mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-30 15:00:34 +00:00
86b1cf3227
Currently, blk_is_read_only() tells whether a given BlockBackend can only be used in read-only mode because its root node is read-only. Some callers actually try to answer a slightly different question: Is the BlockBackend configured to be writable, by taking write permissions on the root node? This can differ, for example, for CD-ROM devices which don't take write permissions, but may be backed by a writable image file. scsi-cd allows write requests to the drive if blk_is_read_only() returns false. However, the write request will immediately run into an assertion failure because the write permission is missing. This patch introduces separate functions for both questions. blk_supports_write_perm() answers the question whether the block node/image file can support writable devices, whereas blk_is_writable() tells whether the BlockBackend is currently configured to be writable. All calls of blk_is_read_only() are converted to one of the two new functions. Fixes: https://bugs.launchpad.net/bugs/1906693 Cc: qemu-stable@nongnu.org Signed-off-by: Kevin Wolf <kwolf@redhat.com> Message-Id: <20210118123448.307825-2-kwolf@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Max Reitz <mreitz@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
493 lines
13 KiB
C
493 lines
13 KiB
C
/*
|
|
* QEMU Macintosh floppy disk controller emulator (SWIM)
|
|
*
|
|
* Copyright (c) 2014-2018 Laurent Vivier <laurent@vivier.eu>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
* Only the basic support: it allows to switch from IWM (Integrated WOZ
|
|
* Machine) mode to the SWIM mode and makes the linux driver happy.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "qapi/error.h"
|
|
#include "sysemu/block-backend.h"
|
|
#include "hw/sysbus.h"
|
|
#include "migration/vmstate.h"
|
|
#include "hw/block/block.h"
|
|
#include "hw/block/swim.h"
|
|
#include "hw/qdev-properties.h"
|
|
|
|
/* IWM registers */
|
|
|
|
#define IWM_PH0L 0
|
|
#define IWM_PH0H 1
|
|
#define IWM_PH1L 2
|
|
#define IWM_PH1H 3
|
|
#define IWM_PH2L 4
|
|
#define IWM_PH2H 5
|
|
#define IWM_PH3L 6
|
|
#define IWM_PH3H 7
|
|
#define IWM_MTROFF 8
|
|
#define IWM_MTRON 9
|
|
#define IWM_INTDRIVE 10
|
|
#define IWM_EXTDRIVE 11
|
|
#define IWM_Q6L 12
|
|
#define IWM_Q6H 13
|
|
#define IWM_Q7L 14
|
|
#define IWM_Q7H 15
|
|
|
|
/* SWIM registers */
|
|
|
|
#define SWIM_WRITE_DATA 0
|
|
#define SWIM_WRITE_MARK 1
|
|
#define SWIM_WRITE_CRC 2
|
|
#define SWIM_WRITE_PARAMETER 3
|
|
#define SWIM_WRITE_PHASE 4
|
|
#define SWIM_WRITE_SETUP 5
|
|
#define SWIM_WRITE_MODE0 6
|
|
#define SWIM_WRITE_MODE1 7
|
|
|
|
#define SWIM_READ_DATA 8
|
|
#define SWIM_READ_MARK 9
|
|
#define SWIM_READ_ERROR 10
|
|
#define SWIM_READ_PARAMETER 11
|
|
#define SWIM_READ_PHASE 12
|
|
#define SWIM_READ_SETUP 13
|
|
#define SWIM_READ_STATUS 14
|
|
#define SWIM_READ_HANDSHAKE 15
|
|
|
|
#define REG_SHIFT 9
|
|
|
|
#define SWIM_MODE_IWM 0
|
|
#define SWIM_MODE_SWIM 1
|
|
|
|
/* bits in phase register */
|
|
|
|
#define SWIM_SEEK_NEGATIVE 0x074
|
|
#define SWIM_STEP 0x071
|
|
#define SWIM_MOTOR_ON 0x072
|
|
#define SWIM_MOTOR_OFF 0x076
|
|
#define SWIM_INDEX 0x073
|
|
#define SWIM_EJECT 0x077
|
|
#define SWIM_SETMFM 0x171
|
|
#define SWIM_SETGCR 0x175
|
|
#define SWIM_RELAX 0x033
|
|
#define SWIM_LSTRB 0x008
|
|
#define SWIM_CA_MASK 0x077
|
|
|
|
/* Select values for swim_select and swim_readbit */
|
|
|
|
#define SWIM_READ_DATA_0 0x074
|
|
#define SWIM_TWOMEG_DRIVE 0x075
|
|
#define SWIM_SINGLE_SIDED 0x076
|
|
#define SWIM_DRIVE_PRESENT 0x077
|
|
#define SWIM_DISK_IN 0x170
|
|
#define SWIM_WRITE_PROT 0x171
|
|
#define SWIM_TRACK_ZERO 0x172
|
|
#define SWIM_TACHO 0x173
|
|
#define SWIM_READ_DATA_1 0x174
|
|
#define SWIM_MFM_MODE 0x175
|
|
#define SWIM_SEEK_COMPLETE 0x176
|
|
#define SWIM_ONEMEG_MEDIA 0x177
|
|
|
|
/* Bits in handshake register */
|
|
|
|
#define SWIM_MARK_BYTE 0x01
|
|
#define SWIM_CRC_ZERO 0x02
|
|
#define SWIM_RDDATA 0x04
|
|
#define SWIM_SENSE 0x08
|
|
#define SWIM_MOTEN 0x10
|
|
#define SWIM_ERROR 0x20
|
|
#define SWIM_DAT2BYTE 0x40
|
|
#define SWIM_DAT1BYTE 0x80
|
|
|
|
/* bits in setup register */
|
|
|
|
#define SWIM_S_INV_WDATA 0x01
|
|
#define SWIM_S_3_5_SELECT 0x02
|
|
#define SWIM_S_GCR 0x04
|
|
#define SWIM_S_FCLK_DIV2 0x08
|
|
#define SWIM_S_ERROR_CORR 0x10
|
|
#define SWIM_S_IBM_DRIVE 0x20
|
|
#define SWIM_S_GCR_WRITE 0x40
|
|
#define SWIM_S_TIMEOUT 0x80
|
|
|
|
/* bits in mode register */
|
|
|
|
#define SWIM_CLFIFO 0x01
|
|
#define SWIM_ENBL1 0x02
|
|
#define SWIM_ENBL2 0x04
|
|
#define SWIM_ACTION 0x08
|
|
#define SWIM_WRITE_MODE 0x10
|
|
#define SWIM_HEDSEL 0x20
|
|
#define SWIM_MOTON 0x80
|
|
|
|
static void fd_recalibrate(FDrive *drive)
|
|
{
|
|
}
|
|
|
|
static void swim_change_cb(void *opaque, bool load, Error **errp)
|
|
{
|
|
FDrive *drive = opaque;
|
|
|
|
if (!load) {
|
|
blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
|
|
} else {
|
|
if (!blkconf_apply_backend_options(drive->conf,
|
|
!blk_supports_write_perm(drive->blk),
|
|
false, errp)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const BlockDevOps swim_block_ops = {
|
|
.change_media_cb = swim_change_cb,
|
|
};
|
|
|
|
static Property swim_drive_properties[] = {
|
|
DEFINE_PROP_INT32("unit", SWIMDrive, unit, -1),
|
|
DEFINE_BLOCK_PROPERTIES(SWIMDrive, conf),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void swim_drive_realize(DeviceState *qdev, Error **errp)
|
|
{
|
|
SWIMDrive *dev = SWIM_DRIVE(qdev);
|
|
SWIMBus *bus = SWIM_BUS(qdev->parent_bus);
|
|
FDrive *drive;
|
|
int ret;
|
|
|
|
if (dev->unit == -1) {
|
|
for (dev->unit = 0; dev->unit < SWIM_MAX_FD; dev->unit++) {
|
|
drive = &bus->ctrl->drives[dev->unit];
|
|
if (!drive->blk) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dev->unit >= SWIM_MAX_FD) {
|
|
error_setg(errp, "Can't create floppy unit %d, bus supports "
|
|
"only %d units", dev->unit, SWIM_MAX_FD);
|
|
return;
|
|
}
|
|
|
|
drive = &bus->ctrl->drives[dev->unit];
|
|
if (drive->blk) {
|
|
error_setg(errp, "Floppy unit %d is in use", dev->unit);
|
|
return;
|
|
}
|
|
|
|
if (!dev->conf.blk) {
|
|
/* Anonymous BlockBackend for an empty drive */
|
|
dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
|
|
ret = blk_attach_dev(dev->conf.blk, qdev);
|
|
assert(ret == 0);
|
|
}
|
|
|
|
if (!blkconf_blocksizes(&dev->conf, errp)) {
|
|
return;
|
|
}
|
|
|
|
if (dev->conf.logical_block_size != 512 ||
|
|
dev->conf.physical_block_size != 512)
|
|
{
|
|
error_setg(errp, "Physical and logical block size must "
|
|
"be 512 for floppy");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* rerror/werror aren't supported by fdc and therefore not even registered
|
|
* with qdev. So set the defaults manually before they are used in
|
|
* blkconf_apply_backend_options().
|
|
*/
|
|
dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
|
|
dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
|
|
|
|
if (!blkconf_apply_backend_options(&dev->conf,
|
|
!blk_supports_write_perm(dev->conf.blk),
|
|
false, errp)) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
|
|
* for empty drives.
|
|
*/
|
|
if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
|
|
blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
|
|
error_setg(errp, "fdc doesn't support drive option werror");
|
|
return;
|
|
}
|
|
if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
|
|
error_setg(errp, "fdc doesn't support drive option rerror");
|
|
return;
|
|
}
|
|
|
|
drive->conf = &dev->conf;
|
|
drive->blk = dev->conf.blk;
|
|
drive->swimctrl = bus->ctrl;
|
|
|
|
blk_set_dev_ops(drive->blk, &swim_block_ops, drive);
|
|
}
|
|
|
|
static void swim_drive_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *k = DEVICE_CLASS(klass);
|
|
k->realize = swim_drive_realize;
|
|
set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
|
|
k->bus_type = TYPE_SWIM_BUS;
|
|
device_class_set_props(k, swim_drive_properties);
|
|
k->desc = "virtual SWIM drive";
|
|
}
|
|
|
|
static const TypeInfo swim_drive_info = {
|
|
.name = TYPE_SWIM_DRIVE,
|
|
.parent = TYPE_DEVICE,
|
|
.instance_size = sizeof(SWIMDrive),
|
|
.class_init = swim_drive_class_init,
|
|
};
|
|
|
|
static const TypeInfo swim_bus_info = {
|
|
.name = TYPE_SWIM_BUS,
|
|
.parent = TYPE_BUS,
|
|
.instance_size = sizeof(SWIMBus),
|
|
};
|
|
|
|
static void iwmctrl_write(void *opaque, hwaddr reg, uint64_t value,
|
|
unsigned size)
|
|
{
|
|
SWIMCtrl *swimctrl = opaque;
|
|
|
|
reg >>= REG_SHIFT;
|
|
|
|
swimctrl->regs[reg >> 1] = reg & 1;
|
|
|
|
if (swimctrl->regs[IWM_Q6] &&
|
|
swimctrl->regs[IWM_Q7]) {
|
|
if (swimctrl->regs[IWM_MTR]) {
|
|
/* data register */
|
|
swimctrl->iwm_data = value;
|
|
} else {
|
|
/* mode register */
|
|
swimctrl->iwm_mode = value;
|
|
/* detect sequence to switch from IWM mode to SWIM mode */
|
|
switch (swimctrl->iwm_switch) {
|
|
case 0:
|
|
if (value == 0x57) {
|
|
swimctrl->iwm_switch++;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (value == 0x17) {
|
|
swimctrl->iwm_switch++;
|
|
}
|
|
break;
|
|
case 2:
|
|
if (value == 0x57) {
|
|
swimctrl->iwm_switch++;
|
|
}
|
|
break;
|
|
case 3:
|
|
if (value == 0x57) {
|
|
swimctrl->mode = SWIM_MODE_SWIM;
|
|
swimctrl->iwm_switch = 0;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint64_t iwmctrl_read(void *opaque, hwaddr reg, unsigned size)
|
|
{
|
|
SWIMCtrl *swimctrl = opaque;
|
|
|
|
reg >>= REG_SHIFT;
|
|
|
|
swimctrl->regs[reg >> 1] = reg & 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void swimctrl_write(void *opaque, hwaddr reg, uint64_t value,
|
|
unsigned size)
|
|
{
|
|
SWIMCtrl *swimctrl = opaque;
|
|
|
|
if (swimctrl->mode == SWIM_MODE_IWM) {
|
|
iwmctrl_write(opaque, reg, value, size);
|
|
return;
|
|
}
|
|
|
|
reg >>= REG_SHIFT;
|
|
|
|
switch (reg) {
|
|
case SWIM_WRITE_PHASE:
|
|
swimctrl->swim_phase = value;
|
|
break;
|
|
case SWIM_WRITE_MODE0:
|
|
swimctrl->swim_mode &= ~value;
|
|
break;
|
|
case SWIM_WRITE_MODE1:
|
|
swimctrl->swim_mode |= value;
|
|
break;
|
|
case SWIM_WRITE_DATA:
|
|
case SWIM_WRITE_MARK:
|
|
case SWIM_WRITE_CRC:
|
|
case SWIM_WRITE_PARAMETER:
|
|
case SWIM_WRITE_SETUP:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static uint64_t swimctrl_read(void *opaque, hwaddr reg, unsigned size)
|
|
{
|
|
SWIMCtrl *swimctrl = opaque;
|
|
uint32_t value = 0;
|
|
|
|
if (swimctrl->mode == SWIM_MODE_IWM) {
|
|
return iwmctrl_read(opaque, reg, size);
|
|
}
|
|
|
|
reg >>= REG_SHIFT;
|
|
|
|
switch (reg) {
|
|
case SWIM_READ_PHASE:
|
|
value = swimctrl->swim_phase;
|
|
break;
|
|
case SWIM_READ_HANDSHAKE:
|
|
if (swimctrl->swim_phase == SWIM_DRIVE_PRESENT) {
|
|
/* always answer "no drive present" */
|
|
value = SWIM_SENSE;
|
|
}
|
|
break;
|
|
case SWIM_READ_DATA:
|
|
case SWIM_READ_MARK:
|
|
case SWIM_READ_ERROR:
|
|
case SWIM_READ_PARAMETER:
|
|
case SWIM_READ_SETUP:
|
|
case SWIM_READ_STATUS:
|
|
break;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static const MemoryRegionOps swimctrl_mem_ops = {
|
|
.write = swimctrl_write,
|
|
.read = swimctrl_read,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static void sysbus_swim_reset(DeviceState *d)
|
|
{
|
|
Swim *sys = SWIM(d);
|
|
SWIMCtrl *ctrl = &sys->ctrl;
|
|
int i;
|
|
|
|
ctrl->mode = 0;
|
|
ctrl->iwm_switch = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
ctrl->regs[i] = 0;
|
|
}
|
|
ctrl->iwm_data = 0;
|
|
ctrl->iwm_mode = 0;
|
|
ctrl->swim_phase = 0;
|
|
ctrl->swim_mode = 0;
|
|
for (i = 0; i < SWIM_MAX_FD; i++) {
|
|
fd_recalibrate(&ctrl->drives[i]);
|
|
}
|
|
}
|
|
|
|
static void sysbus_swim_init(Object *obj)
|
|
{
|
|
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
|
|
Swim *sbs = SWIM(obj);
|
|
SWIMCtrl *swimctrl = &sbs->ctrl;
|
|
|
|
memory_region_init_io(&swimctrl->iomem, obj, &swimctrl_mem_ops, swimctrl,
|
|
"swim", 0x2000);
|
|
sysbus_init_mmio(sbd, &swimctrl->iomem);
|
|
}
|
|
|
|
static void sysbus_swim_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
Swim *sys = SWIM(dev);
|
|
SWIMCtrl *swimctrl = &sys->ctrl;
|
|
|
|
qbus_create_inplace(&swimctrl->bus, sizeof(SWIMBus), TYPE_SWIM_BUS, dev,
|
|
NULL);
|
|
swimctrl->bus.ctrl = swimctrl;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_fdrive = {
|
|
.name = "fdrive",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static const VMStateDescription vmstate_swim = {
|
|
.name = "swim",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_INT32(mode, SWIMCtrl),
|
|
/* IWM mode */
|
|
VMSTATE_INT32(iwm_switch, SWIMCtrl),
|
|
VMSTATE_UINT16_ARRAY(regs, SWIMCtrl, 8),
|
|
VMSTATE_UINT8(iwm_data, SWIMCtrl),
|
|
VMSTATE_UINT8(iwm_mode, SWIMCtrl),
|
|
/* SWIM mode */
|
|
VMSTATE_UINT8(swim_phase, SWIMCtrl),
|
|
VMSTATE_UINT8(swim_mode, SWIMCtrl),
|
|
/* Drives */
|
|
VMSTATE_STRUCT_ARRAY(drives, SWIMCtrl, SWIM_MAX_FD, 1,
|
|
vmstate_fdrive, FDrive),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static const VMStateDescription vmstate_sysbus_swim = {
|
|
.name = "SWIM",
|
|
.version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_STRUCT(ctrl, Swim, 0, vmstate_swim, SWIMCtrl),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void sysbus_swim_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(oc);
|
|
|
|
dc->realize = sysbus_swim_realize;
|
|
dc->reset = sysbus_swim_reset;
|
|
dc->vmsd = &vmstate_sysbus_swim;
|
|
}
|
|
|
|
static const TypeInfo sysbus_swim_info = {
|
|
.name = TYPE_SWIM,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(Swim),
|
|
.instance_init = sysbus_swim_init,
|
|
.class_init = sysbus_swim_class_init,
|
|
};
|
|
|
|
static void swim_register_types(void)
|
|
{
|
|
type_register_static(&sysbus_swim_info);
|
|
type_register_static(&swim_bus_info);
|
|
type_register_static(&swim_drive_info);
|
|
}
|
|
|
|
type_init(swim_register_types)
|