mirror of
https://github.com/xemu-project/xemu.git
synced 2025-01-14 23:58:05 +00:00
bbc40fefce
We should only pass in gdb_get_reg16() with the GByteArray* object itself, no need to shift. Without this patch, gdb remote attach will crash QEMU: (gdb) target remote :1234 Remote debugging using :1234 Remote communication error. Target disconnected.: Connection reset by peer. $ qemu-system-x86_64 -m 1G -smp 4 ... -s ERROR:qemu/gdbstub.c:1843:handle_read_all_regs: assertion failed: (len == gdbserver_state.mem_buf->len) Bail out! ERROR:qemu/gdbstub.c:1843:handle_read_all_regs: assertion failed: (len == gdbserver_state.mem_buf->len) Fixes: a010bdbe719 ("extend GByteArray to read register helpers") Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Tested-by: Stefano Garzarella <sgarzare@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20200409164954.36902-3-peterx@redhat.com> Message-Id: <20200414200631.12799-12-alex.bennee@linaro.org>
440 lines
14 KiB
C
440 lines
14 KiB
C
/*
|
|
* x86 gdb server stub
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
* Copyright (c) 2013 SUSE LINUX Products GmbH
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/gdbstub.h"
|
|
|
|
#ifdef TARGET_X86_64
|
|
static const int gpr_map[16] = {
|
|
R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
|
|
8, 9, 10, 11, 12, 13, 14, 15
|
|
};
|
|
#else
|
|
#define gpr_map gpr_map32
|
|
#endif
|
|
static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
|
|
|
|
/*
|
|
* Keep these in sync with assignment to
|
|
* gdb_num_core_regs in target/i386/cpu.c
|
|
* and with the machine description
|
|
*/
|
|
|
|
/*
|
|
* SEG: 6 segments, plus fs_base, gs_base, kernel_gs_base
|
|
*/
|
|
|
|
/*
|
|
* general regs -----> 8 or 16
|
|
*/
|
|
#define IDX_NB_IP 1
|
|
#define IDX_NB_FLAGS 1
|
|
#define IDX_NB_SEG (6 + 3)
|
|
#define IDX_NB_CTL 6
|
|
#define IDX_NB_FP 16
|
|
/*
|
|
* fpu regs ----------> 8 or 16
|
|
*/
|
|
#define IDX_NB_MXCSR 1
|
|
/*
|
|
* total ----> 8+1+1+9+6+16+8+1=50 or 16+1+1+9+6+16+16+1=66
|
|
*/
|
|
|
|
#define IDX_IP_REG CPU_NB_REGS
|
|
#define IDX_FLAGS_REG (IDX_IP_REG + IDX_NB_IP)
|
|
#define IDX_SEG_REGS (IDX_FLAGS_REG + IDX_NB_FLAGS)
|
|
#define IDX_CTL_REGS (IDX_SEG_REGS + IDX_NB_SEG)
|
|
#define IDX_FP_REGS (IDX_CTL_REGS + IDX_NB_CTL)
|
|
#define IDX_XMM_REGS (IDX_FP_REGS + IDX_NB_FP)
|
|
#define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
|
|
|
|
#define IDX_CTL_CR0_REG (IDX_CTL_REGS + 0)
|
|
#define IDX_CTL_CR2_REG (IDX_CTL_REGS + 1)
|
|
#define IDX_CTL_CR3_REG (IDX_CTL_REGS + 2)
|
|
#define IDX_CTL_CR4_REG (IDX_CTL_REGS + 3)
|
|
#define IDX_CTL_CR8_REG (IDX_CTL_REGS + 4)
|
|
#define IDX_CTL_EFER_REG (IDX_CTL_REGS + 5)
|
|
|
|
#ifdef TARGET_X86_64
|
|
#define GDB_FORCE_64 1
|
|
#else
|
|
#define GDB_FORCE_64 0
|
|
#endif
|
|
|
|
|
|
int x86_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
CPUX86State *env = &cpu->env;
|
|
|
|
uint64_t tpr;
|
|
|
|
/* N.B. GDB can't deal with changes in registers or sizes in the middle
|
|
of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
|
|
as if we're on a 64-bit cpu. */
|
|
|
|
if (n < CPU_NB_REGS) {
|
|
if (TARGET_LONG_BITS == 64) {
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]);
|
|
} else if (n < CPU_NB_REGS32) {
|
|
return gdb_get_reg64(mem_buf,
|
|
env->regs[gpr_map[n]] & 0xffffffffUL);
|
|
} else {
|
|
return gdb_get_regl(mem_buf, 0);
|
|
}
|
|
} else {
|
|
return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]);
|
|
}
|
|
} else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
|
|
floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS];
|
|
int len = gdb_get_reg64(mem_buf, cpu_to_le64(fp->low));
|
|
len += gdb_get_reg16(mem_buf, cpu_to_le16(fp->high));
|
|
return len;
|
|
} else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
|
|
n -= IDX_XMM_REGS;
|
|
if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
|
|
return gdb_get_reg128(mem_buf,
|
|
env->xmm_regs[n].ZMM_Q(0),
|
|
env->xmm_regs[n].ZMM_Q(1));
|
|
}
|
|
} else {
|
|
switch (n) {
|
|
case IDX_IP_REG:
|
|
if (TARGET_LONG_BITS == 64) {
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
return gdb_get_reg64(mem_buf, env->eip);
|
|
} else {
|
|
return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL);
|
|
}
|
|
} else {
|
|
return gdb_get_reg32(mem_buf, env->eip);
|
|
}
|
|
case IDX_FLAGS_REG:
|
|
return gdb_get_reg32(mem_buf, env->eflags);
|
|
|
|
case IDX_SEG_REGS:
|
|
return gdb_get_reg32(mem_buf, env->segs[R_CS].selector);
|
|
case IDX_SEG_REGS + 1:
|
|
return gdb_get_reg32(mem_buf, env->segs[R_SS].selector);
|
|
case IDX_SEG_REGS + 2:
|
|
return gdb_get_reg32(mem_buf, env->segs[R_DS].selector);
|
|
case IDX_SEG_REGS + 3:
|
|
return gdb_get_reg32(mem_buf, env->segs[R_ES].selector);
|
|
case IDX_SEG_REGS + 4:
|
|
return gdb_get_reg32(mem_buf, env->segs[R_FS].selector);
|
|
case IDX_SEG_REGS + 5:
|
|
return gdb_get_reg32(mem_buf, env->segs[R_GS].selector);
|
|
|
|
case IDX_SEG_REGS + 6:
|
|
if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
|
|
return gdb_get_reg64(mem_buf, env->segs[R_FS].base);
|
|
}
|
|
return gdb_get_reg32(mem_buf, env->segs[R_FS].base);
|
|
|
|
case IDX_SEG_REGS + 7:
|
|
if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
|
|
return gdb_get_reg64(mem_buf, env->segs[R_GS].base);
|
|
}
|
|
return gdb_get_reg32(mem_buf, env->segs[R_GS].base);
|
|
|
|
case IDX_SEG_REGS + 8:
|
|
#ifdef TARGET_X86_64
|
|
if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
|
|
return gdb_get_reg64(mem_buf, env->kernelgsbase);
|
|
}
|
|
return gdb_get_reg32(mem_buf, env->kernelgsbase);
|
|
#else
|
|
return gdb_get_reg32(mem_buf, 0);
|
|
#endif
|
|
|
|
case IDX_FP_REGS + 8:
|
|
return gdb_get_reg32(mem_buf, env->fpuc);
|
|
case IDX_FP_REGS + 9:
|
|
return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) |
|
|
(env->fpstt & 0x7) << 11);
|
|
case IDX_FP_REGS + 10:
|
|
return gdb_get_reg32(mem_buf, 0); /* ftag */
|
|
case IDX_FP_REGS + 11:
|
|
return gdb_get_reg32(mem_buf, 0); /* fiseg */
|
|
case IDX_FP_REGS + 12:
|
|
return gdb_get_reg32(mem_buf, 0); /* fioff */
|
|
case IDX_FP_REGS + 13:
|
|
return gdb_get_reg32(mem_buf, 0); /* foseg */
|
|
case IDX_FP_REGS + 14:
|
|
return gdb_get_reg32(mem_buf, 0); /* fooff */
|
|
case IDX_FP_REGS + 15:
|
|
return gdb_get_reg32(mem_buf, 0); /* fop */
|
|
|
|
case IDX_MXCSR_REG:
|
|
return gdb_get_reg32(mem_buf, env->mxcsr);
|
|
|
|
case IDX_CTL_CR0_REG:
|
|
if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
|
|
return gdb_get_reg64(mem_buf, env->cr[0]);
|
|
}
|
|
return gdb_get_reg32(mem_buf, env->cr[0]);
|
|
|
|
case IDX_CTL_CR2_REG:
|
|
if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
|
|
return gdb_get_reg64(mem_buf, env->cr[2]);
|
|
}
|
|
return gdb_get_reg32(mem_buf, env->cr[2]);
|
|
|
|
case IDX_CTL_CR3_REG:
|
|
if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
|
|
return gdb_get_reg64(mem_buf, env->cr[3]);
|
|
}
|
|
return gdb_get_reg32(mem_buf, env->cr[3]);
|
|
|
|
case IDX_CTL_CR4_REG:
|
|
if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
|
|
return gdb_get_reg64(mem_buf, env->cr[4]);
|
|
}
|
|
return gdb_get_reg32(mem_buf, env->cr[4]);
|
|
|
|
case IDX_CTL_CR8_REG:
|
|
#ifdef CONFIG_SOFTMMU
|
|
tpr = cpu_get_apic_tpr(cpu->apic_state);
|
|
#else
|
|
tpr = 0;
|
|
#endif
|
|
if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
|
|
return gdb_get_reg64(mem_buf, tpr);
|
|
}
|
|
return gdb_get_reg32(mem_buf, tpr);
|
|
|
|
case IDX_CTL_EFER_REG:
|
|
if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
|
|
return gdb_get_reg64(mem_buf, env->efer);
|
|
}
|
|
return gdb_get_reg32(mem_buf, env->efer);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int x86_cpu_gdb_load_seg(X86CPU *cpu, int sreg, uint8_t *mem_buf)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
uint16_t selector = ldl_p(mem_buf);
|
|
|
|
if (selector != env->segs[sreg].selector) {
|
|
#if defined(CONFIG_USER_ONLY)
|
|
cpu_x86_load_seg(env, sreg, selector);
|
|
#else
|
|
unsigned int limit, flags;
|
|
target_ulong base;
|
|
|
|
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
|
|
int dpl = (env->eflags & VM_MASK) ? 3 : 0;
|
|
base = selector << 4;
|
|
limit = 0xffff;
|
|
flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
|
|
DESC_A_MASK | (dpl << DESC_DPL_SHIFT);
|
|
} else {
|
|
if (!cpu_x86_get_descr_debug(env, selector, &base, &limit,
|
|
&flags)) {
|
|
return 4;
|
|
}
|
|
}
|
|
cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
|
|
#endif
|
|
}
|
|
return 4;
|
|
}
|
|
|
|
int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
CPUX86State *env = &cpu->env;
|
|
uint32_t tmp;
|
|
|
|
/* N.B. GDB can't deal with changes in registers or sizes in the middle
|
|
of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
|
|
as if we're on a 64-bit cpu. */
|
|
|
|
if (n < CPU_NB_REGS) {
|
|
if (TARGET_LONG_BITS == 64) {
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
env->regs[gpr_map[n]] = ldtul_p(mem_buf);
|
|
} else if (n < CPU_NB_REGS32) {
|
|
env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL;
|
|
}
|
|
return sizeof(target_ulong);
|
|
} else if (n < CPU_NB_REGS32) {
|
|
n = gpr_map32[n];
|
|
env->regs[n] &= ~0xffffffffUL;
|
|
env->regs[n] |= (uint32_t)ldl_p(mem_buf);
|
|
return 4;
|
|
}
|
|
} else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
|
|
floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS];
|
|
fp->low = le64_to_cpu(* (uint64_t *) mem_buf);
|
|
fp->high = le16_to_cpu(* (uint16_t *) (mem_buf + 8));
|
|
return 10;
|
|
} else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
|
|
n -= IDX_XMM_REGS;
|
|
if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
|
|
env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf);
|
|
env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8);
|
|
return 16;
|
|
}
|
|
} else {
|
|
switch (n) {
|
|
case IDX_IP_REG:
|
|
if (TARGET_LONG_BITS == 64) {
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
env->eip = ldq_p(mem_buf);
|
|
} else {
|
|
env->eip = ldq_p(mem_buf) & 0xffffffffUL;
|
|
}
|
|
return 8;
|
|
} else {
|
|
env->eip &= ~0xffffffffUL;
|
|
env->eip |= (uint32_t)ldl_p(mem_buf);
|
|
return 4;
|
|
}
|
|
case IDX_FLAGS_REG:
|
|
env->eflags = ldl_p(mem_buf);
|
|
return 4;
|
|
|
|
case IDX_SEG_REGS:
|
|
return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf);
|
|
case IDX_SEG_REGS + 1:
|
|
return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf);
|
|
case IDX_SEG_REGS + 2:
|
|
return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf);
|
|
case IDX_SEG_REGS + 3:
|
|
return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf);
|
|
case IDX_SEG_REGS + 4:
|
|
return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf);
|
|
case IDX_SEG_REGS + 5:
|
|
return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf);
|
|
|
|
case IDX_SEG_REGS + 6:
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
env->segs[R_FS].base = ldq_p(mem_buf);
|
|
return 8;
|
|
}
|
|
env->segs[R_FS].base = ldl_p(mem_buf);
|
|
return 4;
|
|
|
|
case IDX_SEG_REGS + 7:
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
env->segs[R_GS].base = ldq_p(mem_buf);
|
|
return 8;
|
|
}
|
|
env->segs[R_GS].base = ldl_p(mem_buf);
|
|
return 4;
|
|
|
|
case IDX_SEG_REGS + 8:
|
|
#ifdef TARGET_X86_64
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
env->kernelgsbase = ldq_p(mem_buf);
|
|
return 8;
|
|
}
|
|
env->kernelgsbase = ldl_p(mem_buf);
|
|
#endif
|
|
return 4;
|
|
|
|
case IDX_FP_REGS + 8:
|
|
cpu_set_fpuc(env, ldl_p(mem_buf));
|
|
return 4;
|
|
case IDX_FP_REGS + 9:
|
|
tmp = ldl_p(mem_buf);
|
|
env->fpstt = (tmp >> 11) & 7;
|
|
env->fpus = tmp & ~0x3800;
|
|
return 4;
|
|
case IDX_FP_REGS + 10: /* ftag */
|
|
return 4;
|
|
case IDX_FP_REGS + 11: /* fiseg */
|
|
return 4;
|
|
case IDX_FP_REGS + 12: /* fioff */
|
|
return 4;
|
|
case IDX_FP_REGS + 13: /* foseg */
|
|
return 4;
|
|
case IDX_FP_REGS + 14: /* fooff */
|
|
return 4;
|
|
case IDX_FP_REGS + 15: /* fop */
|
|
return 4;
|
|
|
|
case IDX_MXCSR_REG:
|
|
cpu_set_mxcsr(env, ldl_p(mem_buf));
|
|
return 4;
|
|
|
|
case IDX_CTL_CR0_REG:
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
cpu_x86_update_cr0(env, ldq_p(mem_buf));
|
|
return 8;
|
|
}
|
|
cpu_x86_update_cr0(env, ldl_p(mem_buf));
|
|
return 4;
|
|
|
|
case IDX_CTL_CR2_REG:
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
env->cr[2] = ldq_p(mem_buf);
|
|
return 8;
|
|
}
|
|
env->cr[2] = ldl_p(mem_buf);
|
|
return 4;
|
|
|
|
case IDX_CTL_CR3_REG:
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
cpu_x86_update_cr3(env, ldq_p(mem_buf));
|
|
return 8;
|
|
}
|
|
cpu_x86_update_cr3(env, ldl_p(mem_buf));
|
|
return 4;
|
|
|
|
case IDX_CTL_CR4_REG:
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
cpu_x86_update_cr4(env, ldq_p(mem_buf));
|
|
return 8;
|
|
}
|
|
cpu_x86_update_cr4(env, ldl_p(mem_buf));
|
|
return 4;
|
|
|
|
case IDX_CTL_CR8_REG:
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
#ifdef CONFIG_SOFTMMU
|
|
cpu_set_apic_tpr(cpu->apic_state, ldq_p(mem_buf));
|
|
#endif
|
|
return 8;
|
|
}
|
|
#ifdef CONFIG_SOFTMMU
|
|
cpu_set_apic_tpr(cpu->apic_state, ldl_p(mem_buf));
|
|
#endif
|
|
return 4;
|
|
|
|
case IDX_CTL_EFER_REG:
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
cpu_load_efer(env, ldq_p(mem_buf));
|
|
return 8;
|
|
}
|
|
cpu_load_efer(env, ldl_p(mem_buf));
|
|
return 4;
|
|
|
|
}
|
|
}
|
|
/* Unrecognised register. */
|
|
return 0;
|
|
}
|