >> 2;
s->ledmaregs[saddr] = val;
}
static CPUReadMemoryFunc *ledma_mem_read[3] = {
ledma_mem_readl,
ledma_mem_readl,
ledma_mem_readl,
};
static CPUWriteMemoryFunc *ledma_mem_write[3] = {
ledma_mem_writel,
ledma_mem_writel,
ledma_mem_writel,
};
static void lance_save(QEMUFile *f, void *opaque)
{
LANCEState *s = opaque;
int i;
qemu_put_be32s(f, &s->leptr);
qemu_put_be16s(f, &s->addr);
for (i = 0; i < LE_MAXREG; i ++)
qemu_put_be16s(f, &s->regs[i]);
qemu_put_buffer(f, s->phys, 6);
qemu_put_be32s(f, &s->irq);
for (i = 0; i < LEDMA_REGS; i ++)
qemu_put_be32s(f, &s->ledmaregs[i]);
}
static int lance_load(QEMUFile *f, void *opaque, int version_id)
{
LANCEState *s = opaque;
int i;
if (version_id != 1)
return -EINVAL;
qemu_get_be32s(f, &s->leptr);
qemu_get_be16s(f, &s->addr);
for (i = 0; i < LE_MAXREG; i ++)
qemu_get_be16s(f, &s->regs[i]);
qemu_get_buffer(f, s->phys, 6);
qemu_get_be32s(f, &s->irq);
for (i = 0; i < LEDMA_REGS; i ++)
qemu_get_be32s(f, &s->ledmaregs[i]);
return 0;
}
void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr)
{
LANCEState *s;
int lance_io_memory, ledma_io_memory;
s = qemu_mallocz(sizeof(LANCEState));
if (!s)
return;
s->nd = nd;
s->irq = irq;
lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
cpu_register_physical_memory(leaddr, 8, lance_io_memory);
ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, s);
cpu_register_physical_memory(ledaddr, 16, ledma_io_memory);
lance_reset(s);
qemu_add_read_packet(nd, lance_can_receive, lance_receive, s);
register_savevm("lance", leaddr, 1, lance_save, lance_load, s);
qemu_register_reset(lance_reset, s);
}