xemu/hw/sparc/sun4m.c
Greg Kurz 37035df51e nvram: Exit QEMU if NVRAM cannot contain all -prom-env data
Since commit 61f20b9dc5 ("spapr_nvram: Pre-initialize the NVRAM to
support the -prom-env parameter"), pseries machines can pre-initialize
the "system" partition in the NVRAM with the data passed to all -prom-env
parameters on the QEMU command line.

In this case it is assumed that all the data fits in 64 KiB, but the user
can easily pass more and crash QEMU:

$ qemu-system-ppc64 -M pseries $(for ((x=0;x<128;x++)); do \
  echo -n " -prom-env " ; printf "%0.sx" {1..1024}; \
  done) # this requires ~128 Kib
malloc(): corrupted top size
Aborted (core dumped)

This happens because we don't check if all the prom-env data fits in
the NVRAM and chrp_nvram_set_var() happily memcpy() it passed the
buffer.

This crash affects basically all ppc/ppc64 machine types that use -prom-env:
- pseries (all versions)
- g3beige
- mac99

and also sparc/sparc64 machine types:
- LX
- SPARCClassic
- SPARCbook
- SS-10
- SS-20
- SS-4
- SS-5
- SS-600MP
- Voyager
- sun4u
- sun4v

Add a max_len argument to chrp_nvram_create_system_partition() so that
it can check the available size before writing to memory.

Since NVRAM is populated at machine init, it seems reasonable to consider
this error as fatal. So, instead of reporting an error when we detect that
the NVRAM is too small and adapt all machine types to handle it, we simply
exit QEMU in all cases. This is still better than crashing. If someone
wants another behavior, I guess this can be reworked later.

Tested with:

$ yes q | \
  (for arch in ppc ppc64 sparc sparc64; do \
       echo == $arch ==; \
       qemu=${arch}-softmmu/qemu-system-$arch; \
       for mach in $($qemu -M help | awk '! /^Supported/ { print $1 }'); do \
           echo $mach; \
           $qemu -M $mach -monitor stdio -nodefaults -nographic \
           $(for ((x=0;x<128;x++)); do \
                 echo -n " -prom-env " ; printf "%0.sx" {1..1024}; \
             done) >/dev/null; \
        done; echo; \
   done)

Without the patch, affected machine types cause QEMU to report some
memory corruption and crash:

malloc(): corrupted top size

free(): invalid size

*** stack smashing detected ***: terminated

With the patch, QEMU prints the following message and exits:

NVRAM is too small. Try to pass less data to -prom-env

It seems that the conditions for the crash have always existed, but it
affects pseries, the machine type I care for, since commit 61f20b9dc5
only.

Fixes: 61f20b9dc5 ("spapr_nvram: Pre-initialize the NVRAM to support the -prom-env parameter")
RHBZ: https://bugzilla.redhat.com/show_bug.cgi?id=1867739
Reported-by: John Snow <jsnow@redhat.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <159736033937.350502.12402444542194031035.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-08-14 13:34:31 +10:00

1598 lines
48 KiB
C

/*
* QEMU Sun4m & Sun4d & Sun4c System Emulator
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/sysbus.h"
#include "qemu/error-report.h"
#include "qemu/timer.h"
#include "hw/sparc/sun4m_iommu.h"
#include "hw/rtc/m48t59.h"
#include "migration/vmstate.h"
#include "hw/sparc/sparc32_dma.h"
#include "hw/block/fdc.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "sysemu/sysemu.h"
#include "net/net.h"
#include "hw/boards.h"
#include "hw/scsi/esp.h"
#include "hw/nvram/sun_nvram.h"
#include "hw/qdev-properties.h"
#include "hw/nvram/chrp_nvram.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/char/escc.h"
#include "hw/misc/empty_slot.h"
#include "hw/misc/unimp.h"
#include "hw/irq.h"
#include "hw/loader.h"
#include "elf.h"
#include "trace.h"
/*
* Sun4m architecture was used in the following machines:
*
* SPARCserver 6xxMP/xx
* SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
* SPARCclassic X (4/10)
* SPARCstation LX/ZX (4/30)
* SPARCstation Voyager
* SPARCstation 10/xx, SPARCserver 10/xx
* SPARCstation 5, SPARCserver 5
* SPARCstation 20/xx, SPARCserver 20
* SPARCstation 4
*
* See for example: http://www.sunhelp.org/faq/sunref1.html
*/
#define KERNEL_LOAD_ADDR 0x00004000
#define CMDLINE_ADDR 0x007ff000
#define INITRD_LOAD_ADDR 0x00800000
#define PROM_SIZE_MAX (1 * MiB)
#define PROM_VADDR 0xffd00000
#define PROM_FILENAME "openbios-sparc32"
#define CFG_ADDR 0xd00000510ULL
#define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
#define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
#define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
#define MAX_CPUS 16
#define MAX_PILS 16
#define MAX_VSIMMS 4
#define ESCC_CLOCK 4915200
struct sun4m_hwdef {
hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
hwaddr serial_base, fd_base;
hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
hwaddr bpp_base, dbri_base, sx_base;
struct {
hwaddr reg_base, vram_base;
} vsimm[MAX_VSIMMS];
hwaddr ecc_base;
uint64_t max_mem;
uint32_t ecc_version;
uint32_t iommu_version;
uint16_t machine_id;
uint8_t nvram_machine_id;
};
const char *fw_cfg_arch_key_name(uint16_t key)
{
static const struct {
uint16_t key;
const char *name;
} fw_cfg_arch_wellknown_keys[] = {
{FW_CFG_SUN4M_DEPTH, "depth"},
{FW_CFG_SUN4M_WIDTH, "width"},
{FW_CFG_SUN4M_HEIGHT, "height"},
};
for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
if (fw_cfg_arch_wellknown_keys[i].key == key) {
return fw_cfg_arch_wellknown_keys[i].name;
}
}
return NULL;
}
static void fw_cfg_boot_set(void *opaque, const char *boot_device,
Error **errp)
{
fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
}
static void nvram_init(Nvram *nvram, uint8_t *macaddr,
const char *cmdline, const char *boot_devices,
ram_addr_t RAM_size, uint32_t kernel_size,
int width, int height, int depth,
int nvram_machine_id, const char *arch)
{
unsigned int i;
int sysp_end;
uint8_t image[0x1ff0];
NvramClass *k = NVRAM_GET_CLASS(nvram);
memset(image, '\0', sizeof(image));
/* OpenBIOS nvram variables partition */
sysp_end = chrp_nvram_create_system_partition(image, 0, 0x1fd0);
/* Free space partition */
chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
nvram_machine_id);
for (i = 0; i < sizeof(image); i++) {
(k->write)(nvram, i, image[i]);
}
}
void cpu_check_irqs(CPUSPARCState *env)
{
CPUState *cs;
/* We should be holding the BQL before we mess with IRQs */
g_assert(qemu_mutex_iothread_locked());
if (env->pil_in && (env->interrupt_index == 0 ||
(env->interrupt_index & ~15) == TT_EXTINT)) {
unsigned int i;
for (i = 15; i > 0; i--) {
if (env->pil_in & (1 << i)) {
int old_interrupt = env->interrupt_index;
env->interrupt_index = TT_EXTINT | i;
if (old_interrupt != env->interrupt_index) {
cs = env_cpu(env);
trace_sun4m_cpu_interrupt(i);
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
cs = env_cpu(env);
trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
env->interrupt_index = 0;
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
static void cpu_kick_irq(SPARCCPU *cpu)
{
CPUSPARCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
cs->halted = 0;
cpu_check_irqs(env);
qemu_cpu_kick(cs);
}
static void cpu_set_irq(void *opaque, int irq, int level)
{
SPARCCPU *cpu = opaque;
CPUSPARCState *env = &cpu->env;
if (level) {
trace_sun4m_cpu_set_irq_raise(irq);
env->pil_in |= 1 << irq;
cpu_kick_irq(cpu);
} else {
trace_sun4m_cpu_set_irq_lower(irq);
env->pil_in &= ~(1 << irq);
cpu_check_irqs(env);
}
}
static void dummy_cpu_set_irq(void *opaque, int irq, int level)
{
}
static void main_cpu_reset(void *opaque)
{
SPARCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
cpu_reset(cs);
cs->halted = 0;
}
static void secondary_cpu_reset(void *opaque)
{
SPARCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
cpu_reset(cs);
cs->halted = 1;
}
static void cpu_halt_signal(void *opaque, int irq, int level)
{
if (level && current_cpu) {
cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
}
}
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
return addr - 0xf0000000ULL;
}
static unsigned long sun4m_load_kernel(const char *kernel_filename,
const char *initrd_filename,
ram_addr_t RAM_size,
uint32_t *initrd_size)
{
int linux_boot;
unsigned int i;
long kernel_size;
uint8_t *ptr;
linux_boot = (kernel_filename != NULL);
kernel_size = 0;
if (linux_boot) {
int bswap_needed;
#ifdef BSWAP_NEEDED
bswap_needed = 1;
#else
bswap_needed = 0;
#endif
kernel_size = load_elf(kernel_filename, NULL,
translate_kernel_address, NULL,
NULL, NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
if (kernel_size < 0)
kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
TARGET_PAGE_SIZE);
if (kernel_size < 0)
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR);
if (kernel_size < 0) {
error_report("could not load kernel '%s'", kernel_filename);
exit(1);
}
/* load initrd */
*initrd_size = 0;
if (initrd_filename) {
*initrd_size = load_image_targphys(initrd_filename,
INITRD_LOAD_ADDR,
RAM_size - INITRD_LOAD_ADDR);
if ((int)*initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
exit(1);
}
}
if (*initrd_size > 0) {
for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
stl_p(ptr + 16, INITRD_LOAD_ADDR);
stl_p(ptr + 20, *initrd_size);
break;
}
}
}
}
return kernel_size;
}
static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new(TYPE_SUN4M_IOMMU);
qdev_prop_set_uint32(dev, "version", version);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, irq);
sysbus_mmio_map(s, 0, addr);
return s;
}
static void *sparc32_dma_init(hwaddr dma_base,
hwaddr esp_base, qemu_irq espdma_irq,
hwaddr le_base, qemu_irq ledma_irq)
{
DeviceState *dma;
ESPDMADeviceState *espdma;
LEDMADeviceState *ledma;
SysBusESPState *esp;
SysBusPCNetState *lance;
dma = qdev_new(TYPE_SPARC32_DMA);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dma), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
OBJECT(dma), "espdma"));
sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp"));
sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
OBJECT(dma), "ledma"));
sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
lance = SYSBUS_PCNET(object_resolve_path_component(
OBJECT(ledma), "lance"));
sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
return dma;
}
static DeviceState *slavio_intctl_init(hwaddr addr,
hwaddr addrg,
qemu_irq **parent_irq)
{
DeviceState *dev;
SysBusDevice *s;
unsigned int i, j;
dev = qdev_new("slavio_intctl");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
for (i = 0; i < MAX_CPUS; i++) {
for (j = 0; j < MAX_PILS; j++) {
sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
}
}
sysbus_mmio_map(s, 0, addrg);
for (i = 0; i < MAX_CPUS; i++) {
sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
}
return dev;
}
#define SYS_TIMER_OFFSET 0x10000ULL
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
qemu_irq *cpu_irqs, unsigned int num_cpus)
{
DeviceState *dev;
SysBusDevice *s;
unsigned int i;
dev = qdev_new("slavio_timer");
qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, master_irq);
sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
for (i = 0; i < MAX_CPUS; i++) {
sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
}
}
static qemu_irq slavio_system_powerdown;
static void slavio_powerdown_req(Notifier *n, void *opaque)
{
qemu_irq_raise(slavio_system_powerdown);
}
static Notifier slavio_system_powerdown_notifier = {
.notify = slavio_powerdown_req
};
#define MISC_LEDS 0x01600000
#define MISC_CFG 0x01800000
#define MISC_DIAG 0x01a00000
#define MISC_MDM 0x01b00000
#define MISC_SYS 0x01f00000
static void slavio_misc_init(hwaddr base,
hwaddr aux1_base,
hwaddr aux2_base, qemu_irq irq,
qemu_irq fdc_tc)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("slavio_misc");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
if (base) {
/* 8 bit registers */
/* Slavio control */
sysbus_mmio_map(s, 0, base + MISC_CFG);
/* Diagnostics */
sysbus_mmio_map(s, 1, base + MISC_DIAG);
/* Modem control */
sysbus_mmio_map(s, 2, base + MISC_MDM);
/* 16 bit registers */
/* ss600mp diag LEDs */
sysbus_mmio_map(s, 3, base + MISC_LEDS);
/* 32 bit registers */
/* System control */
sysbus_mmio_map(s, 4, base + MISC_SYS);
}
if (aux1_base) {
/* AUX 1 (Misc System Functions) */
sysbus_mmio_map(s, 5, aux1_base);
}
if (aux2_base) {
/* AUX 2 (Software Powerdown Control) */
sysbus_mmio_map(s, 6, aux2_base);
}
sysbus_connect_irq(s, 0, irq);
sysbus_connect_irq(s, 1, fdc_tc);
slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
}
static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("eccmemctl");
qdev_prop_set_uint32(dev, "version", version);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, irq);
sysbus_mmio_map(s, 0, base);
if (version == 0) { // SS-600MP only
sysbus_mmio_map(s, 1, base + 0x1000);
}
}
static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("apc");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
/* Power management (APC) XXX: not a Slavio device */
sysbus_mmio_map(s, 0, power_base);
sysbus_connect_irq(s, 0, cpu_halt);
}
static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
int height, int depth)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("SUNW,tcx");
qdev_prop_set_uint32(dev, "vram_size", vram_size);
qdev_prop_set_uint16(dev, "width", width);
qdev_prop_set_uint16(dev, "height", height);
qdev_prop_set_uint16(dev, "depth", depth);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
/* 10/ROM : FCode ROM */
sysbus_mmio_map(s, 0, addr);
/* 2/STIP : Stipple */
sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
/* 3/BLIT : Blitter */
sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
/* 5/RSTIP : Raw Stipple */
sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
/* 6/RBLIT : Raw Blitter */
sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
/* 7/TEC : Transform Engine */
sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
/* 8/CMAP : DAC */
sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
/* 9/THC : */
if (depth == 8) {
sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
} else {
sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
}
/* 11/DHC : */
sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
/* 12/ALT : */
sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
/* 0/DFB8 : 8-bit plane */
sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
/* 1/DFB24 : 24bit plane */
sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
/* 4/RDFB32: Raw framebuffer. Control plane */
sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
/* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
if (depth == 8) {
sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
}
sysbus_connect_irq(s, 0, irq);
}
static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
int height, int depth)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("cgthree");
qdev_prop_set_uint32(dev, "vram-size", vram_size);
qdev_prop_set_uint16(dev, "width", width);
qdev_prop_set_uint16(dev, "height", height);
qdev_prop_set_uint16(dev, "depth", depth);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
/* FCode ROM */
sysbus_mmio_map(s, 0, addr);
/* DAC */
sysbus_mmio_map(s, 1, addr + 0x400000ULL);
/* 8-bit plane */
sysbus_mmio_map(s, 2, addr + 0x800000ULL);
sysbus_connect_irq(s, 0, irq);
}
/* NCR89C100/MACIO Internal ID register */
#define TYPE_MACIO_ID_REGISTER "macio_idreg"
static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
static void idreg_init(hwaddr addr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new(TYPE_MACIO_ID_REGISTER);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, addr);
address_space_write_rom(&address_space_memory, addr,
MEMTXATTRS_UNSPECIFIED,
idreg_data, sizeof(idreg_data));
}
#define MACIO_ID_REGISTER(obj) \
OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
typedef struct IDRegState {
SysBusDevice parent_obj;
MemoryRegion mem;
} IDRegState;
static void idreg_realize(DeviceState *ds, Error **errp)
{
IDRegState *s = MACIO_ID_REGISTER(ds);
SysBusDevice *dev = SYS_BUS_DEVICE(ds);
Error *local_err = NULL;
memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
sizeof(idreg_data), &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
vmstate_register_ram_global(&s->mem);
memory_region_set_readonly(&s->mem, true);
sysbus_init_mmio(dev, &s->mem);
}
static void idreg_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = idreg_realize;
}
static const TypeInfo idreg_info = {
.name = TYPE_MACIO_ID_REGISTER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IDRegState),
.class_init = idreg_class_init,
};
#define TYPE_TCX_AFX "tcx_afx"
#define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
typedef struct AFXState {
SysBusDevice parent_obj;
MemoryRegion mem;
} AFXState;
/* SS-5 TCX AFX register */
static void afx_init(hwaddr addr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new(TYPE_TCX_AFX);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, addr);
}
static void afx_realize(DeviceState *ds, Error **errp)
{
AFXState *s = TCX_AFX(ds);
SysBusDevice *dev = SYS_BUS_DEVICE(ds);
Error *local_err = NULL;
memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
vmstate_register_ram_global(&s->mem);
sysbus_init_mmio(dev, &s->mem);
}
static void afx_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = afx_realize;
}
static const TypeInfo afx_info = {
.name = TYPE_TCX_AFX,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AFXState),
.class_init = afx_class_init,
};
#define TYPE_OPENPROM "openprom"
#define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
typedef struct PROMState {
SysBusDevice parent_obj;
MemoryRegion prom;
} PROMState;
/* Boot PROM (OpenBIOS) */
static uint64_t translate_prom_address(void *opaque, uint64_t addr)
{
hwaddr *base_addr = (hwaddr *)opaque;
return addr + *base_addr - PROM_VADDR;
}
static void prom_init(hwaddr addr, const char *bios_name)
{
DeviceState *dev;
SysBusDevice *s;
char *filename;
int ret;
dev = qdev_new(TYPE_OPENPROM);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, addr);
/* load boot prom */
if (bios_name == NULL) {
bios_name = PROM_FILENAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
ret = load_elf(filename, NULL,
translate_prom_address, &addr, NULL,
NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
if (ret < 0 || ret > PROM_SIZE_MAX) {
ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
}
g_free(filename);
} else {
ret = -1;
}
if (ret < 0 || ret > PROM_SIZE_MAX) {
error_report("could not load prom '%s'", bios_name);
exit(1);
}
}
static void prom_realize(DeviceState *ds, Error **errp)
{
PROMState *s = OPENPROM(ds);
SysBusDevice *dev = SYS_BUS_DEVICE(ds);
Error *local_err = NULL;
memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
PROM_SIZE_MAX, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
vmstate_register_ram_global(&s->prom);
memory_region_set_readonly(&s->prom, true);
sysbus_init_mmio(dev, &s->prom);
}
static Property prom_properties[] = {
{/* end of property list */},
};
static void prom_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
device_class_set_props(dc, prom_properties);
dc->realize = prom_realize;
}
static const TypeInfo prom_info = {
.name = TYPE_OPENPROM,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PROMState),
.class_init = prom_class_init,
};
#define TYPE_SUN4M_MEMORY "memory"
#define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
typedef struct RamDevice {
SysBusDevice parent_obj;
HostMemoryBackend *memdev;
} RamDevice;
/* System RAM */
static void ram_realize(DeviceState *dev, Error **errp)
{
RamDevice *d = SUN4M_RAM(dev);
MemoryRegion *ram = host_memory_backend_get_memory(d->memdev);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), ram);
}
static void ram_initfn(Object *obj)
{
RamDevice *d = SUN4M_RAM(obj);
object_property_add_link(obj, "memdev", TYPE_MEMORY_BACKEND,
(Object **)&d->memdev,
object_property_allow_set_link,
OBJ_PROP_LINK_STRONG);
object_property_set_description(obj, "memdev", "Set RAM backend"
"Valid value is ID of a hostmem backend");
}
static void ram_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = ram_realize;
}
static const TypeInfo ram_info = {
.name = TYPE_SUN4M_MEMORY,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(RamDevice),
.instance_init = ram_initfn,
.class_init = ram_class_init,
};
static void cpu_devinit(const char *cpu_type, unsigned int id,
uint64_t prom_addr, qemu_irq **cpu_irqs)
{
CPUState *cs;
SPARCCPU *cpu;
CPUSPARCState *env;
cpu = SPARC_CPU(cpu_create(cpu_type));
env = &cpu->env;
cpu_sparc_set_id(env, id);
if (id == 0) {
qemu_register_reset(main_cpu_reset, cpu);
} else {
qemu_register_reset(secondary_cpu_reset, cpu);
cs = CPU(cpu);
cs->halted = 1;
}
*cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
env->prom_addr = prom_addr;
}
static void dummy_fdc_tc(void *opaque, int irq, int level)
{
}
static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
MachineState *machine)
{
DeviceState *slavio_intctl;
unsigned int i;
void *nvram;
qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
qemu_irq fdc_tc;
unsigned long kernel_size;
uint32_t initrd_size;
DriveInfo *fd[MAX_FD];
FWCfgState *fw_cfg;
DeviceState *dev;
SysBusDevice *s;
unsigned int smp_cpus = machine->smp.cpus;
unsigned int max_cpus = machine->smp.max_cpus;
Object *ram_memdev = object_resolve_path_type(machine->ram_memdev_id,
TYPE_MEMORY_BACKEND, NULL);
if (machine->ram_size > hwdef->max_mem) {
error_report("Too much memory for this machine: %" PRId64 ","
" maximum %" PRId64,
machine->ram_size / MiB, hwdef->max_mem / MiB);
exit(1);
}
/* init CPUs */
for(i = 0; i < smp_cpus; i++) {
cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
}
for (i = smp_cpus; i < MAX_CPUS; i++)
cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
/* Create and map RAM frontend */
dev = qdev_new("memory");
object_property_set_link(OBJECT(dev), "memdev", ram_memdev, &error_fatal);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0);
/* models without ECC don't trap when missing ram is accessed */
if (!hwdef->ecc_base) {
empty_slot_init("ecc", machine->ram_size,
hwdef->max_mem - machine->ram_size);
}
prom_init(hwdef->slavio_base, bios_name);
slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
hwdef->intctl_base + 0x10000ULL,
cpu_irqs);
for (i = 0; i < 32; i++) {
slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
}
for (i = 0; i < MAX_CPUS; i++) {
slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
}
if (hwdef->idreg_base) {
idreg_init(hwdef->idreg_base);
}
if (hwdef->afx_base) {
afx_init(hwdef->afx_base);
}
iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
if (hwdef->iommu_pad_base) {
/* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
Software shouldn't use aliased addresses, neither should it crash
when does. Using empty_slot instead of aliasing can help with
debugging such accesses */
empty_slot_init("iommu.alias",
hwdef->iommu_pad_base, hwdef->iommu_pad_len);
}
sparc32_dma_init(hwdef->dma_base,
hwdef->esp_base, slavio_irq[18],
hwdef->le_base, slavio_irq[16]);
if (graphic_depth != 8 && graphic_depth != 24) {
error_report("Unsupported depth: %d", graphic_depth);
exit (1);
}
if (vga_interface_type != VGA_NONE) {
if (vga_interface_type == VGA_CG3) {
if (graphic_depth != 8) {
error_report("Unsupported depth: %d", graphic_depth);
exit(1);
}
if (!(graphic_width == 1024 && graphic_height == 768) &&
!(graphic_width == 1152 && graphic_height == 900)) {
error_report("Unsupported resolution: %d x %d", graphic_width,
graphic_height);
exit(1);
}
/* sbus irq 5 */
cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
graphic_width, graphic_height, graphic_depth);
} else {
/* If no display specified, default to TCX */
if (graphic_depth != 8 && graphic_depth != 24) {
error_report("Unsupported depth: %d", graphic_depth);
exit(1);
}
if (!(graphic_width == 1024 && graphic_height == 768)) {
error_report("Unsupported resolution: %d x %d",
graphic_width, graphic_height);
exit(1);
}
tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
graphic_width, graphic_height, graphic_depth);
}
}
for (i = 0; i < MAX_VSIMMS; i++) {
/* vsimm registers probed by OBP */
if (hwdef->vsimm[i].reg_base) {
char *name = g_strdup_printf("vsimm[%d]", i);
empty_slot_init(name, hwdef->vsimm[i].reg_base, 0x2000);
g_free(name);
}
}
if (hwdef->sx_base) {
create_unimplemented_device("SUNW,sx", hwdef->sx_base, 0x2000);
}
nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
/* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
dev = qdev_new(TYPE_ESCC);
qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
qdev_prop_set_uint32(dev, "it_shift", 1);
qdev_prop_set_chr(dev, "chrB", NULL);
qdev_prop_set_chr(dev, "chrA", NULL);
qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, slavio_irq[14]);
sysbus_connect_irq(s, 1, slavio_irq[14]);
sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
dev = qdev_new(TYPE_ESCC);
qdev_prop_set_uint32(dev, "disabled", 0);
qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
qdev_prop_set_uint32(dev, "it_shift", 1);
qdev_prop_set_chr(dev, "chrB", serial_hd(1));
qdev_prop_set_chr(dev, "chrA", serial_hd(0));
qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, slavio_irq[15]);
sysbus_connect_irq(s, 1, slavio_irq[15]);
sysbus_mmio_map(s, 0, hwdef->serial_base);
if (hwdef->apc_base) {
apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
}
if (hwdef->fd_base) {
/* there is zero or one floppy drive */
memset(fd, 0, sizeof(fd));
fd[0] = drive_get(IF_FLOPPY, 0, 0);
sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
&fdc_tc);
} else {
fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
}
slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
slavio_irq[30], fdc_tc);
if (hwdef->cs_base) {
sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
slavio_irq[5]);
}
if (hwdef->dbri_base) {
/* ISDN chip with attached CS4215 audio codec */
/* prom space */
create_unimplemented_device("SUNW,DBRI.prom",
hwdef->dbri_base + 0x1000, 0x30);
/* reg space */
create_unimplemented_device("SUNW,DBRI",
hwdef->dbri_base + 0x10000, 0x100);
}
if (hwdef->bpp_base) {
/* parallel port */
create_unimplemented_device("SUNW,bpp", hwdef->bpp_base, 0x20);
}
initrd_size = 0;
kernel_size = sun4m_load_kernel(machine->kernel_filename,
machine->initrd_filename,
machine->ram_size, &initrd_size);
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
machine->boot_order, machine->ram_size, kernel_size,
graphic_width, graphic_height, graphic_depth,
hwdef->nvram_machine_id, "Sun4m");
if (hwdef->ecc_base)
ecc_init(hwdef->ecc_base, slavio_irq[28],
hwdef->ecc_version);
dev = qdev_new(TYPE_FW_CFG_MEM);
fw_cfg = FW_CFG(dev);
qdev_prop_set_uint32(dev, "data_width", 1);
qdev_prop_set_bit(dev, "dma_enabled", false);
object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
OBJECT(fw_cfg));
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, CFG_ADDR);
sysbus_mmio_map(s, 1, CFG_ADDR + 2);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
if (machine->kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
machine->kernel_cmdline);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(machine->kernel_cmdline) + 1);
} else {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
enum {
ss5_id = 32,
vger_id,
lx_id,
ss4_id,
scls_id,
sbook_id,
ss10_id = 64,
ss20_id,
ss600mp_id,
};
static const struct sun4m_hwdef sun4m_hwdefs[] = {
/* SS-5 */
{
.iommu_base = 0x10000000,
.iommu_pad_base = 0x10004000,
.iommu_pad_len = 0x0fffb000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.afx_base = 0x6e000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = ss5_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
},
/* SS-10 */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x10000000, // version 0, implementation 1
.nvram_machine_id = 0x72,
.machine_id = ss10_id,
.iommu_version = 0x03000000,
.max_mem = 0xf00000000ULL,
},
/* SS-600MP */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.dma_base = 0xef0081000ULL,
.esp_base = 0xef0080000ULL,
.le_base = 0xef0060000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL, // XXX should not exist
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x00000000, // version 0, implementation 0
.nvram_machine_id = 0x71,
.machine_id = ss600mp_id,
.iommu_version = 0x01000000,
.max_mem = 0xf00000000ULL,
},
/* SS-20 */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.bpp_base = 0xef4800000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.dbri_base = 0xee0000000ULL,
.sx_base = 0xf80000000ULL,
.vsimm = {
{
.reg_base = 0x9c000000ULL,
.vram_base = 0xfc000000ULL
}, {
.reg_base = 0x90000000ULL,
.vram_base = 0xf0000000ULL
}, {
.reg_base = 0x94000000ULL
}, {
.reg_base = 0x98000000ULL
}
},
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x20000000, // version 0, implementation 2
.nvram_machine_id = 0x72,
.machine_id = ss20_id,
.iommu_version = 0x13000000,
.max_mem = 0xf00000000ULL,
},
/* Voyager */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x71300000, // pmc
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = vger_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
},
/* LX */
{
.iommu_base = 0x10000000,
.iommu_pad_base = 0x10004000,
.iommu_pad_len = 0x0fffb000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = lx_id,
.iommu_version = 0x04000000,
.max_mem = 0x10000000,
},
/* SS-4 */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = ss4_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
},
/* SPARCClassic */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = scls_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
},
/* SPARCbook */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000, // XXX
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = sbook_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
},
};
/* SPARCstation 5 hardware initialisation */
static void ss5_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[0], machine);
}
/* SPARCstation 10 hardware initialisation */
static void ss10_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[1], machine);
}
/* SPARCserver 600MP hardware initialisation */
static void ss600mp_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[2], machine);
}
/* SPARCstation 20 hardware initialisation */
static void ss20_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[3], machine);
}
/* SPARCstation Voyager hardware initialisation */
static void vger_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[4], machine);
}
/* SPARCstation LX hardware initialisation */
static void ss_lx_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[5], machine);
}
/* SPARCstation 4 hardware initialisation */
static void ss4_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[6], machine);
}
/* SPARCClassic hardware initialisation */
static void scls_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[7], machine);
}
/* SPARCbook hardware initialisation */
static void sbook_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[8], machine);
}
static void ss5_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation 5";
mc->init = ss5_init;
mc->block_default_type = IF_SCSI;
mc->is_default = true;
mc->default_boot_order = "c";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
mc->default_display = "tcx";
mc->default_ram_id = "sun4m.ram";
}
static const TypeInfo ss5_type = {
.name = MACHINE_TYPE_NAME("SS-5"),
.parent = TYPE_MACHINE,
.class_init = ss5_class_init,
};
static void ss10_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation 10";
mc->init = ss10_init;
mc->block_default_type = IF_SCSI;
mc->max_cpus = 4;
mc->default_boot_order = "c";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
mc->default_display = "tcx";
mc->default_ram_id = "sun4m.ram";
}
static const TypeInfo ss10_type = {
.name = MACHINE_TYPE_NAME("SS-10"),
.parent = TYPE_MACHINE,
.class_init = ss10_class_init,
};
static void ss600mp_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCserver 600MP";
mc->init = ss600mp_init;
mc->block_default_type = IF_SCSI;
mc->max_cpus = 4;
mc->default_boot_order = "c";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
mc->default_display = "tcx";
mc->default_ram_id = "sun4m.ram";
}
static const TypeInfo ss600mp_type = {
.name = MACHINE_TYPE_NAME("SS-600MP"),
.parent = TYPE_MACHINE,
.class_init = ss600mp_class_init,
};
static void ss20_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation 20";
mc->init = ss20_init;
mc->block_default_type = IF_SCSI;
mc->max_cpus = 4;
mc->default_boot_order = "c";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
mc->default_display = "tcx";
mc->default_ram_id = "sun4m.ram";
}
static const TypeInfo ss20_type = {
.name = MACHINE_TYPE_NAME("SS-20"),
.parent = TYPE_MACHINE,
.class_init = ss20_class_init,
};
static void voyager_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation Voyager";
mc->init = vger_init;
mc->block_default_type = IF_SCSI;
mc->default_boot_order = "c";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
mc->default_display = "tcx";
mc->default_ram_id = "sun4m.ram";
}
static const TypeInfo voyager_type = {
.name = MACHINE_TYPE_NAME("Voyager"),
.parent = TYPE_MACHINE,
.class_init = voyager_class_init,
};
static void ss_lx_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation LX";
mc->init = ss_lx_init;
mc->block_default_type = IF_SCSI;
mc->default_boot_order = "c";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
mc->default_display = "tcx";
mc->default_ram_id = "sun4m.ram";
}
static const TypeInfo ss_lx_type = {
.name = MACHINE_TYPE_NAME("LX"),
.parent = TYPE_MACHINE,
.class_init = ss_lx_class_init,
};
static void ss4_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation 4";
mc->init = ss4_init;
mc->block_default_type = IF_SCSI;
mc->default_boot_order = "c";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
mc->default_display = "tcx";
mc->default_ram_id = "sun4m.ram";
}
static const TypeInfo ss4_type = {
.name = MACHINE_TYPE_NAME("SS-4"),
.parent = TYPE_MACHINE,
.class_init = ss4_class_init,
};
static void scls_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCClassic";
mc->init = scls_init;
mc->block_default_type = IF_SCSI;
mc->default_boot_order = "c";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
mc->default_display = "tcx";
mc->default_ram_id = "sun4m.ram";
}
static const TypeInfo scls_type = {
.name = MACHINE_TYPE_NAME("SPARCClassic"),
.parent = TYPE_MACHINE,
.class_init = scls_class_init,
};
static void sbook_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCbook";
mc->init = sbook_init;
mc->block_default_type = IF_SCSI;
mc->default_boot_order = "c";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
mc->default_display = "tcx";
mc->default_ram_id = "sun4m.ram";
}
static const TypeInfo sbook_type = {
.name = MACHINE_TYPE_NAME("SPARCbook"),
.parent = TYPE_MACHINE,
.class_init = sbook_class_init,
};
static void sun4m_register_types(void)
{
type_register_static(&idreg_info);
type_register_static(&afx_info);
type_register_static(&prom_info);
type_register_static(&ram_info);
type_register_static(&ss5_type);
type_register_static(&ss10_type);
type_register_static(&ss600mp_type);
type_register_static(&ss20_type);
type_register_static(&voyager_type);
type_register_static(&ss_lx_type);
type_register_static(&ss4_type);
type_register_static(&scls_type);
type_register_static(&sbook_type);
}
type_init(sun4m_register_types)