mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-24 20:19:44 +00:00
d2623129a7
The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
848 lines
29 KiB
C
848 lines
29 KiB
C
/*
|
|
* ARM Versatile Express emulation.
|
|
*
|
|
* Copyright (c) 2010 - 2011 B Labs Ltd.
|
|
* Copyright (c) 2011 Linaro Limited
|
|
* Written by Bahadir Balban, Amit Mahajan, Peter Maydell
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Contributions after 2012-01-13 are licensed under the terms of the
|
|
* GNU GPL, version 2 or (at your option) any later version.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu-common.h"
|
|
#include "cpu.h"
|
|
#include "hw/sysbus.h"
|
|
#include "hw/arm/boot.h"
|
|
#include "hw/arm/primecell.h"
|
|
#include "hw/net/lan9118.h"
|
|
#include "hw/i2c/i2c.h"
|
|
#include "net/net.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "hw/boards.h"
|
|
#include "hw/loader.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "hw/block/flash.h"
|
|
#include "sysemu/device_tree.h"
|
|
#include "qemu/error-report.h"
|
|
#include <libfdt.h>
|
|
#include "hw/char/pl011.h"
|
|
#include "hw/cpu/a9mpcore.h"
|
|
#include "hw/cpu/a15mpcore.h"
|
|
|
|
#define VEXPRESS_BOARD_ID 0x8e0
|
|
#define VEXPRESS_FLASH_SIZE (64 * 1024 * 1024)
|
|
#define VEXPRESS_FLASH_SECT_SIZE (256 * 1024)
|
|
|
|
/* Number of virtio transports to create (0..8; limited by
|
|
* number of available IRQ lines).
|
|
*/
|
|
#define NUM_VIRTIO_TRANSPORTS 4
|
|
|
|
/* Address maps for peripherals:
|
|
* the Versatile Express motherboard has two possible maps,
|
|
* the "legacy" one (used for A9) and the "Cortex-A Series"
|
|
* map (used for newer cores).
|
|
* Individual daughterboards can also have different maps for
|
|
* their peripherals.
|
|
*/
|
|
|
|
enum {
|
|
VE_SYSREGS,
|
|
VE_SP810,
|
|
VE_SERIALPCI,
|
|
VE_PL041,
|
|
VE_MMCI,
|
|
VE_KMI0,
|
|
VE_KMI1,
|
|
VE_UART0,
|
|
VE_UART1,
|
|
VE_UART2,
|
|
VE_UART3,
|
|
VE_WDT,
|
|
VE_TIMER01,
|
|
VE_TIMER23,
|
|
VE_SERIALDVI,
|
|
VE_RTC,
|
|
VE_COMPACTFLASH,
|
|
VE_CLCD,
|
|
VE_NORFLASH0,
|
|
VE_NORFLASH1,
|
|
VE_NORFLASHALIAS,
|
|
VE_SRAM,
|
|
VE_VIDEORAM,
|
|
VE_ETHERNET,
|
|
VE_USB,
|
|
VE_DAPROM,
|
|
VE_VIRTIO,
|
|
};
|
|
|
|
static hwaddr motherboard_legacy_map[] = {
|
|
[VE_NORFLASHALIAS] = 0,
|
|
/* CS7: 0x10000000 .. 0x10020000 */
|
|
[VE_SYSREGS] = 0x10000000,
|
|
[VE_SP810] = 0x10001000,
|
|
[VE_SERIALPCI] = 0x10002000,
|
|
[VE_PL041] = 0x10004000,
|
|
[VE_MMCI] = 0x10005000,
|
|
[VE_KMI0] = 0x10006000,
|
|
[VE_KMI1] = 0x10007000,
|
|
[VE_UART0] = 0x10009000,
|
|
[VE_UART1] = 0x1000a000,
|
|
[VE_UART2] = 0x1000b000,
|
|
[VE_UART3] = 0x1000c000,
|
|
[VE_WDT] = 0x1000f000,
|
|
[VE_TIMER01] = 0x10011000,
|
|
[VE_TIMER23] = 0x10012000,
|
|
[VE_VIRTIO] = 0x10013000,
|
|
[VE_SERIALDVI] = 0x10016000,
|
|
[VE_RTC] = 0x10017000,
|
|
[VE_COMPACTFLASH] = 0x1001a000,
|
|
[VE_CLCD] = 0x1001f000,
|
|
/* CS0: 0x40000000 .. 0x44000000 */
|
|
[VE_NORFLASH0] = 0x40000000,
|
|
/* CS1: 0x44000000 .. 0x48000000 */
|
|
[VE_NORFLASH1] = 0x44000000,
|
|
/* CS2: 0x48000000 .. 0x4a000000 */
|
|
[VE_SRAM] = 0x48000000,
|
|
/* CS3: 0x4c000000 .. 0x50000000 */
|
|
[VE_VIDEORAM] = 0x4c000000,
|
|
[VE_ETHERNET] = 0x4e000000,
|
|
[VE_USB] = 0x4f000000,
|
|
};
|
|
|
|
static hwaddr motherboard_aseries_map[] = {
|
|
[VE_NORFLASHALIAS] = 0,
|
|
/* CS0: 0x08000000 .. 0x0c000000 */
|
|
[VE_NORFLASH0] = 0x08000000,
|
|
/* CS4: 0x0c000000 .. 0x10000000 */
|
|
[VE_NORFLASH1] = 0x0c000000,
|
|
/* CS5: 0x10000000 .. 0x14000000 */
|
|
/* CS1: 0x14000000 .. 0x18000000 */
|
|
[VE_SRAM] = 0x14000000,
|
|
/* CS2: 0x18000000 .. 0x1c000000 */
|
|
[VE_VIDEORAM] = 0x18000000,
|
|
[VE_ETHERNET] = 0x1a000000,
|
|
[VE_USB] = 0x1b000000,
|
|
/* CS3: 0x1c000000 .. 0x20000000 */
|
|
[VE_DAPROM] = 0x1c000000,
|
|
[VE_SYSREGS] = 0x1c010000,
|
|
[VE_SP810] = 0x1c020000,
|
|
[VE_SERIALPCI] = 0x1c030000,
|
|
[VE_PL041] = 0x1c040000,
|
|
[VE_MMCI] = 0x1c050000,
|
|
[VE_KMI0] = 0x1c060000,
|
|
[VE_KMI1] = 0x1c070000,
|
|
[VE_UART0] = 0x1c090000,
|
|
[VE_UART1] = 0x1c0a0000,
|
|
[VE_UART2] = 0x1c0b0000,
|
|
[VE_UART3] = 0x1c0c0000,
|
|
[VE_WDT] = 0x1c0f0000,
|
|
[VE_TIMER01] = 0x1c110000,
|
|
[VE_TIMER23] = 0x1c120000,
|
|
[VE_VIRTIO] = 0x1c130000,
|
|
[VE_SERIALDVI] = 0x1c160000,
|
|
[VE_RTC] = 0x1c170000,
|
|
[VE_COMPACTFLASH] = 0x1c1a0000,
|
|
[VE_CLCD] = 0x1c1f0000,
|
|
};
|
|
|
|
/* Structure defining the peculiarities of a specific daughterboard */
|
|
|
|
typedef struct VEDBoardInfo VEDBoardInfo;
|
|
|
|
typedef struct {
|
|
MachineClass parent;
|
|
VEDBoardInfo *daughterboard;
|
|
} VexpressMachineClass;
|
|
|
|
typedef struct {
|
|
MachineState parent;
|
|
bool secure;
|
|
bool virt;
|
|
} VexpressMachineState;
|
|
|
|
#define TYPE_VEXPRESS_MACHINE "vexpress"
|
|
#define TYPE_VEXPRESS_A9_MACHINE MACHINE_TYPE_NAME("vexpress-a9")
|
|
#define TYPE_VEXPRESS_A15_MACHINE MACHINE_TYPE_NAME("vexpress-a15")
|
|
#define VEXPRESS_MACHINE(obj) \
|
|
OBJECT_CHECK(VexpressMachineState, (obj), TYPE_VEXPRESS_MACHINE)
|
|
#define VEXPRESS_MACHINE_GET_CLASS(obj) \
|
|
OBJECT_GET_CLASS(VexpressMachineClass, obj, TYPE_VEXPRESS_MACHINE)
|
|
#define VEXPRESS_MACHINE_CLASS(klass) \
|
|
OBJECT_CLASS_CHECK(VexpressMachineClass, klass, TYPE_VEXPRESS_MACHINE)
|
|
|
|
typedef void DBoardInitFn(const VexpressMachineState *machine,
|
|
ram_addr_t ram_size,
|
|
const char *cpu_type,
|
|
qemu_irq *pic);
|
|
|
|
struct VEDBoardInfo {
|
|
struct arm_boot_info bootinfo;
|
|
const hwaddr *motherboard_map;
|
|
hwaddr loader_start;
|
|
const hwaddr gic_cpu_if_addr;
|
|
uint32_t proc_id;
|
|
uint32_t num_voltage_sensors;
|
|
const uint32_t *voltages;
|
|
uint32_t num_clocks;
|
|
const uint32_t *clocks;
|
|
DBoardInitFn *init;
|
|
};
|
|
|
|
static void init_cpus(MachineState *ms, const char *cpu_type,
|
|
const char *privdev, hwaddr periphbase,
|
|
qemu_irq *pic, bool secure, bool virt)
|
|
{
|
|
DeviceState *dev;
|
|
SysBusDevice *busdev;
|
|
int n;
|
|
unsigned int smp_cpus = ms->smp.cpus;
|
|
|
|
/* Create the actual CPUs */
|
|
for (n = 0; n < smp_cpus; n++) {
|
|
Object *cpuobj = object_new(cpu_type);
|
|
|
|
if (!secure) {
|
|
object_property_set_bool(cpuobj, false, "has_el3", NULL);
|
|
}
|
|
if (!virt) {
|
|
if (object_property_find(cpuobj, "has_el2", NULL)) {
|
|
object_property_set_bool(cpuobj, false, "has_el2", NULL);
|
|
}
|
|
}
|
|
|
|
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
|
|
object_property_set_int(cpuobj, periphbase,
|
|
"reset-cbar", &error_abort);
|
|
}
|
|
object_property_set_bool(cpuobj, true, "realized", &error_fatal);
|
|
}
|
|
|
|
/* Create the private peripheral devices (including the GIC);
|
|
* this must happen after the CPUs are created because a15mpcore_priv
|
|
* wires itself up to the CPU's generic_timer gpio out lines.
|
|
*/
|
|
dev = qdev_create(NULL, privdev);
|
|
qdev_prop_set_uint32(dev, "num-cpu", smp_cpus);
|
|
qdev_init_nofail(dev);
|
|
busdev = SYS_BUS_DEVICE(dev);
|
|
sysbus_mmio_map(busdev, 0, periphbase);
|
|
|
|
/* Interrupts [42:0] are from the motherboard;
|
|
* [47:43] are reserved; [63:48] are daughterboard
|
|
* peripherals. Note that some documentation numbers
|
|
* external interrupts starting from 32 (because there
|
|
* are internal interrupts 0..31).
|
|
*/
|
|
for (n = 0; n < 64; n++) {
|
|
pic[n] = qdev_get_gpio_in(dev, n);
|
|
}
|
|
|
|
/* Connect the CPUs to the GIC */
|
|
for (n = 0; n < smp_cpus; n++) {
|
|
DeviceState *cpudev = DEVICE(qemu_get_cpu(n));
|
|
|
|
sysbus_connect_irq(busdev, n, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
|
|
sysbus_connect_irq(busdev, n + smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
|
|
sysbus_connect_irq(busdev, n + 2 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
|
|
sysbus_connect_irq(busdev, n + 3 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
|
|
}
|
|
}
|
|
|
|
static void a9_daughterboard_init(const VexpressMachineState *vms,
|
|
ram_addr_t ram_size,
|
|
const char *cpu_type,
|
|
qemu_irq *pic)
|
|
{
|
|
MachineState *machine = MACHINE(vms);
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
MemoryRegion *lowram = g_new(MemoryRegion, 1);
|
|
ram_addr_t low_ram_size;
|
|
|
|
if (ram_size > 0x40000000) {
|
|
/* 1GB is the maximum the address space permits */
|
|
error_report("vexpress-a9: cannot model more than 1GB RAM");
|
|
exit(1);
|
|
}
|
|
|
|
low_ram_size = ram_size;
|
|
if (low_ram_size > 0x4000000) {
|
|
low_ram_size = 0x4000000;
|
|
}
|
|
/* RAM is from 0x60000000 upwards. The bottom 64MB of the
|
|
* address space should in theory be remappable to various
|
|
* things including ROM or RAM; we always map the RAM there.
|
|
*/
|
|
memory_region_init_alias(lowram, NULL, "vexpress.lowmem", machine->ram,
|
|
0, low_ram_size);
|
|
memory_region_add_subregion(sysmem, 0x0, lowram);
|
|
memory_region_add_subregion(sysmem, 0x60000000, machine->ram);
|
|
|
|
/* 0x1e000000 A9MPCore (SCU) private memory region */
|
|
init_cpus(machine, cpu_type, TYPE_A9MPCORE_PRIV, 0x1e000000, pic,
|
|
vms->secure, vms->virt);
|
|
|
|
/* Daughterboard peripherals : 0x10020000 .. 0x20000000 */
|
|
|
|
/* 0x10020000 PL111 CLCD (daughterboard) */
|
|
sysbus_create_simple("pl111", 0x10020000, pic[44]);
|
|
|
|
/* 0x10060000 AXI RAM */
|
|
/* 0x100e0000 PL341 Dynamic Memory Controller */
|
|
/* 0x100e1000 PL354 Static Memory Controller */
|
|
/* 0x100e2000 System Configuration Controller */
|
|
|
|
sysbus_create_simple("sp804", 0x100e4000, pic[48]);
|
|
/* 0x100e5000 SP805 Watchdog module */
|
|
/* 0x100e6000 BP147 TrustZone Protection Controller */
|
|
/* 0x100e9000 PL301 'Fast' AXI matrix */
|
|
/* 0x100ea000 PL301 'Slow' AXI matrix */
|
|
/* 0x100ec000 TrustZone Address Space Controller */
|
|
/* 0x10200000 CoreSight debug APB */
|
|
/* 0x1e00a000 PL310 L2 Cache Controller */
|
|
sysbus_create_varargs("l2x0", 0x1e00a000, NULL);
|
|
}
|
|
|
|
/* Voltage values for SYS_CFG_VOLT daughterboard registers;
|
|
* values are in microvolts.
|
|
*/
|
|
static const uint32_t a9_voltages[] = {
|
|
1000000, /* VD10 : 1.0V : SoC internal logic voltage */
|
|
1000000, /* VD10_S2 : 1.0V : PL310, L2 cache, RAM, non-PL310 logic */
|
|
1000000, /* VD10_S3 : 1.0V : Cortex-A9, cores, MPEs, SCU, PL310 logic */
|
|
1800000, /* VCC1V8 : 1.8V : DDR2 SDRAM, test chip DDR2 I/O supply */
|
|
900000, /* DDR2VTT : 0.9V : DDR2 SDRAM VTT termination voltage */
|
|
3300000, /* VCC3V3 : 3.3V : local board supply for misc external logic */
|
|
};
|
|
|
|
/* Reset values for daughterboard oscillators (in Hz) */
|
|
static const uint32_t a9_clocks[] = {
|
|
45000000, /* AMBA AXI ACLK: 45MHz */
|
|
23750000, /* daughterboard CLCD clock: 23.75MHz */
|
|
66670000, /* Test chip reference clock: 66.67MHz */
|
|
};
|
|
|
|
static VEDBoardInfo a9_daughterboard = {
|
|
.motherboard_map = motherboard_legacy_map,
|
|
.loader_start = 0x60000000,
|
|
.gic_cpu_if_addr = 0x1e000100,
|
|
.proc_id = 0x0c000191,
|
|
.num_voltage_sensors = ARRAY_SIZE(a9_voltages),
|
|
.voltages = a9_voltages,
|
|
.num_clocks = ARRAY_SIZE(a9_clocks),
|
|
.clocks = a9_clocks,
|
|
.init = a9_daughterboard_init,
|
|
};
|
|
|
|
static void a15_daughterboard_init(const VexpressMachineState *vms,
|
|
ram_addr_t ram_size,
|
|
const char *cpu_type,
|
|
qemu_irq *pic)
|
|
{
|
|
MachineState *machine = MACHINE(vms);
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
MemoryRegion *sram = g_new(MemoryRegion, 1);
|
|
|
|
{
|
|
/* We have to use a separate 64 bit variable here to avoid the gcc
|
|
* "comparison is always false due to limited range of data type"
|
|
* warning if we are on a host where ram_addr_t is 32 bits.
|
|
*/
|
|
uint64_t rsz = ram_size;
|
|
if (rsz > (30ULL * 1024 * 1024 * 1024)) {
|
|
error_report("vexpress-a15: cannot model more than 30GB RAM");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* RAM is from 0x80000000 upwards; there is no low-memory alias for it. */
|
|
memory_region_add_subregion(sysmem, 0x80000000, machine->ram);
|
|
|
|
/* 0x2c000000 A15MPCore private memory region (GIC) */
|
|
init_cpus(machine, cpu_type, TYPE_A15MPCORE_PRIV,
|
|
0x2c000000, pic, vms->secure, vms->virt);
|
|
|
|
/* A15 daughterboard peripherals: */
|
|
|
|
/* 0x20000000: CoreSight interfaces: not modelled */
|
|
/* 0x2a000000: PL301 AXI interconnect: not modelled */
|
|
/* 0x2a420000: SCC: not modelled */
|
|
/* 0x2a430000: system counter: not modelled */
|
|
/* 0x2b000000: HDLCD controller: not modelled */
|
|
/* 0x2b060000: SP805 watchdog: not modelled */
|
|
/* 0x2b0a0000: PL341 dynamic memory controller: not modelled */
|
|
/* 0x2e000000: system SRAM */
|
|
memory_region_init_ram(sram, NULL, "vexpress.a15sram", 0x10000,
|
|
&error_fatal);
|
|
memory_region_add_subregion(sysmem, 0x2e000000, sram);
|
|
|
|
/* 0x7ffb0000: DMA330 DMA controller: not modelled */
|
|
/* 0x7ffd0000: PL354 static memory controller: not modelled */
|
|
}
|
|
|
|
static const uint32_t a15_voltages[] = {
|
|
900000, /* Vcore: 0.9V : CPU core voltage */
|
|
};
|
|
|
|
static const uint32_t a15_clocks[] = {
|
|
60000000, /* OSCCLK0: 60MHz : CPU_CLK reference */
|
|
0, /* OSCCLK1: reserved */
|
|
0, /* OSCCLK2: reserved */
|
|
0, /* OSCCLK3: reserved */
|
|
40000000, /* OSCCLK4: 40MHz : external AXI master clock */
|
|
23750000, /* OSCCLK5: 23.75MHz : HDLCD PLL reference */
|
|
50000000, /* OSCCLK6: 50MHz : static memory controller clock */
|
|
60000000, /* OSCCLK7: 60MHz : SYSCLK reference */
|
|
40000000, /* OSCCLK8: 40MHz : DDR2 PLL reference */
|
|
};
|
|
|
|
static VEDBoardInfo a15_daughterboard = {
|
|
.motherboard_map = motherboard_aseries_map,
|
|
.loader_start = 0x80000000,
|
|
.gic_cpu_if_addr = 0x2c002000,
|
|
.proc_id = 0x14000237,
|
|
.num_voltage_sensors = ARRAY_SIZE(a15_voltages),
|
|
.voltages = a15_voltages,
|
|
.num_clocks = ARRAY_SIZE(a15_clocks),
|
|
.clocks = a15_clocks,
|
|
.init = a15_daughterboard_init,
|
|
};
|
|
|
|
static int add_virtio_mmio_node(void *fdt, uint32_t acells, uint32_t scells,
|
|
hwaddr addr, hwaddr size, uint32_t intc,
|
|
int irq)
|
|
{
|
|
/* Add a virtio_mmio node to the device tree blob:
|
|
* virtio_mmio@ADDRESS {
|
|
* compatible = "virtio,mmio";
|
|
* reg = <ADDRESS, SIZE>;
|
|
* interrupt-parent = <&intc>;
|
|
* interrupts = <0, irq, 1>;
|
|
* }
|
|
* (Note that the format of the interrupts property is dependent on the
|
|
* interrupt controller that interrupt-parent points to; these are for
|
|
* the ARM GIC and indicate an SPI interrupt, rising-edge-triggered.)
|
|
*/
|
|
int rc;
|
|
char *nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, addr);
|
|
|
|
rc = qemu_fdt_add_subnode(fdt, nodename);
|
|
rc |= qemu_fdt_setprop_string(fdt, nodename,
|
|
"compatible", "virtio,mmio");
|
|
rc |= qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
|
|
acells, addr, scells, size);
|
|
qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", intc);
|
|
qemu_fdt_setprop_cells(fdt, nodename, "interrupts", 0, irq, 1);
|
|
qemu_fdt_setprop(fdt, nodename, "dma-coherent", NULL, 0);
|
|
g_free(nodename);
|
|
if (rc) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t find_int_controller(void *fdt)
|
|
{
|
|
/* Find the FDT node corresponding to the interrupt controller
|
|
* for virtio-mmio devices. We do this by scanning the fdt for
|
|
* a node with the right compatibility, since we know there is
|
|
* only one GIC on a vexpress board.
|
|
* We return the phandle of the node, or 0 if none was found.
|
|
*/
|
|
const char *compat = "arm,cortex-a9-gic";
|
|
int offset;
|
|
|
|
offset = fdt_node_offset_by_compatible(fdt, -1, compat);
|
|
if (offset >= 0) {
|
|
return fdt_get_phandle(fdt, offset);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void vexpress_modify_dtb(const struct arm_boot_info *info, void *fdt)
|
|
{
|
|
uint32_t acells, scells, intc;
|
|
const VEDBoardInfo *daughterboard = (const VEDBoardInfo *)info;
|
|
|
|
acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
|
|
NULL, &error_fatal);
|
|
scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
|
|
NULL, &error_fatal);
|
|
intc = find_int_controller(fdt);
|
|
if (!intc) {
|
|
/* Not fatal, we just won't provide virtio. This will
|
|
* happen with older device tree blobs.
|
|
*/
|
|
warn_report("couldn't find interrupt controller in "
|
|
"dtb; will not include virtio-mmio devices in the dtb");
|
|
} else {
|
|
int i;
|
|
const hwaddr *map = daughterboard->motherboard_map;
|
|
|
|
/* We iterate backwards here because adding nodes
|
|
* to the dtb puts them in last-first.
|
|
*/
|
|
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
|
|
add_virtio_mmio_node(fdt, acells, scells,
|
|
map[VE_VIRTIO] + 0x200 * i,
|
|
0x200, intc, 40 + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Open code a private version of pflash registration since we
|
|
* need to set non-default device width for VExpress platform.
|
|
*/
|
|
static PFlashCFI01 *ve_pflash_cfi01_register(hwaddr base, const char *name,
|
|
DriveInfo *di)
|
|
{
|
|
DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
|
|
|
|
if (di) {
|
|
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(di),
|
|
&error_abort);
|
|
}
|
|
|
|
qdev_prop_set_uint32(dev, "num-blocks",
|
|
VEXPRESS_FLASH_SIZE / VEXPRESS_FLASH_SECT_SIZE);
|
|
qdev_prop_set_uint64(dev, "sector-length", VEXPRESS_FLASH_SECT_SIZE);
|
|
qdev_prop_set_uint8(dev, "width", 4);
|
|
qdev_prop_set_uint8(dev, "device-width", 2);
|
|
qdev_prop_set_bit(dev, "big-endian", false);
|
|
qdev_prop_set_uint16(dev, "id0", 0x89);
|
|
qdev_prop_set_uint16(dev, "id1", 0x18);
|
|
qdev_prop_set_uint16(dev, "id2", 0x00);
|
|
qdev_prop_set_uint16(dev, "id3", 0x00);
|
|
qdev_prop_set_string(dev, "name", name);
|
|
qdev_init_nofail(dev);
|
|
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
|
|
return PFLASH_CFI01(dev);
|
|
}
|
|
|
|
static void vexpress_common_init(MachineState *machine)
|
|
{
|
|
VexpressMachineState *vms = VEXPRESS_MACHINE(machine);
|
|
VexpressMachineClass *vmc = VEXPRESS_MACHINE_GET_CLASS(machine);
|
|
VEDBoardInfo *daughterboard = vmc->daughterboard;
|
|
DeviceState *dev, *sysctl, *pl041;
|
|
qemu_irq pic[64];
|
|
uint32_t sys_id;
|
|
DriveInfo *dinfo;
|
|
PFlashCFI01 *pflash0;
|
|
I2CBus *i2c;
|
|
ram_addr_t vram_size, sram_size;
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
MemoryRegion *vram = g_new(MemoryRegion, 1);
|
|
MemoryRegion *sram = g_new(MemoryRegion, 1);
|
|
MemoryRegion *flashalias = g_new(MemoryRegion, 1);
|
|
MemoryRegion *flash0mem;
|
|
const hwaddr *map = daughterboard->motherboard_map;
|
|
int i;
|
|
|
|
daughterboard->init(vms, machine->ram_size, machine->cpu_type, pic);
|
|
|
|
/*
|
|
* If a bios file was provided, attempt to map it into memory
|
|
*/
|
|
if (bios_name) {
|
|
char *fn;
|
|
int image_size;
|
|
|
|
if (drive_get(IF_PFLASH, 0, 0)) {
|
|
error_report("The contents of the first flash device may be "
|
|
"specified with -bios or with -drive if=pflash... "
|
|
"but you cannot use both options at once");
|
|
exit(1);
|
|
}
|
|
fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
|
|
if (!fn) {
|
|
error_report("Could not find ROM image '%s'", bios_name);
|
|
exit(1);
|
|
}
|
|
image_size = load_image_targphys(fn, map[VE_NORFLASH0],
|
|
VEXPRESS_FLASH_SIZE);
|
|
g_free(fn);
|
|
if (image_size < 0) {
|
|
error_report("Could not load ROM image '%s'", bios_name);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Motherboard peripherals: the wiring is the same but the
|
|
* addresses vary between the legacy and A-Series memory maps.
|
|
*/
|
|
|
|
sys_id = 0x1190f500;
|
|
|
|
sysctl = qdev_create(NULL, "realview_sysctl");
|
|
qdev_prop_set_uint32(sysctl, "sys_id", sys_id);
|
|
qdev_prop_set_uint32(sysctl, "proc_id", daughterboard->proc_id);
|
|
qdev_prop_set_uint32(sysctl, "len-db-voltage",
|
|
daughterboard->num_voltage_sensors);
|
|
for (i = 0; i < daughterboard->num_voltage_sensors; i++) {
|
|
char *propname = g_strdup_printf("db-voltage[%d]", i);
|
|
qdev_prop_set_uint32(sysctl, propname, daughterboard->voltages[i]);
|
|
g_free(propname);
|
|
}
|
|
qdev_prop_set_uint32(sysctl, "len-db-clock",
|
|
daughterboard->num_clocks);
|
|
for (i = 0; i < daughterboard->num_clocks; i++) {
|
|
char *propname = g_strdup_printf("db-clock[%d]", i);
|
|
qdev_prop_set_uint32(sysctl, propname, daughterboard->clocks[i]);
|
|
g_free(propname);
|
|
}
|
|
qdev_init_nofail(sysctl);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(sysctl), 0, map[VE_SYSREGS]);
|
|
|
|
/* VE_SP810: not modelled */
|
|
/* VE_SERIALPCI: not modelled */
|
|
|
|
pl041 = qdev_create(NULL, "pl041");
|
|
qdev_prop_set_uint32(pl041, "nc_fifo_depth", 512);
|
|
qdev_init_nofail(pl041);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(pl041), 0, map[VE_PL041]);
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(pl041), 0, pic[11]);
|
|
|
|
dev = sysbus_create_varargs("pl181", map[VE_MMCI], pic[9], pic[10], NULL);
|
|
/* Wire up MMC card detect and read-only signals */
|
|
qdev_connect_gpio_out(dev, 0,
|
|
qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_WPROT));
|
|
qdev_connect_gpio_out(dev, 1,
|
|
qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_CARDIN));
|
|
|
|
sysbus_create_simple("pl050_keyboard", map[VE_KMI0], pic[12]);
|
|
sysbus_create_simple("pl050_mouse", map[VE_KMI1], pic[13]);
|
|
|
|
pl011_create(map[VE_UART0], pic[5], serial_hd(0));
|
|
pl011_create(map[VE_UART1], pic[6], serial_hd(1));
|
|
pl011_create(map[VE_UART2], pic[7], serial_hd(2));
|
|
pl011_create(map[VE_UART3], pic[8], serial_hd(3));
|
|
|
|
sysbus_create_simple("sp804", map[VE_TIMER01], pic[2]);
|
|
sysbus_create_simple("sp804", map[VE_TIMER23], pic[3]);
|
|
|
|
dev = sysbus_create_simple("versatile_i2c", map[VE_SERIALDVI], NULL);
|
|
i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
|
|
i2c_create_slave(i2c, "sii9022", 0x39);
|
|
|
|
sysbus_create_simple("pl031", map[VE_RTC], pic[4]); /* RTC */
|
|
|
|
/* VE_COMPACTFLASH: not modelled */
|
|
|
|
sysbus_create_simple("pl111", map[VE_CLCD], pic[14]);
|
|
|
|
dinfo = drive_get_next(IF_PFLASH);
|
|
pflash0 = ve_pflash_cfi01_register(map[VE_NORFLASH0], "vexpress.flash0",
|
|
dinfo);
|
|
if (!pflash0) {
|
|
error_report("vexpress: error registering flash 0");
|
|
exit(1);
|
|
}
|
|
|
|
if (map[VE_NORFLASHALIAS] != -1) {
|
|
/* Map flash 0 as an alias into low memory */
|
|
flash0mem = sysbus_mmio_get_region(SYS_BUS_DEVICE(pflash0), 0);
|
|
memory_region_init_alias(flashalias, NULL, "vexpress.flashalias",
|
|
flash0mem, 0, VEXPRESS_FLASH_SIZE);
|
|
memory_region_add_subregion(sysmem, map[VE_NORFLASHALIAS], flashalias);
|
|
}
|
|
|
|
dinfo = drive_get_next(IF_PFLASH);
|
|
if (!ve_pflash_cfi01_register(map[VE_NORFLASH1], "vexpress.flash1",
|
|
dinfo)) {
|
|
error_report("vexpress: error registering flash 1");
|
|
exit(1);
|
|
}
|
|
|
|
sram_size = 0x2000000;
|
|
memory_region_init_ram(sram, NULL, "vexpress.sram", sram_size,
|
|
&error_fatal);
|
|
memory_region_add_subregion(sysmem, map[VE_SRAM], sram);
|
|
|
|
vram_size = 0x800000;
|
|
memory_region_init_ram(vram, NULL, "vexpress.vram", vram_size,
|
|
&error_fatal);
|
|
memory_region_add_subregion(sysmem, map[VE_VIDEORAM], vram);
|
|
|
|
/* 0x4e000000 LAN9118 Ethernet */
|
|
if (nd_table[0].used) {
|
|
lan9118_init(&nd_table[0], map[VE_ETHERNET], pic[15]);
|
|
}
|
|
|
|
/* VE_USB: not modelled */
|
|
|
|
/* VE_DAPROM: not modelled */
|
|
|
|
/* Create mmio transports, so the user can create virtio backends
|
|
* (which will be automatically plugged in to the transports). If
|
|
* no backend is created the transport will just sit harmlessly idle.
|
|
*/
|
|
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
|
|
sysbus_create_simple("virtio-mmio", map[VE_VIRTIO] + 0x200 * i,
|
|
pic[40 + i]);
|
|
}
|
|
|
|
daughterboard->bootinfo.ram_size = machine->ram_size;
|
|
daughterboard->bootinfo.nb_cpus = machine->smp.cpus;
|
|
daughterboard->bootinfo.board_id = VEXPRESS_BOARD_ID;
|
|
daughterboard->bootinfo.loader_start = daughterboard->loader_start;
|
|
daughterboard->bootinfo.smp_loader_start = map[VE_SRAM];
|
|
daughterboard->bootinfo.smp_bootreg_addr = map[VE_SYSREGS] + 0x30;
|
|
daughterboard->bootinfo.gic_cpu_if_addr = daughterboard->gic_cpu_if_addr;
|
|
daughterboard->bootinfo.modify_dtb = vexpress_modify_dtb;
|
|
/* When booting Linux we should be in secure state if the CPU has one. */
|
|
daughterboard->bootinfo.secure_boot = vms->secure;
|
|
arm_load_kernel(ARM_CPU(first_cpu), machine, &daughterboard->bootinfo);
|
|
}
|
|
|
|
static bool vexpress_get_secure(Object *obj, Error **errp)
|
|
{
|
|
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
|
|
|
|
return vms->secure;
|
|
}
|
|
|
|
static void vexpress_set_secure(Object *obj, bool value, Error **errp)
|
|
{
|
|
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
|
|
|
|
vms->secure = value;
|
|
}
|
|
|
|
static bool vexpress_get_virt(Object *obj, Error **errp)
|
|
{
|
|
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
|
|
|
|
return vms->virt;
|
|
}
|
|
|
|
static void vexpress_set_virt(Object *obj, bool value, Error **errp)
|
|
{
|
|
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
|
|
|
|
vms->virt = value;
|
|
}
|
|
|
|
static void vexpress_instance_init(Object *obj)
|
|
{
|
|
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
|
|
|
|
/* EL3 is enabled by default on vexpress */
|
|
vms->secure = true;
|
|
object_property_add_bool(obj, "secure", vexpress_get_secure,
|
|
vexpress_set_secure);
|
|
object_property_set_description(obj, "secure",
|
|
"Set on/off to enable/disable the ARM "
|
|
"Security Extensions (TrustZone)");
|
|
}
|
|
|
|
static void vexpress_a15_instance_init(Object *obj)
|
|
{
|
|
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
|
|
|
|
/*
|
|
* For the vexpress-a15, EL2 is by default enabled if EL3 is,
|
|
* but can also be specifically set to on or off.
|
|
*/
|
|
vms->virt = true;
|
|
object_property_add_bool(obj, "virtualization", vexpress_get_virt,
|
|
vexpress_set_virt);
|
|
object_property_set_description(obj, "virtualization",
|
|
"Set on/off to enable/disable the ARM "
|
|
"Virtualization Extensions "
|
|
"(defaults to same as 'secure')");
|
|
}
|
|
|
|
static void vexpress_a9_instance_init(Object *obj)
|
|
{
|
|
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
|
|
|
|
/* The A9 doesn't have the virt extensions */
|
|
vms->virt = false;
|
|
}
|
|
|
|
static void vexpress_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
|
|
mc->desc = "ARM Versatile Express";
|
|
mc->init = vexpress_common_init;
|
|
mc->max_cpus = 4;
|
|
mc->ignore_memory_transaction_failures = true;
|
|
mc->default_ram_id = "vexpress.highmem";
|
|
}
|
|
|
|
static void vexpress_a9_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
VexpressMachineClass *vmc = VEXPRESS_MACHINE_CLASS(oc);
|
|
|
|
mc->desc = "ARM Versatile Express for Cortex-A9";
|
|
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a9");
|
|
|
|
vmc->daughterboard = &a9_daughterboard;
|
|
}
|
|
|
|
static void vexpress_a15_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
VexpressMachineClass *vmc = VEXPRESS_MACHINE_CLASS(oc);
|
|
|
|
mc->desc = "ARM Versatile Express for Cortex-A15";
|
|
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
|
|
|
|
vmc->daughterboard = &a15_daughterboard;
|
|
}
|
|
|
|
static const TypeInfo vexpress_info = {
|
|
.name = TYPE_VEXPRESS_MACHINE,
|
|
.parent = TYPE_MACHINE,
|
|
.abstract = true,
|
|
.instance_size = sizeof(VexpressMachineState),
|
|
.instance_init = vexpress_instance_init,
|
|
.class_size = sizeof(VexpressMachineClass),
|
|
.class_init = vexpress_class_init,
|
|
};
|
|
|
|
static const TypeInfo vexpress_a9_info = {
|
|
.name = TYPE_VEXPRESS_A9_MACHINE,
|
|
.parent = TYPE_VEXPRESS_MACHINE,
|
|
.class_init = vexpress_a9_class_init,
|
|
.instance_init = vexpress_a9_instance_init,
|
|
};
|
|
|
|
static const TypeInfo vexpress_a15_info = {
|
|
.name = TYPE_VEXPRESS_A15_MACHINE,
|
|
.parent = TYPE_VEXPRESS_MACHINE,
|
|
.class_init = vexpress_a15_class_init,
|
|
.instance_init = vexpress_a15_instance_init,
|
|
};
|
|
|
|
static void vexpress_machine_init(void)
|
|
{
|
|
type_register_static(&vexpress_info);
|
|
type_register_static(&vexpress_a9_info);
|
|
type_register_static(&vexpress_a15_info);
|
|
}
|
|
|
|
type_init(vexpress_machine_init);
|