mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-27 13:30:52 +00:00
63c915526d
exec-all.h contains TCG-specific definitions. It is not needed outside TCG-specific files such as translate.c, exec.c or *helper.c. One generic function had snuck into include/exec/exec-all.h; move it to include/qom/cpu.h. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2572 lines
82 KiB
C
2572 lines
82 KiB
C
/*
|
|
* PowerPC integer and vector emulation helpers for QEMU.
|
|
*
|
|
* Copyright (c) 2003-2007 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "qemu/host-utils.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "crypto/aes.h"
|
|
|
|
#include "helper_regs.h"
|
|
/*****************************************************************************/
|
|
/* Fixed point operations helpers */
|
|
|
|
target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb,
|
|
uint32_t oe)
|
|
{
|
|
uint64_t rt = 0;
|
|
int overflow = 0;
|
|
|
|
uint64_t dividend = (uint64_t)ra << 32;
|
|
uint64_t divisor = (uint32_t)rb;
|
|
|
|
if (unlikely(divisor == 0)) {
|
|
overflow = 1;
|
|
} else {
|
|
rt = dividend / divisor;
|
|
overflow = rt > UINT32_MAX;
|
|
}
|
|
|
|
if (unlikely(overflow)) {
|
|
rt = 0; /* Undefined */
|
|
}
|
|
|
|
if (oe) {
|
|
if (unlikely(overflow)) {
|
|
env->so = env->ov = 1;
|
|
} else {
|
|
env->ov = 0;
|
|
}
|
|
}
|
|
|
|
return (target_ulong)rt;
|
|
}
|
|
|
|
target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb,
|
|
uint32_t oe)
|
|
{
|
|
int64_t rt = 0;
|
|
int overflow = 0;
|
|
|
|
int64_t dividend = (int64_t)ra << 32;
|
|
int64_t divisor = (int64_t)((int32_t)rb);
|
|
|
|
if (unlikely((divisor == 0) ||
|
|
((divisor == -1ull) && (dividend == INT64_MIN)))) {
|
|
overflow = 1;
|
|
} else {
|
|
rt = dividend / divisor;
|
|
overflow = rt != (int32_t)rt;
|
|
}
|
|
|
|
if (unlikely(overflow)) {
|
|
rt = 0; /* Undefined */
|
|
}
|
|
|
|
if (oe) {
|
|
if (unlikely(overflow)) {
|
|
env->so = env->ov = 1;
|
|
} else {
|
|
env->ov = 0;
|
|
}
|
|
}
|
|
|
|
return (target_ulong)rt;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
|
|
uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe)
|
|
{
|
|
uint64_t rt = 0;
|
|
int overflow = 0;
|
|
|
|
overflow = divu128(&rt, &ra, rb);
|
|
|
|
if (unlikely(overflow)) {
|
|
rt = 0; /* Undefined */
|
|
}
|
|
|
|
if (oe) {
|
|
if (unlikely(overflow)) {
|
|
env->so = env->ov = 1;
|
|
} else {
|
|
env->ov = 0;
|
|
}
|
|
}
|
|
|
|
return rt;
|
|
}
|
|
|
|
uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe)
|
|
{
|
|
int64_t rt = 0;
|
|
int64_t ra = (int64_t)rau;
|
|
int64_t rb = (int64_t)rbu;
|
|
int overflow = divs128(&rt, &ra, rb);
|
|
|
|
if (unlikely(overflow)) {
|
|
rt = 0; /* Undefined */
|
|
}
|
|
|
|
if (oe) {
|
|
|
|
if (unlikely(overflow)) {
|
|
env->so = env->ov = 1;
|
|
} else {
|
|
env->ov = 0;
|
|
}
|
|
}
|
|
|
|
return rt;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
target_ulong helper_cntlzw(target_ulong t)
|
|
{
|
|
return clz32(t);
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_cntlzd(target_ulong t)
|
|
{
|
|
return clz64(t);
|
|
}
|
|
#endif
|
|
|
|
#if defined(TARGET_PPC64)
|
|
|
|
uint64_t helper_bpermd(uint64_t rs, uint64_t rb)
|
|
{
|
|
int i;
|
|
uint64_t ra = 0;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
int index = (rs >> (i*8)) & 0xFF;
|
|
if (index < 64) {
|
|
if (rb & (1ull << (63-index))) {
|
|
ra |= 1 << i;
|
|
}
|
|
}
|
|
}
|
|
return ra;
|
|
}
|
|
|
|
#endif
|
|
|
|
target_ulong helper_cmpb(target_ulong rs, target_ulong rb)
|
|
{
|
|
target_ulong mask = 0xff;
|
|
target_ulong ra = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < sizeof(target_ulong); i++) {
|
|
if ((rs & mask) == (rb & mask)) {
|
|
ra |= mask;
|
|
}
|
|
mask <<= 8;
|
|
}
|
|
return ra;
|
|
}
|
|
|
|
/* shift right arithmetic helper */
|
|
target_ulong helper_sraw(CPUPPCState *env, target_ulong value,
|
|
target_ulong shift)
|
|
{
|
|
int32_t ret;
|
|
|
|
if (likely(!(shift & 0x20))) {
|
|
if (likely((uint32_t)shift != 0)) {
|
|
shift &= 0x1f;
|
|
ret = (int32_t)value >> shift;
|
|
if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
|
|
env->ca = 0;
|
|
} else {
|
|
env->ca = 1;
|
|
}
|
|
} else {
|
|
ret = (int32_t)value;
|
|
env->ca = 0;
|
|
}
|
|
} else {
|
|
ret = (int32_t)value >> 31;
|
|
env->ca = (ret != 0);
|
|
}
|
|
return (target_long)ret;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_srad(CPUPPCState *env, target_ulong value,
|
|
target_ulong shift)
|
|
{
|
|
int64_t ret;
|
|
|
|
if (likely(!(shift & 0x40))) {
|
|
if (likely((uint64_t)shift != 0)) {
|
|
shift &= 0x3f;
|
|
ret = (int64_t)value >> shift;
|
|
if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) {
|
|
env->ca = 0;
|
|
} else {
|
|
env->ca = 1;
|
|
}
|
|
} else {
|
|
ret = (int64_t)value;
|
|
env->ca = 0;
|
|
}
|
|
} else {
|
|
ret = (int64_t)value >> 63;
|
|
env->ca = (ret != 0);
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_popcntb(target_ulong val)
|
|
{
|
|
val = (val & 0x5555555555555555ULL) + ((val >> 1) &
|
|
0x5555555555555555ULL);
|
|
val = (val & 0x3333333333333333ULL) + ((val >> 2) &
|
|
0x3333333333333333ULL);
|
|
val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
|
|
0x0f0f0f0f0f0f0f0fULL);
|
|
return val;
|
|
}
|
|
|
|
target_ulong helper_popcntw(target_ulong val)
|
|
{
|
|
val = (val & 0x5555555555555555ULL) + ((val >> 1) &
|
|
0x5555555555555555ULL);
|
|
val = (val & 0x3333333333333333ULL) + ((val >> 2) &
|
|
0x3333333333333333ULL);
|
|
val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
|
|
0x0f0f0f0f0f0f0f0fULL);
|
|
val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
|
|
0x00ff00ff00ff00ffULL);
|
|
val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
|
|
0x0000ffff0000ffffULL);
|
|
return val;
|
|
}
|
|
|
|
target_ulong helper_popcntd(target_ulong val)
|
|
{
|
|
return ctpop64(val);
|
|
}
|
|
#else
|
|
target_ulong helper_popcntb(target_ulong val)
|
|
{
|
|
val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
|
|
val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
|
|
val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
|
|
return val;
|
|
}
|
|
|
|
target_ulong helper_popcntw(target_ulong val)
|
|
{
|
|
val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
|
|
val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
|
|
val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
|
|
val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff);
|
|
val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff);
|
|
return val;
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* PowerPC 601 specific instructions (POWER bridge) */
|
|
target_ulong helper_div(CPUPPCState *env, target_ulong arg1, target_ulong arg2)
|
|
{
|
|
uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
|
|
|
|
if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->spr[SPR_MQ] = tmp % arg2;
|
|
return tmp / (int32_t)arg2;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_divo(CPUPPCState *env, target_ulong arg1,
|
|
target_ulong arg2)
|
|
{
|
|
uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
|
|
|
|
if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->so = env->ov = 1;
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->spr[SPR_MQ] = tmp % arg2;
|
|
tmp /= (int32_t)arg2;
|
|
if ((int32_t)tmp != tmp) {
|
|
env->so = env->ov = 1;
|
|
} else {
|
|
env->ov = 0;
|
|
}
|
|
return tmp;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_divs(CPUPPCState *env, target_ulong arg1,
|
|
target_ulong arg2)
|
|
{
|
|
if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
|
|
return (int32_t)arg1 / (int32_t)arg2;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_divso(CPUPPCState *env, target_ulong arg1,
|
|
target_ulong arg2)
|
|
{
|
|
if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->so = env->ov = 1;
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->ov = 0;
|
|
env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
|
|
return (int32_t)arg1 / (int32_t)arg2;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* 602 specific instructions */
|
|
/* mfrom is the most crazy instruction ever seen, imho ! */
|
|
/* Real implementation uses a ROM table. Do the same */
|
|
/* Extremely decomposed:
|
|
* -arg / 256
|
|
* return 256 * log10(10 + 1.0) + 0.5
|
|
*/
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
target_ulong helper_602_mfrom(target_ulong arg)
|
|
{
|
|
if (likely(arg < 602)) {
|
|
#include "mfrom_table.c"
|
|
return mfrom_ROM_table[arg];
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* Altivec extension helpers */
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define HI_IDX 0
|
|
#define LO_IDX 1
|
|
#define AVRB(i) u8[i]
|
|
#define AVRW(i) u32[i]
|
|
#else
|
|
#define HI_IDX 1
|
|
#define LO_IDX 0
|
|
#define AVRB(i) u8[15-(i)]
|
|
#define AVRW(i) u32[3-(i)]
|
|
#endif
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define VECTOR_FOR_INORDER_I(index, element) \
|
|
for (index = 0; index < ARRAY_SIZE(r->element); index++)
|
|
#else
|
|
#define VECTOR_FOR_INORDER_I(index, element) \
|
|
for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
|
|
#endif
|
|
|
|
/* Saturating arithmetic helpers. */
|
|
#define SATCVT(from, to, from_type, to_type, min, max) \
|
|
static inline to_type cvt##from##to(from_type x, int *sat) \
|
|
{ \
|
|
to_type r; \
|
|
\
|
|
if (x < (from_type)min) { \
|
|
r = min; \
|
|
*sat = 1; \
|
|
} else if (x > (from_type)max) { \
|
|
r = max; \
|
|
*sat = 1; \
|
|
} else { \
|
|
r = x; \
|
|
} \
|
|
return r; \
|
|
}
|
|
#define SATCVTU(from, to, from_type, to_type, min, max) \
|
|
static inline to_type cvt##from##to(from_type x, int *sat) \
|
|
{ \
|
|
to_type r; \
|
|
\
|
|
if (x > (from_type)max) { \
|
|
r = max; \
|
|
*sat = 1; \
|
|
} else { \
|
|
r = x; \
|
|
} \
|
|
return r; \
|
|
}
|
|
SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
|
|
SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
|
|
SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
|
|
|
|
SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
|
|
SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
|
|
SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
|
|
SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
|
|
SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
|
|
SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
|
|
#undef SATCVT
|
|
#undef SATCVTU
|
|
|
|
void helper_lvsl(ppc_avr_t *r, target_ulong sh)
|
|
{
|
|
int i, j = (sh & 0xf);
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
r->u8[i] = j++;
|
|
}
|
|
}
|
|
|
|
void helper_lvsr(ppc_avr_t *r, target_ulong sh)
|
|
{
|
|
int i, j = 0x10 - (sh & 0xf);
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
r->u8[i] = j++;
|
|
}
|
|
}
|
|
|
|
void helper_mtvscr(CPUPPCState *env, ppc_avr_t *r)
|
|
{
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
env->vscr = r->u32[3];
|
|
#else
|
|
env->vscr = r->u32[0];
|
|
#endif
|
|
set_flush_to_zero(vscr_nj, &env->vec_status);
|
|
}
|
|
|
|
void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
r->u32[i] = ~a->u32[i] < b->u32[i];
|
|
}
|
|
}
|
|
|
|
#define VARITH_DO(name, op, element) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = a->element[i] op b->element[i]; \
|
|
} \
|
|
}
|
|
#define VARITH(suffix, element) \
|
|
VARITH_DO(add##suffix, +, element) \
|
|
VARITH_DO(sub##suffix, -, element)
|
|
VARITH(ubm, u8)
|
|
VARITH(uhm, u16)
|
|
VARITH(uwm, u32)
|
|
VARITH(udm, u64)
|
|
VARITH_DO(muluwm, *, u32)
|
|
#undef VARITH_DO
|
|
#undef VARITH
|
|
|
|
#define VARITHFP(suffix, func) \
|
|
void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
|
|
ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
|
|
} \
|
|
}
|
|
VARITHFP(addfp, float32_add)
|
|
VARITHFP(subfp, float32_sub)
|
|
VARITHFP(minfp, float32_min)
|
|
VARITHFP(maxfp, float32_max)
|
|
#undef VARITHFP
|
|
|
|
#define VARITHFPFMA(suffix, type) \
|
|
void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
|
|
ppc_avr_t *b, ppc_avr_t *c) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
r->f[i] = float32_muladd(a->f[i], c->f[i], b->f[i], \
|
|
type, &env->vec_status); \
|
|
} \
|
|
}
|
|
VARITHFPFMA(maddfp, 0);
|
|
VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c);
|
|
#undef VARITHFPFMA
|
|
|
|
#define VARITHSAT_CASE(type, op, cvt, element) \
|
|
{ \
|
|
type result = (type)a->element[i] op (type)b->element[i]; \
|
|
r->element[i] = cvt(result, &sat); \
|
|
}
|
|
|
|
#define VARITHSAT_DO(name, op, optype, cvt, element) \
|
|
void helper_v##name(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
|
|
ppc_avr_t *b) \
|
|
{ \
|
|
int sat = 0; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
switch (sizeof(r->element[0])) { \
|
|
case 1: \
|
|
VARITHSAT_CASE(optype, op, cvt, element); \
|
|
break; \
|
|
case 2: \
|
|
VARITHSAT_CASE(optype, op, cvt, element); \
|
|
break; \
|
|
case 4: \
|
|
VARITHSAT_CASE(optype, op, cvt, element); \
|
|
break; \
|
|
} \
|
|
} \
|
|
if (sat) { \
|
|
env->vscr |= (1 << VSCR_SAT); \
|
|
} \
|
|
}
|
|
#define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
|
|
VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
|
|
VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
|
|
#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
|
|
VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
|
|
VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
|
|
VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
|
|
VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
|
|
VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
|
|
VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
|
|
VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
|
|
VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
|
|
#undef VARITHSAT_CASE
|
|
#undef VARITHSAT_DO
|
|
#undef VARITHSAT_SIGNED
|
|
#undef VARITHSAT_UNSIGNED
|
|
|
|
#define VAVG_DO(name, element, etype) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
|
|
r->element[i] = x >> 1; \
|
|
} \
|
|
}
|
|
|
|
#define VAVG(type, signed_element, signed_type, unsigned_element, \
|
|
unsigned_type) \
|
|
VAVG_DO(avgs##type, signed_element, signed_type) \
|
|
VAVG_DO(avgu##type, unsigned_element, unsigned_type)
|
|
VAVG(b, s8, int16_t, u8, uint16_t)
|
|
VAVG(h, s16, int32_t, u16, uint32_t)
|
|
VAVG(w, s32, int64_t, u32, uint64_t)
|
|
#undef VAVG_DO
|
|
#undef VAVG
|
|
|
|
#define VCF(suffix, cvt, element) \
|
|
void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *b, uint32_t uim) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
float32 t = cvt(b->element[i], &env->vec_status); \
|
|
r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \
|
|
} \
|
|
}
|
|
VCF(ux, uint32_to_float32, u32)
|
|
VCF(sx, int32_to_float32, s32)
|
|
#undef VCF
|
|
|
|
#define VCMP_DO(suffix, compare, element, record) \
|
|
void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
uint64_t ones = (uint64_t)-1; \
|
|
uint64_t all = ones; \
|
|
uint64_t none = 0; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
uint64_t result = (a->element[i] compare b->element[i] ? \
|
|
ones : 0x0); \
|
|
switch (sizeof(a->element[0])) { \
|
|
case 8: \
|
|
r->u64[i] = result; \
|
|
break; \
|
|
case 4: \
|
|
r->u32[i] = result; \
|
|
break; \
|
|
case 2: \
|
|
r->u16[i] = result; \
|
|
break; \
|
|
case 1: \
|
|
r->u8[i] = result; \
|
|
break; \
|
|
} \
|
|
all &= result; \
|
|
none |= result; \
|
|
} \
|
|
if (record) { \
|
|
env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
|
|
} \
|
|
}
|
|
#define VCMP(suffix, compare, element) \
|
|
VCMP_DO(suffix, compare, element, 0) \
|
|
VCMP_DO(suffix##_dot, compare, element, 1)
|
|
VCMP(equb, ==, u8)
|
|
VCMP(equh, ==, u16)
|
|
VCMP(equw, ==, u32)
|
|
VCMP(equd, ==, u64)
|
|
VCMP(gtub, >, u8)
|
|
VCMP(gtuh, >, u16)
|
|
VCMP(gtuw, >, u32)
|
|
VCMP(gtud, >, u64)
|
|
VCMP(gtsb, >, s8)
|
|
VCMP(gtsh, >, s16)
|
|
VCMP(gtsw, >, s32)
|
|
VCMP(gtsd, >, s64)
|
|
#undef VCMP_DO
|
|
#undef VCMP
|
|
|
|
#define VCMPFP_DO(suffix, compare, order, record) \
|
|
void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
uint32_t ones = (uint32_t)-1; \
|
|
uint32_t all = ones; \
|
|
uint32_t none = 0; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
uint32_t result; \
|
|
int rel = float32_compare_quiet(a->f[i], b->f[i], \
|
|
&env->vec_status); \
|
|
if (rel == float_relation_unordered) { \
|
|
result = 0; \
|
|
} else if (rel compare order) { \
|
|
result = ones; \
|
|
} else { \
|
|
result = 0; \
|
|
} \
|
|
r->u32[i] = result; \
|
|
all &= result; \
|
|
none |= result; \
|
|
} \
|
|
if (record) { \
|
|
env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
|
|
} \
|
|
}
|
|
#define VCMPFP(suffix, compare, order) \
|
|
VCMPFP_DO(suffix, compare, order, 0) \
|
|
VCMPFP_DO(suffix##_dot, compare, order, 1)
|
|
VCMPFP(eqfp, ==, float_relation_equal)
|
|
VCMPFP(gefp, !=, float_relation_less)
|
|
VCMPFP(gtfp, ==, float_relation_greater)
|
|
#undef VCMPFP_DO
|
|
#undef VCMPFP
|
|
|
|
static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r,
|
|
ppc_avr_t *a, ppc_avr_t *b, int record)
|
|
{
|
|
int i;
|
|
int all_in = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
|
|
if (le_rel == float_relation_unordered) {
|
|
r->u32[i] = 0xc0000000;
|
|
all_in = 1;
|
|
} else {
|
|
float32 bneg = float32_chs(b->f[i]);
|
|
int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
|
|
int le = le_rel != float_relation_greater;
|
|
int ge = ge_rel != float_relation_less;
|
|
|
|
r->u32[i] = ((!le) << 31) | ((!ge) << 30);
|
|
all_in |= (!le | !ge);
|
|
}
|
|
}
|
|
if (record) {
|
|
env->crf[6] = (all_in == 0) << 1;
|
|
}
|
|
}
|
|
|
|
void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
vcmpbfp_internal(env, r, a, b, 0);
|
|
}
|
|
|
|
void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b)
|
|
{
|
|
vcmpbfp_internal(env, r, a, b, 1);
|
|
}
|
|
|
|
#define VCT(suffix, satcvt, element) \
|
|
void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *b, uint32_t uim) \
|
|
{ \
|
|
int i; \
|
|
int sat = 0; \
|
|
float_status s = env->vec_status; \
|
|
\
|
|
set_float_rounding_mode(float_round_to_zero, &s); \
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
if (float32_is_any_nan(b->f[i])) { \
|
|
r->element[i] = 0; \
|
|
} else { \
|
|
float64 t = float32_to_float64(b->f[i], &s); \
|
|
int64_t j; \
|
|
\
|
|
t = float64_scalbn(t, uim, &s); \
|
|
j = float64_to_int64(t, &s); \
|
|
r->element[i] = satcvt(j, &sat); \
|
|
} \
|
|
} \
|
|
if (sat) { \
|
|
env->vscr |= (1 << VSCR_SAT); \
|
|
} \
|
|
}
|
|
VCT(uxs, cvtsduw, u32)
|
|
VCT(sxs, cvtsdsw, s32)
|
|
#undef VCT
|
|
|
|
void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i];
|
|
int32_t t = (int32_t)c->s16[i] + (prod >> 15);
|
|
|
|
r->s16[i] = cvtswsh(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
|
|
int32_t t = (int32_t)c->s16[i] + (prod >> 15);
|
|
r->s16[i] = cvtswsh(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
#define VMINMAX_DO(name, compare, element) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
if (a->element[i] compare b->element[i]) { \
|
|
r->element[i] = b->element[i]; \
|
|
} else { \
|
|
r->element[i] = a->element[i]; \
|
|
} \
|
|
} \
|
|
}
|
|
#define VMINMAX(suffix, element) \
|
|
VMINMAX_DO(min##suffix, >, element) \
|
|
VMINMAX_DO(max##suffix, <, element)
|
|
VMINMAX(sb, s8)
|
|
VMINMAX(sh, s16)
|
|
VMINMAX(sw, s32)
|
|
VMINMAX(sd, s64)
|
|
VMINMAX(ub, u8)
|
|
VMINMAX(uh, u16)
|
|
VMINMAX(uw, u32)
|
|
VMINMAX(ud, u64)
|
|
#undef VMINMAX_DO
|
|
#undef VMINMAX
|
|
|
|
void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i];
|
|
r->s16[i] = (int16_t) (prod + c->s16[i]);
|
|
}
|
|
}
|
|
|
|
#define VMRG_DO(name, element, highp) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
ppc_avr_t result; \
|
|
int i; \
|
|
size_t n_elems = ARRAY_SIZE(r->element); \
|
|
\
|
|
for (i = 0; i < n_elems / 2; i++) { \
|
|
if (highp) { \
|
|
result.element[i*2+HI_IDX] = a->element[i]; \
|
|
result.element[i*2+LO_IDX] = b->element[i]; \
|
|
} else { \
|
|
result.element[n_elems - i * 2 - (1 + HI_IDX)] = \
|
|
b->element[n_elems - i - 1]; \
|
|
result.element[n_elems - i * 2 - (1 + LO_IDX)] = \
|
|
a->element[n_elems - i - 1]; \
|
|
} \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define MRGHI 0
|
|
#define MRGLO 1
|
|
#else
|
|
#define MRGHI 1
|
|
#define MRGLO 0
|
|
#endif
|
|
#define VMRG(suffix, element) \
|
|
VMRG_DO(mrgl##suffix, element, MRGHI) \
|
|
VMRG_DO(mrgh##suffix, element, MRGLO)
|
|
VMRG(b, u8)
|
|
VMRG(h, u16)
|
|
VMRG(w, u32)
|
|
#undef VMRG_DO
|
|
#undef VMRG
|
|
#undef MRGHI
|
|
#undef MRGLO
|
|
|
|
void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[16];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
|
|
prod[i] = (int32_t)a->s8[i] * b->u8[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
|
|
prod[4 * i + 2] + prod[4 * i + 3];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[8];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
prod[i] = a->s16[i] * b->s16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[8];
|
|
int i;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
prod[i] = (int32_t)a->s16[i] * b->s16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
|
|
r->u32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint16_t prod[16];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
prod[i] = a->u8[i] * b->u8[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
|
|
prod[4 * i + 2] + prod[4 * i + 3];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint32_t prod[8];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
|
|
prod[i] = a->u16[i] * b->u16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint32_t prod[8];
|
|
int i;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
|
|
prod[i] = a->u16[i] * b->u16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
|
|
r->u32[i] = cvtuduw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
#define VMUL_DO(name, mul_element, prod_element, cast, evenp) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
VECTOR_FOR_INORDER_I(i, prod_element) { \
|
|
if (evenp) { \
|
|
r->prod_element[i] = \
|
|
(cast)a->mul_element[i * 2 + HI_IDX] * \
|
|
(cast)b->mul_element[i * 2 + HI_IDX]; \
|
|
} else { \
|
|
r->prod_element[i] = \
|
|
(cast)a->mul_element[i * 2 + LO_IDX] * \
|
|
(cast)b->mul_element[i * 2 + LO_IDX]; \
|
|
} \
|
|
} \
|
|
}
|
|
#define VMUL(suffix, mul_element, prod_element, cast) \
|
|
VMUL_DO(mule##suffix, mul_element, prod_element, cast, 1) \
|
|
VMUL_DO(mulo##suffix, mul_element, prod_element, cast, 0)
|
|
VMUL(sb, s8, s16, int16_t)
|
|
VMUL(sh, s16, s32, int32_t)
|
|
VMUL(sw, s32, s64, int64_t)
|
|
VMUL(ub, u8, u16, uint16_t)
|
|
VMUL(uh, u16, u32, uint32_t)
|
|
VMUL(uw, u32, u64, uint64_t)
|
|
#undef VMUL_DO
|
|
#undef VMUL
|
|
|
|
void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
|
|
ppc_avr_t *c)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
int s = c->u8[i] & 0x1f;
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
int index = s & 0xf;
|
|
#else
|
|
int index = 15 - (s & 0xf);
|
|
#endif
|
|
|
|
if (s & 0x10) {
|
|
result.u8[i] = b->u8[index];
|
|
} else {
|
|
result.u8[i] = a->u8[index];
|
|
}
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
|
|
#define VBPERMQ_DW(index) (((index) & 0x40) != 0)
|
|
#else
|
|
#define VBPERMQ_INDEX(avr, i) ((avr)->u8[15-(i)])
|
|
#define VBPERMQ_DW(index) (((index) & 0x40) == 0)
|
|
#endif
|
|
|
|
void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
uint64_t perm = 0;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
int index = VBPERMQ_INDEX(b, i);
|
|
|
|
if (index < 128) {
|
|
uint64_t mask = (1ull << (63-(index & 0x3F)));
|
|
if (a->u64[VBPERMQ_DW(index)] & mask) {
|
|
perm |= (0x8000 >> i);
|
|
}
|
|
}
|
|
}
|
|
|
|
r->u64[HI_IDX] = perm;
|
|
r->u64[LO_IDX] = 0;
|
|
}
|
|
|
|
#undef VBPERMQ_INDEX
|
|
#undef VBPERMQ_DW
|
|
|
|
static const uint64_t VGBBD_MASKS[256] = {
|
|
0x0000000000000000ull, /* 00 */
|
|
0x0000000000000080ull, /* 01 */
|
|
0x0000000000008000ull, /* 02 */
|
|
0x0000000000008080ull, /* 03 */
|
|
0x0000000000800000ull, /* 04 */
|
|
0x0000000000800080ull, /* 05 */
|
|
0x0000000000808000ull, /* 06 */
|
|
0x0000000000808080ull, /* 07 */
|
|
0x0000000080000000ull, /* 08 */
|
|
0x0000000080000080ull, /* 09 */
|
|
0x0000000080008000ull, /* 0A */
|
|
0x0000000080008080ull, /* 0B */
|
|
0x0000000080800000ull, /* 0C */
|
|
0x0000000080800080ull, /* 0D */
|
|
0x0000000080808000ull, /* 0E */
|
|
0x0000000080808080ull, /* 0F */
|
|
0x0000008000000000ull, /* 10 */
|
|
0x0000008000000080ull, /* 11 */
|
|
0x0000008000008000ull, /* 12 */
|
|
0x0000008000008080ull, /* 13 */
|
|
0x0000008000800000ull, /* 14 */
|
|
0x0000008000800080ull, /* 15 */
|
|
0x0000008000808000ull, /* 16 */
|
|
0x0000008000808080ull, /* 17 */
|
|
0x0000008080000000ull, /* 18 */
|
|
0x0000008080000080ull, /* 19 */
|
|
0x0000008080008000ull, /* 1A */
|
|
0x0000008080008080ull, /* 1B */
|
|
0x0000008080800000ull, /* 1C */
|
|
0x0000008080800080ull, /* 1D */
|
|
0x0000008080808000ull, /* 1E */
|
|
0x0000008080808080ull, /* 1F */
|
|
0x0000800000000000ull, /* 20 */
|
|
0x0000800000000080ull, /* 21 */
|
|
0x0000800000008000ull, /* 22 */
|
|
0x0000800000008080ull, /* 23 */
|
|
0x0000800000800000ull, /* 24 */
|
|
0x0000800000800080ull, /* 25 */
|
|
0x0000800000808000ull, /* 26 */
|
|
0x0000800000808080ull, /* 27 */
|
|
0x0000800080000000ull, /* 28 */
|
|
0x0000800080000080ull, /* 29 */
|
|
0x0000800080008000ull, /* 2A */
|
|
0x0000800080008080ull, /* 2B */
|
|
0x0000800080800000ull, /* 2C */
|
|
0x0000800080800080ull, /* 2D */
|
|
0x0000800080808000ull, /* 2E */
|
|
0x0000800080808080ull, /* 2F */
|
|
0x0000808000000000ull, /* 30 */
|
|
0x0000808000000080ull, /* 31 */
|
|
0x0000808000008000ull, /* 32 */
|
|
0x0000808000008080ull, /* 33 */
|
|
0x0000808000800000ull, /* 34 */
|
|
0x0000808000800080ull, /* 35 */
|
|
0x0000808000808000ull, /* 36 */
|
|
0x0000808000808080ull, /* 37 */
|
|
0x0000808080000000ull, /* 38 */
|
|
0x0000808080000080ull, /* 39 */
|
|
0x0000808080008000ull, /* 3A */
|
|
0x0000808080008080ull, /* 3B */
|
|
0x0000808080800000ull, /* 3C */
|
|
0x0000808080800080ull, /* 3D */
|
|
0x0000808080808000ull, /* 3E */
|
|
0x0000808080808080ull, /* 3F */
|
|
0x0080000000000000ull, /* 40 */
|
|
0x0080000000000080ull, /* 41 */
|
|
0x0080000000008000ull, /* 42 */
|
|
0x0080000000008080ull, /* 43 */
|
|
0x0080000000800000ull, /* 44 */
|
|
0x0080000000800080ull, /* 45 */
|
|
0x0080000000808000ull, /* 46 */
|
|
0x0080000000808080ull, /* 47 */
|
|
0x0080000080000000ull, /* 48 */
|
|
0x0080000080000080ull, /* 49 */
|
|
0x0080000080008000ull, /* 4A */
|
|
0x0080000080008080ull, /* 4B */
|
|
0x0080000080800000ull, /* 4C */
|
|
0x0080000080800080ull, /* 4D */
|
|
0x0080000080808000ull, /* 4E */
|
|
0x0080000080808080ull, /* 4F */
|
|
0x0080008000000000ull, /* 50 */
|
|
0x0080008000000080ull, /* 51 */
|
|
0x0080008000008000ull, /* 52 */
|
|
0x0080008000008080ull, /* 53 */
|
|
0x0080008000800000ull, /* 54 */
|
|
0x0080008000800080ull, /* 55 */
|
|
0x0080008000808000ull, /* 56 */
|
|
0x0080008000808080ull, /* 57 */
|
|
0x0080008080000000ull, /* 58 */
|
|
0x0080008080000080ull, /* 59 */
|
|
0x0080008080008000ull, /* 5A */
|
|
0x0080008080008080ull, /* 5B */
|
|
0x0080008080800000ull, /* 5C */
|
|
0x0080008080800080ull, /* 5D */
|
|
0x0080008080808000ull, /* 5E */
|
|
0x0080008080808080ull, /* 5F */
|
|
0x0080800000000000ull, /* 60 */
|
|
0x0080800000000080ull, /* 61 */
|
|
0x0080800000008000ull, /* 62 */
|
|
0x0080800000008080ull, /* 63 */
|
|
0x0080800000800000ull, /* 64 */
|
|
0x0080800000800080ull, /* 65 */
|
|
0x0080800000808000ull, /* 66 */
|
|
0x0080800000808080ull, /* 67 */
|
|
0x0080800080000000ull, /* 68 */
|
|
0x0080800080000080ull, /* 69 */
|
|
0x0080800080008000ull, /* 6A */
|
|
0x0080800080008080ull, /* 6B */
|
|
0x0080800080800000ull, /* 6C */
|
|
0x0080800080800080ull, /* 6D */
|
|
0x0080800080808000ull, /* 6E */
|
|
0x0080800080808080ull, /* 6F */
|
|
0x0080808000000000ull, /* 70 */
|
|
0x0080808000000080ull, /* 71 */
|
|
0x0080808000008000ull, /* 72 */
|
|
0x0080808000008080ull, /* 73 */
|
|
0x0080808000800000ull, /* 74 */
|
|
0x0080808000800080ull, /* 75 */
|
|
0x0080808000808000ull, /* 76 */
|
|
0x0080808000808080ull, /* 77 */
|
|
0x0080808080000000ull, /* 78 */
|
|
0x0080808080000080ull, /* 79 */
|
|
0x0080808080008000ull, /* 7A */
|
|
0x0080808080008080ull, /* 7B */
|
|
0x0080808080800000ull, /* 7C */
|
|
0x0080808080800080ull, /* 7D */
|
|
0x0080808080808000ull, /* 7E */
|
|
0x0080808080808080ull, /* 7F */
|
|
0x8000000000000000ull, /* 80 */
|
|
0x8000000000000080ull, /* 81 */
|
|
0x8000000000008000ull, /* 82 */
|
|
0x8000000000008080ull, /* 83 */
|
|
0x8000000000800000ull, /* 84 */
|
|
0x8000000000800080ull, /* 85 */
|
|
0x8000000000808000ull, /* 86 */
|
|
0x8000000000808080ull, /* 87 */
|
|
0x8000000080000000ull, /* 88 */
|
|
0x8000000080000080ull, /* 89 */
|
|
0x8000000080008000ull, /* 8A */
|
|
0x8000000080008080ull, /* 8B */
|
|
0x8000000080800000ull, /* 8C */
|
|
0x8000000080800080ull, /* 8D */
|
|
0x8000000080808000ull, /* 8E */
|
|
0x8000000080808080ull, /* 8F */
|
|
0x8000008000000000ull, /* 90 */
|
|
0x8000008000000080ull, /* 91 */
|
|
0x8000008000008000ull, /* 92 */
|
|
0x8000008000008080ull, /* 93 */
|
|
0x8000008000800000ull, /* 94 */
|
|
0x8000008000800080ull, /* 95 */
|
|
0x8000008000808000ull, /* 96 */
|
|
0x8000008000808080ull, /* 97 */
|
|
0x8000008080000000ull, /* 98 */
|
|
0x8000008080000080ull, /* 99 */
|
|
0x8000008080008000ull, /* 9A */
|
|
0x8000008080008080ull, /* 9B */
|
|
0x8000008080800000ull, /* 9C */
|
|
0x8000008080800080ull, /* 9D */
|
|
0x8000008080808000ull, /* 9E */
|
|
0x8000008080808080ull, /* 9F */
|
|
0x8000800000000000ull, /* A0 */
|
|
0x8000800000000080ull, /* A1 */
|
|
0x8000800000008000ull, /* A2 */
|
|
0x8000800000008080ull, /* A3 */
|
|
0x8000800000800000ull, /* A4 */
|
|
0x8000800000800080ull, /* A5 */
|
|
0x8000800000808000ull, /* A6 */
|
|
0x8000800000808080ull, /* A7 */
|
|
0x8000800080000000ull, /* A8 */
|
|
0x8000800080000080ull, /* A9 */
|
|
0x8000800080008000ull, /* AA */
|
|
0x8000800080008080ull, /* AB */
|
|
0x8000800080800000ull, /* AC */
|
|
0x8000800080800080ull, /* AD */
|
|
0x8000800080808000ull, /* AE */
|
|
0x8000800080808080ull, /* AF */
|
|
0x8000808000000000ull, /* B0 */
|
|
0x8000808000000080ull, /* B1 */
|
|
0x8000808000008000ull, /* B2 */
|
|
0x8000808000008080ull, /* B3 */
|
|
0x8000808000800000ull, /* B4 */
|
|
0x8000808000800080ull, /* B5 */
|
|
0x8000808000808000ull, /* B6 */
|
|
0x8000808000808080ull, /* B7 */
|
|
0x8000808080000000ull, /* B8 */
|
|
0x8000808080000080ull, /* B9 */
|
|
0x8000808080008000ull, /* BA */
|
|
0x8000808080008080ull, /* BB */
|
|
0x8000808080800000ull, /* BC */
|
|
0x8000808080800080ull, /* BD */
|
|
0x8000808080808000ull, /* BE */
|
|
0x8000808080808080ull, /* BF */
|
|
0x8080000000000000ull, /* C0 */
|
|
0x8080000000000080ull, /* C1 */
|
|
0x8080000000008000ull, /* C2 */
|
|
0x8080000000008080ull, /* C3 */
|
|
0x8080000000800000ull, /* C4 */
|
|
0x8080000000800080ull, /* C5 */
|
|
0x8080000000808000ull, /* C6 */
|
|
0x8080000000808080ull, /* C7 */
|
|
0x8080000080000000ull, /* C8 */
|
|
0x8080000080000080ull, /* C9 */
|
|
0x8080000080008000ull, /* CA */
|
|
0x8080000080008080ull, /* CB */
|
|
0x8080000080800000ull, /* CC */
|
|
0x8080000080800080ull, /* CD */
|
|
0x8080000080808000ull, /* CE */
|
|
0x8080000080808080ull, /* CF */
|
|
0x8080008000000000ull, /* D0 */
|
|
0x8080008000000080ull, /* D1 */
|
|
0x8080008000008000ull, /* D2 */
|
|
0x8080008000008080ull, /* D3 */
|
|
0x8080008000800000ull, /* D4 */
|
|
0x8080008000800080ull, /* D5 */
|
|
0x8080008000808000ull, /* D6 */
|
|
0x8080008000808080ull, /* D7 */
|
|
0x8080008080000000ull, /* D8 */
|
|
0x8080008080000080ull, /* D9 */
|
|
0x8080008080008000ull, /* DA */
|
|
0x8080008080008080ull, /* DB */
|
|
0x8080008080800000ull, /* DC */
|
|
0x8080008080800080ull, /* DD */
|
|
0x8080008080808000ull, /* DE */
|
|
0x8080008080808080ull, /* DF */
|
|
0x8080800000000000ull, /* E0 */
|
|
0x8080800000000080ull, /* E1 */
|
|
0x8080800000008000ull, /* E2 */
|
|
0x8080800000008080ull, /* E3 */
|
|
0x8080800000800000ull, /* E4 */
|
|
0x8080800000800080ull, /* E5 */
|
|
0x8080800000808000ull, /* E6 */
|
|
0x8080800000808080ull, /* E7 */
|
|
0x8080800080000000ull, /* E8 */
|
|
0x8080800080000080ull, /* E9 */
|
|
0x8080800080008000ull, /* EA */
|
|
0x8080800080008080ull, /* EB */
|
|
0x8080800080800000ull, /* EC */
|
|
0x8080800080800080ull, /* ED */
|
|
0x8080800080808000ull, /* EE */
|
|
0x8080800080808080ull, /* EF */
|
|
0x8080808000000000ull, /* F0 */
|
|
0x8080808000000080ull, /* F1 */
|
|
0x8080808000008000ull, /* F2 */
|
|
0x8080808000008080ull, /* F3 */
|
|
0x8080808000800000ull, /* F4 */
|
|
0x8080808000800080ull, /* F5 */
|
|
0x8080808000808000ull, /* F6 */
|
|
0x8080808000808080ull, /* F7 */
|
|
0x8080808080000000ull, /* F8 */
|
|
0x8080808080000080ull, /* F9 */
|
|
0x8080808080008000ull, /* FA */
|
|
0x8080808080008080ull, /* FB */
|
|
0x8080808080800000ull, /* FC */
|
|
0x8080808080800080ull, /* FD */
|
|
0x8080808080808000ull, /* FE */
|
|
0x8080808080808080ull, /* FF */
|
|
};
|
|
|
|
void helper_vgbbd(ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
uint64_t t[2] = { 0, 0 };
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
t[i>>3] |= VGBBD_MASKS[b->u8[i]] >> (i & 7);
|
|
#else
|
|
t[i>>3] |= VGBBD_MASKS[b->u8[i]] >> (7-(i & 7));
|
|
#endif
|
|
}
|
|
|
|
r->u64[0] = t[0];
|
|
r->u64[1] = t[1];
|
|
}
|
|
|
|
#define PMSUM(name, srcfld, trgfld, trgtyp) \
|
|
void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i, j; \
|
|
trgtyp prod[sizeof(ppc_avr_t)/sizeof(a->srcfld[0])]; \
|
|
\
|
|
VECTOR_FOR_INORDER_I(i, srcfld) { \
|
|
prod[i] = 0; \
|
|
for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
|
|
if (a->srcfld[i] & (1ull<<j)) { \
|
|
prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
VECTOR_FOR_INORDER_I(i, trgfld) { \
|
|
r->trgfld[i] = prod[2*i] ^ prod[2*i+1]; \
|
|
} \
|
|
}
|
|
|
|
PMSUM(vpmsumb, u8, u16, uint16_t)
|
|
PMSUM(vpmsumh, u16, u32, uint32_t)
|
|
PMSUM(vpmsumw, u32, u64, uint64_t)
|
|
|
|
void helper_vpmsumd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
|
|
#ifdef CONFIG_INT128
|
|
int i, j;
|
|
__uint128_t prod[2];
|
|
|
|
VECTOR_FOR_INORDER_I(i, u64) {
|
|
prod[i] = 0;
|
|
for (j = 0; j < 64; j++) {
|
|
if (a->u64[i] & (1ull<<j)) {
|
|
prod[i] ^= (((__uint128_t)b->u64[i]) << j);
|
|
}
|
|
}
|
|
}
|
|
|
|
r->u128 = prod[0] ^ prod[1];
|
|
|
|
#else
|
|
int i, j;
|
|
ppc_avr_t prod[2];
|
|
|
|
VECTOR_FOR_INORDER_I(i, u64) {
|
|
prod[i].u64[LO_IDX] = prod[i].u64[HI_IDX] = 0;
|
|
for (j = 0; j < 64; j++) {
|
|
if (a->u64[i] & (1ull<<j)) {
|
|
ppc_avr_t bshift;
|
|
if (j == 0) {
|
|
bshift.u64[HI_IDX] = 0;
|
|
bshift.u64[LO_IDX] = b->u64[i];
|
|
} else {
|
|
bshift.u64[HI_IDX] = b->u64[i] >> (64-j);
|
|
bshift.u64[LO_IDX] = b->u64[i] << j;
|
|
}
|
|
prod[i].u64[LO_IDX] ^= bshift.u64[LO_IDX];
|
|
prod[i].u64[HI_IDX] ^= bshift.u64[HI_IDX];
|
|
}
|
|
}
|
|
}
|
|
|
|
r->u64[LO_IDX] = prod[0].u64[LO_IDX] ^ prod[1].u64[LO_IDX];
|
|
r->u64[HI_IDX] = prod[0].u64[HI_IDX] ^ prod[1].u64[HI_IDX];
|
|
#endif
|
|
}
|
|
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define PKBIG 1
|
|
#else
|
|
#define PKBIG 0
|
|
#endif
|
|
void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
ppc_avr_t result;
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
const ppc_avr_t *x[2] = { a, b };
|
|
#else
|
|
const ppc_avr_t *x[2] = { b, a };
|
|
#endif
|
|
|
|
VECTOR_FOR_INORDER_I(i, u64) {
|
|
VECTOR_FOR_INORDER_I(j, u32) {
|
|
uint32_t e = x[i]->u32[j];
|
|
|
|
result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
|
|
((e >> 6) & 0x3e0) |
|
|
((e >> 3) & 0x1f));
|
|
}
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
#define VPK(suffix, from, to, cvt, dosat) \
|
|
void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
int sat = 0; \
|
|
ppc_avr_t result; \
|
|
ppc_avr_t *a0 = PKBIG ? a : b; \
|
|
ppc_avr_t *a1 = PKBIG ? b : a; \
|
|
\
|
|
VECTOR_FOR_INORDER_I(i, from) { \
|
|
result.to[i] = cvt(a0->from[i], &sat); \
|
|
result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
|
|
} \
|
|
*r = result; \
|
|
if (dosat && sat) { \
|
|
env->vscr |= (1 << VSCR_SAT); \
|
|
} \
|
|
}
|
|
#define I(x, y) (x)
|
|
VPK(shss, s16, s8, cvtshsb, 1)
|
|
VPK(shus, s16, u8, cvtshub, 1)
|
|
VPK(swss, s32, s16, cvtswsh, 1)
|
|
VPK(swus, s32, u16, cvtswuh, 1)
|
|
VPK(sdss, s64, s32, cvtsdsw, 1)
|
|
VPK(sdus, s64, u32, cvtsduw, 1)
|
|
VPK(uhus, u16, u8, cvtuhub, 1)
|
|
VPK(uwus, u32, u16, cvtuwuh, 1)
|
|
VPK(udus, u64, u32, cvtuduw, 1)
|
|
VPK(uhum, u16, u8, I, 0)
|
|
VPK(uwum, u32, u16, I, 0)
|
|
VPK(udum, u64, u32, I, 0)
|
|
#undef I
|
|
#undef VPK
|
|
#undef PKBIG
|
|
|
|
void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status);
|
|
}
|
|
}
|
|
|
|
#define VRFI(suffix, rounding) \
|
|
void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
float_status s = env->vec_status; \
|
|
\
|
|
set_float_rounding_mode(rounding, &s); \
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
r->f[i] = float32_round_to_int (b->f[i], &s); \
|
|
} \
|
|
}
|
|
VRFI(n, float_round_nearest_even)
|
|
VRFI(m, float_round_down)
|
|
VRFI(p, float_round_up)
|
|
VRFI(z, float_round_to_zero)
|
|
#undef VRFI
|
|
|
|
#define VROTATE(suffix, element, mask) \
|
|
void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
unsigned int shift = b->element[i] & mask; \
|
|
r->element[i] = (a->element[i] << shift) | \
|
|
(a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
|
|
} \
|
|
}
|
|
VROTATE(b, u8, 0x7)
|
|
VROTATE(h, u16, 0xF)
|
|
VROTATE(w, u32, 0x1F)
|
|
VROTATE(d, u64, 0x3F)
|
|
#undef VROTATE
|
|
|
|
void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
float32 t = float32_sqrt(b->f[i], &env->vec_status);
|
|
|
|
r->f[i] = float32_div(float32_one, t, &env->vec_status);
|
|
}
|
|
}
|
|
|
|
void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
|
|
ppc_avr_t *c)
|
|
{
|
|
r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
|
|
r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
|
|
}
|
|
|
|
void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
r->f[i] = float32_exp2(b->f[i], &env->vec_status);
|
|
}
|
|
}
|
|
|
|
void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
r->f[i] = float32_log2(b->f[i], &env->vec_status);
|
|
}
|
|
}
|
|
|
|
/* The specification says that the results are undefined if all of the
|
|
* shift counts are not identical. We check to make sure that they are
|
|
* to conform to what real hardware appears to do. */
|
|
#define VSHIFT(suffix, leftp) \
|
|
void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int shift = b->u8[LO_IDX*15] & 0x7; \
|
|
int doit = 1; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
|
|
doit = doit && ((b->u8[i] & 0x7) == shift); \
|
|
} \
|
|
if (doit) { \
|
|
if (shift == 0) { \
|
|
*r = *a; \
|
|
} else if (leftp) { \
|
|
uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
|
|
\
|
|
r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
|
|
r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
|
|
} else { \
|
|
uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
|
|
\
|
|
r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
|
|
r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
|
|
} \
|
|
} \
|
|
}
|
|
VSHIFT(l, 1)
|
|
VSHIFT(r, 0)
|
|
#undef VSHIFT
|
|
|
|
#define VSL(suffix, element, mask) \
|
|
void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
unsigned int shift = b->element[i] & mask; \
|
|
\
|
|
r->element[i] = a->element[i] << shift; \
|
|
} \
|
|
}
|
|
VSL(b, u8, 0x7)
|
|
VSL(h, u16, 0x0F)
|
|
VSL(w, u32, 0x1F)
|
|
VSL(d, u64, 0x3F)
|
|
#undef VSL
|
|
|
|
void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
|
|
{
|
|
int sh = shift & 0xf;
|
|
int i;
|
|
ppc_avr_t result;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
int index = sh + i;
|
|
if (index > 0xf) {
|
|
result.u8[i] = b->u8[index - 0x10];
|
|
} else {
|
|
result.u8[i] = a->u8[index];
|
|
}
|
|
}
|
|
#else
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
int index = (16 - sh) + i;
|
|
if (index > 0xf) {
|
|
result.u8[i] = a->u8[index - 0x10];
|
|
} else {
|
|
result.u8[i] = b->u8[index];
|
|
}
|
|
}
|
|
#endif
|
|
*r = result;
|
|
}
|
|
|
|
void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
memmove(&r->u8[0], &a->u8[sh], 16 - sh);
|
|
memset(&r->u8[16-sh], 0, sh);
|
|
#else
|
|
memmove(&r->u8[sh], &a->u8[0], 16 - sh);
|
|
memset(&r->u8[0], 0, sh);
|
|
#endif
|
|
}
|
|
|
|
/* Experimental testing shows that hardware masks the immediate. */
|
|
#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
|
|
#else
|
|
#define SPLAT_ELEMENT(element) \
|
|
(ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element))
|
|
#endif
|
|
#define VSPLT(suffix, element) \
|
|
void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
|
|
{ \
|
|
uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = s; \
|
|
} \
|
|
}
|
|
VSPLT(b, u8)
|
|
VSPLT(h, u16)
|
|
VSPLT(w, u32)
|
|
#undef VSPLT
|
|
#undef SPLAT_ELEMENT
|
|
#undef _SPLAT_MASKED
|
|
|
|
#define VSPLTI(suffix, element, splat_type) \
|
|
void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \
|
|
{ \
|
|
splat_type x = (int8_t)(splat << 3) >> 3; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = x; \
|
|
} \
|
|
}
|
|
VSPLTI(b, s8, int8_t)
|
|
VSPLTI(h, s16, int16_t)
|
|
VSPLTI(w, s32, int32_t)
|
|
#undef VSPLTI
|
|
|
|
#define VSR(suffix, element, mask) \
|
|
void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
unsigned int shift = b->element[i] & mask; \
|
|
r->element[i] = a->element[i] >> shift; \
|
|
} \
|
|
}
|
|
VSR(ab, s8, 0x7)
|
|
VSR(ah, s16, 0xF)
|
|
VSR(aw, s32, 0x1F)
|
|
VSR(ad, s64, 0x3F)
|
|
VSR(b, u8, 0x7)
|
|
VSR(h, u16, 0xF)
|
|
VSR(w, u32, 0x1F)
|
|
VSR(d, u64, 0x3F)
|
|
#undef VSR
|
|
|
|
void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
memmove(&r->u8[sh], &a->u8[0], 16 - sh);
|
|
memset(&r->u8[0], 0, sh);
|
|
#else
|
|
memmove(&r->u8[0], &a->u8[sh], 16 - sh);
|
|
memset(&r->u8[16 - sh], 0, sh);
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
r->u32[i] = a->u32[i] >= b->u32[i];
|
|
}
|
|
}
|
|
|
|
void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int64_t t;
|
|
int i, upper;
|
|
ppc_avr_t result;
|
|
int sat = 0;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
upper = ARRAY_SIZE(r->s32)-1;
|
|
#else
|
|
upper = 0;
|
|
#endif
|
|
t = (int64_t)b->s32[upper];
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
t += a->s32[i];
|
|
result.s32[i] = 0;
|
|
}
|
|
result.s32[upper] = cvtsdsw(t, &sat);
|
|
*r = result;
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j, upper;
|
|
ppc_avr_t result;
|
|
int sat = 0;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
upper = 1;
|
|
#else
|
|
upper = 0;
|
|
#endif
|
|
for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
|
|
int64_t t = (int64_t)b->s32[upper + i * 2];
|
|
|
|
result.u64[i] = 0;
|
|
for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
|
|
t += a->s32[2 * i + j];
|
|
}
|
|
result.s32[upper + i * 2] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
*r = result;
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
int64_t t = (int64_t)b->s32[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
|
|
t += a->s8[4 * i + j];
|
|
}
|
|
r->s32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
int64_t t = (int64_t)b->s32[i];
|
|
|
|
t += a->s16[2 * i] + a->s16[2 * i + 1];
|
|
r->s32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
uint64_t t = (uint64_t)b->u32[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
|
|
t += a->u8[4 * i + j];
|
|
}
|
|
r->u32[i] = cvtuduw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define UPKHI 1
|
|
#define UPKLO 0
|
|
#else
|
|
#define UPKHI 0
|
|
#define UPKLO 1
|
|
#endif
|
|
#define VUPKPX(suffix, hi) \
|
|
void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
ppc_avr_t result; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
|
|
uint16_t e = b->u16[hi ? i : i+4]; \
|
|
uint8_t a = (e >> 15) ? 0xff : 0; \
|
|
uint8_t r = (e >> 10) & 0x1f; \
|
|
uint8_t g = (e >> 5) & 0x1f; \
|
|
uint8_t b = e & 0x1f; \
|
|
\
|
|
result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
VUPKPX(lpx, UPKLO)
|
|
VUPKPX(hpx, UPKHI)
|
|
#undef VUPKPX
|
|
|
|
#define VUPK(suffix, unpacked, packee, hi) \
|
|
void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
ppc_avr_t result; \
|
|
\
|
|
if (hi) { \
|
|
for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
|
|
result.unpacked[i] = b->packee[i]; \
|
|
} \
|
|
} else { \
|
|
for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
|
|
i++) { \
|
|
result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
|
|
} \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
VUPK(hsb, s16, s8, UPKHI)
|
|
VUPK(hsh, s32, s16, UPKHI)
|
|
VUPK(hsw, s64, s32, UPKHI)
|
|
VUPK(lsb, s16, s8, UPKLO)
|
|
VUPK(lsh, s32, s16, UPKLO)
|
|
VUPK(lsw, s64, s32, UPKLO)
|
|
#undef VUPK
|
|
#undef UPKHI
|
|
#undef UPKLO
|
|
|
|
#define VGENERIC_DO(name, element) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
VECTOR_FOR_INORDER_I(i, element) { \
|
|
r->element[i] = name(b->element[i]); \
|
|
} \
|
|
}
|
|
|
|
#define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
|
|
#define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
|
|
#define clzw(v) clz32((v))
|
|
#define clzd(v) clz64((v))
|
|
|
|
VGENERIC_DO(clzb, u8)
|
|
VGENERIC_DO(clzh, u16)
|
|
VGENERIC_DO(clzw, u32)
|
|
VGENERIC_DO(clzd, u64)
|
|
|
|
#undef clzb
|
|
#undef clzh
|
|
#undef clzw
|
|
#undef clzd
|
|
|
|
#define popcntb(v) ctpop8(v)
|
|
#define popcnth(v) ctpop16(v)
|
|
#define popcntw(v) ctpop32(v)
|
|
#define popcntd(v) ctpop64(v)
|
|
|
|
VGENERIC_DO(popcntb, u8)
|
|
VGENERIC_DO(popcnth, u16)
|
|
VGENERIC_DO(popcntw, u32)
|
|
VGENERIC_DO(popcntd, u64)
|
|
|
|
#undef popcntb
|
|
#undef popcnth
|
|
#undef popcntw
|
|
#undef popcntd
|
|
|
|
#undef VGENERIC_DO
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define QW_ONE { .u64 = { 0, 1 } }
|
|
#else
|
|
#define QW_ONE { .u64 = { 1, 0 } }
|
|
#endif
|
|
|
|
#ifndef CONFIG_INT128
|
|
|
|
static inline void avr_qw_not(ppc_avr_t *t, ppc_avr_t a)
|
|
{
|
|
t->u64[0] = ~a.u64[0];
|
|
t->u64[1] = ~a.u64[1];
|
|
}
|
|
|
|
static int avr_qw_cmpu(ppc_avr_t a, ppc_avr_t b)
|
|
{
|
|
if (a.u64[HI_IDX] < b.u64[HI_IDX]) {
|
|
return -1;
|
|
} else if (a.u64[HI_IDX] > b.u64[HI_IDX]) {
|
|
return 1;
|
|
} else if (a.u64[LO_IDX] < b.u64[LO_IDX]) {
|
|
return -1;
|
|
} else if (a.u64[LO_IDX] > b.u64[LO_IDX]) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void avr_qw_add(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
|
|
{
|
|
t->u64[LO_IDX] = a.u64[LO_IDX] + b.u64[LO_IDX];
|
|
t->u64[HI_IDX] = a.u64[HI_IDX] + b.u64[HI_IDX] +
|
|
(~a.u64[LO_IDX] < b.u64[LO_IDX]);
|
|
}
|
|
|
|
static int avr_qw_addc(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
|
|
{
|
|
ppc_avr_t not_a;
|
|
t->u64[LO_IDX] = a.u64[LO_IDX] + b.u64[LO_IDX];
|
|
t->u64[HI_IDX] = a.u64[HI_IDX] + b.u64[HI_IDX] +
|
|
(~a.u64[LO_IDX] < b.u64[LO_IDX]);
|
|
avr_qw_not(¬_a, a);
|
|
return avr_qw_cmpu(not_a, b) < 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
void helper_vadduqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = a->u128 + b->u128;
|
|
#else
|
|
avr_qw_add(r, *a, *b);
|
|
#endif
|
|
}
|
|
|
|
void helper_vaddeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = a->u128 + b->u128 + (c->u128 & 1);
|
|
#else
|
|
|
|
if (c->u64[LO_IDX] & 1) {
|
|
ppc_avr_t tmp;
|
|
|
|
tmp.u64[HI_IDX] = 0;
|
|
tmp.u64[LO_IDX] = c->u64[LO_IDX] & 1;
|
|
avr_qw_add(&tmp, *a, tmp);
|
|
avr_qw_add(r, tmp, *b);
|
|
} else {
|
|
avr_qw_add(r, *a, *b);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void helper_vaddcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = (~a->u128 < b->u128);
|
|
#else
|
|
ppc_avr_t not_a;
|
|
|
|
avr_qw_not(¬_a, *a);
|
|
|
|
r->u64[HI_IDX] = 0;
|
|
r->u64[LO_IDX] = (avr_qw_cmpu(not_a, *b) < 0);
|
|
#endif
|
|
}
|
|
|
|
void helper_vaddecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
int carry_out = (~a->u128 < b->u128);
|
|
if (!carry_out && (c->u128 & 1)) {
|
|
carry_out = ((a->u128 + b->u128 + 1) == 0) &&
|
|
((a->u128 != 0) || (b->u128 != 0));
|
|
}
|
|
r->u128 = carry_out;
|
|
#else
|
|
|
|
int carry_in = c->u64[LO_IDX] & 1;
|
|
int carry_out = 0;
|
|
ppc_avr_t tmp;
|
|
|
|
carry_out = avr_qw_addc(&tmp, *a, *b);
|
|
|
|
if (!carry_out && carry_in) {
|
|
ppc_avr_t one = QW_ONE;
|
|
carry_out = avr_qw_addc(&tmp, tmp, one);
|
|
}
|
|
r->u64[HI_IDX] = 0;
|
|
r->u64[LO_IDX] = carry_out;
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = a->u128 - b->u128;
|
|
#else
|
|
ppc_avr_t tmp;
|
|
ppc_avr_t one = QW_ONE;
|
|
|
|
avr_qw_not(&tmp, *b);
|
|
avr_qw_add(&tmp, *a, tmp);
|
|
avr_qw_add(r, tmp, one);
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = a->u128 + ~b->u128 + (c->u128 & 1);
|
|
#else
|
|
ppc_avr_t tmp, sum;
|
|
|
|
avr_qw_not(&tmp, *b);
|
|
avr_qw_add(&sum, *a, tmp);
|
|
|
|
tmp.u64[HI_IDX] = 0;
|
|
tmp.u64[LO_IDX] = c->u64[LO_IDX] & 1;
|
|
avr_qw_add(r, sum, tmp);
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = (~a->u128 < ~b->u128) ||
|
|
(a->u128 + ~b->u128 == (__uint128_t)-1);
|
|
#else
|
|
int carry = (avr_qw_cmpu(*a, *b) > 0);
|
|
if (!carry) {
|
|
ppc_avr_t tmp;
|
|
avr_qw_not(&tmp, *b);
|
|
avr_qw_add(&tmp, *a, tmp);
|
|
carry = ((tmp.s64[HI_IDX] == -1ull) && (tmp.s64[LO_IDX] == -1ull));
|
|
}
|
|
r->u64[HI_IDX] = 0;
|
|
r->u64[LO_IDX] = carry;
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 =
|
|
(~a->u128 < ~b->u128) ||
|
|
((c->u128 & 1) && (a->u128 + ~b->u128 == (__uint128_t)-1));
|
|
#else
|
|
int carry_in = c->u64[LO_IDX] & 1;
|
|
int carry_out = (avr_qw_cmpu(*a, *b) > 0);
|
|
if (!carry_out && carry_in) {
|
|
ppc_avr_t tmp;
|
|
avr_qw_not(&tmp, *b);
|
|
avr_qw_add(&tmp, *a, tmp);
|
|
carry_out = ((tmp.u64[HI_IDX] == -1ull) && (tmp.u64[LO_IDX] == -1ull));
|
|
}
|
|
|
|
r->u64[HI_IDX] = 0;
|
|
r->u64[LO_IDX] = carry_out;
|
|
#endif
|
|
}
|
|
|
|
#define BCD_PLUS_PREF_1 0xC
|
|
#define BCD_PLUS_PREF_2 0xF
|
|
#define BCD_PLUS_ALT_1 0xA
|
|
#define BCD_NEG_PREF 0xD
|
|
#define BCD_NEG_ALT 0xB
|
|
#define BCD_PLUS_ALT_2 0xE
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define BCD_DIG_BYTE(n) (15 - (n/2))
|
|
#else
|
|
#define BCD_DIG_BYTE(n) (n/2)
|
|
#endif
|
|
|
|
static int bcd_get_sgn(ppc_avr_t *bcd)
|
|
{
|
|
switch (bcd->u8[BCD_DIG_BYTE(0)] & 0xF) {
|
|
case BCD_PLUS_PREF_1:
|
|
case BCD_PLUS_PREF_2:
|
|
case BCD_PLUS_ALT_1:
|
|
case BCD_PLUS_ALT_2:
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
case BCD_NEG_PREF:
|
|
case BCD_NEG_ALT:
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
default:
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bcd_preferred_sgn(int sgn, int ps)
|
|
{
|
|
if (sgn >= 0) {
|
|
return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2;
|
|
} else {
|
|
return BCD_NEG_PREF;
|
|
}
|
|
}
|
|
|
|
static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid)
|
|
{
|
|
uint8_t result;
|
|
if (n & 1) {
|
|
result = bcd->u8[BCD_DIG_BYTE(n)] >> 4;
|
|
} else {
|
|
result = bcd->u8[BCD_DIG_BYTE(n)] & 0xF;
|
|
}
|
|
|
|
if (unlikely(result > 9)) {
|
|
*invalid = true;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n)
|
|
{
|
|
if (n & 1) {
|
|
bcd->u8[BCD_DIG_BYTE(n)] &= 0x0F;
|
|
bcd->u8[BCD_DIG_BYTE(n)] |= (digit<<4);
|
|
} else {
|
|
bcd->u8[BCD_DIG_BYTE(n)] &= 0xF0;
|
|
bcd->u8[BCD_DIG_BYTE(n)] |= digit;
|
|
}
|
|
}
|
|
|
|
static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
int invalid = 0;
|
|
for (i = 31; i > 0; i--) {
|
|
uint8_t dig_a = bcd_get_digit(a, i, &invalid);
|
|
uint8_t dig_b = bcd_get_digit(b, i, &invalid);
|
|
if (unlikely(invalid)) {
|
|
return 0; /* doesn't matter */
|
|
} else if (dig_a > dig_b) {
|
|
return 1;
|
|
} else if (dig_a < dig_b) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
|
|
int *overflow)
|
|
{
|
|
int carry = 0;
|
|
int i;
|
|
int is_zero = 1;
|
|
for (i = 1; i <= 31; i++) {
|
|
uint8_t digit = bcd_get_digit(a, i, invalid) +
|
|
bcd_get_digit(b, i, invalid) + carry;
|
|
is_zero &= (digit == 0);
|
|
if (digit > 9) {
|
|
carry = 1;
|
|
digit -= 10;
|
|
} else {
|
|
carry = 0;
|
|
}
|
|
|
|
bcd_put_digit(t, digit, i);
|
|
|
|
if (unlikely(*invalid)) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
*overflow = carry;
|
|
return is_zero;
|
|
}
|
|
|
|
static int bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
|
|
int *overflow)
|
|
{
|
|
int carry = 0;
|
|
int i;
|
|
int is_zero = 1;
|
|
for (i = 1; i <= 31; i++) {
|
|
uint8_t digit = bcd_get_digit(a, i, invalid) -
|
|
bcd_get_digit(b, i, invalid) + carry;
|
|
is_zero &= (digit == 0);
|
|
if (digit & 0x80) {
|
|
carry = -1;
|
|
digit += 10;
|
|
} else {
|
|
carry = 0;
|
|
}
|
|
|
|
bcd_put_digit(t, digit, i);
|
|
|
|
if (unlikely(*invalid)) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
*overflow = carry;
|
|
return is_zero;
|
|
}
|
|
|
|
uint32_t helper_bcdadd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
|
|
int sgna = bcd_get_sgn(a);
|
|
int sgnb = bcd_get_sgn(b);
|
|
int invalid = (sgna == 0) || (sgnb == 0);
|
|
int overflow = 0;
|
|
int zero = 0;
|
|
uint32_t cr = 0;
|
|
ppc_avr_t result = { .u64 = { 0, 0 } };
|
|
|
|
if (!invalid) {
|
|
if (sgna == sgnb) {
|
|
result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna, ps);
|
|
zero = bcd_add_mag(&result, a, b, &invalid, &overflow);
|
|
cr = (sgna > 0) ? 1 << CRF_GT : 1 << CRF_LT;
|
|
} else if (bcd_cmp_mag(a, b) > 0) {
|
|
result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna, ps);
|
|
zero = bcd_sub_mag(&result, a, b, &invalid, &overflow);
|
|
cr = (sgna > 0) ? 1 << CRF_GT : 1 << CRF_LT;
|
|
} else {
|
|
result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgnb, ps);
|
|
zero = bcd_sub_mag(&result, b, a, &invalid, &overflow);
|
|
cr = (sgnb > 0) ? 1 << CRF_GT : 1 << CRF_LT;
|
|
}
|
|
}
|
|
|
|
if (unlikely(invalid)) {
|
|
result.u64[HI_IDX] = result.u64[LO_IDX] = -1;
|
|
cr = 1 << CRF_SO;
|
|
} else if (overflow) {
|
|
cr |= 1 << CRF_SO;
|
|
} else if (zero) {
|
|
cr = 1 << CRF_EQ;
|
|
}
|
|
|
|
*r = result;
|
|
|
|
return cr;
|
|
}
|
|
|
|
uint32_t helper_bcdsub(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
ppc_avr_t bcopy = *b;
|
|
int sgnb = bcd_get_sgn(b);
|
|
if (sgnb < 0) {
|
|
bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0);
|
|
} else if (sgnb > 0) {
|
|
bcd_put_digit(&bcopy, BCD_NEG_PREF, 0);
|
|
}
|
|
/* else invalid ... defer to bcdadd code for proper handling */
|
|
|
|
return helper_bcdadd(r, a, &bcopy, ps);
|
|
}
|
|
|
|
void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a)
|
|
{
|
|
int i;
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
r->u8[i] = AES_sbox[a->u8[i]];
|
|
}
|
|
}
|
|
|
|
void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
result.AVRW(i) = b->AVRW(i) ^
|
|
(AES_Te0[a->AVRB(AES_shifts[4*i + 0])] ^
|
|
AES_Te1[a->AVRB(AES_shifts[4*i + 1])] ^
|
|
AES_Te2[a->AVRB(AES_shifts[4*i + 2])] ^
|
|
AES_Te3[a->AVRB(AES_shifts[4*i + 3])]);
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
result.AVRB(i) = b->AVRB(i) ^ (AES_sbox[a->AVRB(AES_shifts[i])]);
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
/* This differs from what is written in ISA V2.07. The RTL is */
|
|
/* incorrect and will be fixed in V2.07B. */
|
|
int i;
|
|
ppc_avr_t tmp;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
tmp.AVRB(i) = b->AVRB(i) ^ AES_isbox[a->AVRB(AES_ishifts[i])];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
r->AVRW(i) =
|
|
AES_imc[tmp.AVRB(4*i + 0)][0] ^
|
|
AES_imc[tmp.AVRB(4*i + 1)][1] ^
|
|
AES_imc[tmp.AVRB(4*i + 2)][2] ^
|
|
AES_imc[tmp.AVRB(4*i + 3)][3];
|
|
}
|
|
}
|
|
|
|
void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
result.AVRB(i) = b->AVRB(i) ^ (AES_isbox[a->AVRB(AES_ishifts[i])]);
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
#define ROTRu32(v, n) (((v) >> (n)) | ((v) << (32-n)))
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define EL_IDX(i) (i)
|
|
#else
|
|
#define EL_IDX(i) (3 - (i))
|
|
#endif
|
|
|
|
void helper_vshasigmaw(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
|
|
{
|
|
int st = (st_six & 0x10) != 0;
|
|
int six = st_six & 0xF;
|
|
int i;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
if (st == 0) {
|
|
if ((six & (0x8 >> i)) == 0) {
|
|
r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 7) ^
|
|
ROTRu32(a->u32[EL_IDX(i)], 18) ^
|
|
(a->u32[EL_IDX(i)] >> 3);
|
|
} else { /* six.bit[i] == 1 */
|
|
r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 17) ^
|
|
ROTRu32(a->u32[EL_IDX(i)], 19) ^
|
|
(a->u32[EL_IDX(i)] >> 10);
|
|
}
|
|
} else { /* st == 1 */
|
|
if ((six & (0x8 >> i)) == 0) {
|
|
r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 2) ^
|
|
ROTRu32(a->u32[EL_IDX(i)], 13) ^
|
|
ROTRu32(a->u32[EL_IDX(i)], 22);
|
|
} else { /* six.bit[i] == 1 */
|
|
r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 6) ^
|
|
ROTRu32(a->u32[EL_IDX(i)], 11) ^
|
|
ROTRu32(a->u32[EL_IDX(i)], 25);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef ROTRu32
|
|
#undef EL_IDX
|
|
|
|
#define ROTRu64(v, n) (((v) >> (n)) | ((v) << (64-n)))
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define EL_IDX(i) (i)
|
|
#else
|
|
#define EL_IDX(i) (1 - (i))
|
|
#endif
|
|
|
|
void helper_vshasigmad(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
|
|
{
|
|
int st = (st_six & 0x10) != 0;
|
|
int six = st_six & 0xF;
|
|
int i;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u64) {
|
|
if (st == 0) {
|
|
if ((six & (0x8 >> (2*i))) == 0) {
|
|
r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 1) ^
|
|
ROTRu64(a->u64[EL_IDX(i)], 8) ^
|
|
(a->u64[EL_IDX(i)] >> 7);
|
|
} else { /* six.bit[2*i] == 1 */
|
|
r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 19) ^
|
|
ROTRu64(a->u64[EL_IDX(i)], 61) ^
|
|
(a->u64[EL_IDX(i)] >> 6);
|
|
}
|
|
} else { /* st == 1 */
|
|
if ((six & (0x8 >> (2*i))) == 0) {
|
|
r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 28) ^
|
|
ROTRu64(a->u64[EL_IDX(i)], 34) ^
|
|
ROTRu64(a->u64[EL_IDX(i)], 39);
|
|
} else { /* six.bit[2*i] == 1 */
|
|
r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 14) ^
|
|
ROTRu64(a->u64[EL_IDX(i)], 18) ^
|
|
ROTRu64(a->u64[EL_IDX(i)], 41);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef ROTRu64
|
|
#undef EL_IDX
|
|
|
|
void helper_vpermxor(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
int indexA = c->u8[i] >> 4;
|
|
int indexB = c->u8[i] & 0xF;
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
result.u8[i] = a->u8[indexA] ^ b->u8[indexB];
|
|
#else
|
|
result.u8[i] = a->u8[15-indexA] ^ b->u8[15-indexB];
|
|
#endif
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
#undef VECTOR_FOR_INORDER_I
|
|
#undef HI_IDX
|
|
#undef LO_IDX
|
|
|
|
/*****************************************************************************/
|
|
/* SPE extension helpers */
|
|
/* Use a table to make this quicker */
|
|
static const uint8_t hbrev[16] = {
|
|
0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
|
|
0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
|
|
};
|
|
|
|
static inline uint8_t byte_reverse(uint8_t val)
|
|
{
|
|
return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
|
|
}
|
|
|
|
static inline uint32_t word_reverse(uint32_t val)
|
|
{
|
|
return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
|
|
(byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
|
|
}
|
|
|
|
#define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
|
|
target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
|
|
{
|
|
uint32_t a, b, d, mask;
|
|
|
|
mask = UINT32_MAX >> (32 - MASKBITS);
|
|
a = arg1 & mask;
|
|
b = arg2 & mask;
|
|
d = word_reverse(1 + word_reverse(a | ~b));
|
|
return (arg1 & ~mask) | (d & b);
|
|
}
|
|
|
|
uint32_t helper_cntlsw32(uint32_t val)
|
|
{
|
|
if (val & 0x80000000) {
|
|
return clz32(~val);
|
|
} else {
|
|
return clz32(val);
|
|
}
|
|
}
|
|
|
|
uint32_t helper_cntlzw32(uint32_t val)
|
|
{
|
|
return clz32(val);
|
|
}
|
|
|
|
/* 440 specific */
|
|
target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high,
|
|
target_ulong low, uint32_t update_Rc)
|
|
{
|
|
target_ulong mask;
|
|
int i;
|
|
|
|
i = 1;
|
|
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
|
|
if ((high & mask) == 0) {
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x4;
|
|
}
|
|
goto done;
|
|
}
|
|
i++;
|
|
}
|
|
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
|
|
if ((low & mask) == 0) {
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x8;
|
|
}
|
|
goto done;
|
|
}
|
|
i++;
|
|
}
|
|
i = 8;
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x2;
|
|
}
|
|
done:
|
|
env->xer = (env->xer & ~0x7F) | i;
|
|
if (update_Rc) {
|
|
env->crf[0] |= xer_so;
|
|
}
|
|
return i;
|
|
}
|