mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-24 20:19:44 +00:00
e77c89fb08
Now that all tcg backends support TCG_TARGET_IMPLEMENTS_DYN_TLB, remove the define and the old code. Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
211 lines
6.9 KiB
C
211 lines
6.9 KiB
C
/*
|
|
* common defines for all CPUs
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef CPU_DEFS_H
|
|
#define CPU_DEFS_H
|
|
|
|
#ifndef NEED_CPU_H
|
|
#error cpu.h included from common code
|
|
#endif
|
|
|
|
#include "qemu/host-utils.h"
|
|
#include "qemu/thread.h"
|
|
#include "qemu/queue.h"
|
|
#ifdef CONFIG_TCG
|
|
#include "tcg-target.h"
|
|
#endif
|
|
#ifndef CONFIG_USER_ONLY
|
|
#include "exec/hwaddr.h"
|
|
#endif
|
|
#include "exec/memattrs.h"
|
|
|
|
#ifndef TARGET_LONG_BITS
|
|
#error TARGET_LONG_BITS must be defined before including this header
|
|
#endif
|
|
|
|
#define TARGET_LONG_SIZE (TARGET_LONG_BITS / 8)
|
|
|
|
/* target_ulong is the type of a virtual address */
|
|
#if TARGET_LONG_SIZE == 4
|
|
typedef int32_t target_long;
|
|
typedef uint32_t target_ulong;
|
|
#define TARGET_FMT_lx "%08x"
|
|
#define TARGET_FMT_ld "%d"
|
|
#define TARGET_FMT_lu "%u"
|
|
#elif TARGET_LONG_SIZE == 8
|
|
typedef int64_t target_long;
|
|
typedef uint64_t target_ulong;
|
|
#define TARGET_FMT_lx "%016" PRIx64
|
|
#define TARGET_FMT_ld "%" PRId64
|
|
#define TARGET_FMT_lu "%" PRIu64
|
|
#else
|
|
#error TARGET_LONG_SIZE undefined
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
|
|
/* use a fully associative victim tlb of 8 entries */
|
|
#define CPU_VTLB_SIZE 8
|
|
|
|
#if HOST_LONG_BITS == 32 && TARGET_LONG_BITS == 32
|
|
#define CPU_TLB_ENTRY_BITS 4
|
|
#else
|
|
#define CPU_TLB_ENTRY_BITS 5
|
|
#endif
|
|
|
|
#define CPU_TLB_DYN_MIN_BITS 6
|
|
#define CPU_TLB_DYN_DEFAULT_BITS 8
|
|
|
|
# if HOST_LONG_BITS == 32
|
|
/* Make sure we do not require a double-word shift for the TLB load */
|
|
# define CPU_TLB_DYN_MAX_BITS (32 - TARGET_PAGE_BITS)
|
|
# else /* HOST_LONG_BITS == 64 */
|
|
/*
|
|
* Assuming TARGET_PAGE_BITS==12, with 2**22 entries we can cover 2**(22+12) ==
|
|
* 2**34 == 16G of address space. This is roughly what one would expect a
|
|
* TLB to cover in a modern (as of 2018) x86_64 CPU. For instance, Intel
|
|
* Skylake's Level-2 STLB has 16 1G entries.
|
|
* Also, make sure we do not size the TLB past the guest's address space.
|
|
*/
|
|
# define CPU_TLB_DYN_MAX_BITS \
|
|
MIN(22, TARGET_VIRT_ADDR_SPACE_BITS - TARGET_PAGE_BITS)
|
|
# endif
|
|
|
|
typedef struct CPUTLBEntry {
|
|
/* bit TARGET_LONG_BITS to TARGET_PAGE_BITS : virtual address
|
|
bit TARGET_PAGE_BITS-1..4 : Nonzero for accesses that should not
|
|
go directly to ram.
|
|
bit 3 : indicates that the entry is invalid
|
|
bit 2..0 : zero
|
|
*/
|
|
union {
|
|
struct {
|
|
target_ulong addr_read;
|
|
target_ulong addr_write;
|
|
target_ulong addr_code;
|
|
/* Addend to virtual address to get host address. IO accesses
|
|
use the corresponding iotlb value. */
|
|
uintptr_t addend;
|
|
};
|
|
/* padding to get a power of two size */
|
|
uint8_t dummy[1 << CPU_TLB_ENTRY_BITS];
|
|
};
|
|
} CPUTLBEntry;
|
|
|
|
QEMU_BUILD_BUG_ON(sizeof(CPUTLBEntry) != (1 << CPU_TLB_ENTRY_BITS));
|
|
|
|
/* The IOTLB is not accessed directly inline by generated TCG code,
|
|
* so the CPUIOTLBEntry layout is not as critical as that of the
|
|
* CPUTLBEntry. (This is also why we don't want to combine the two
|
|
* structs into one.)
|
|
*/
|
|
typedef struct CPUIOTLBEntry {
|
|
/*
|
|
* @addr contains:
|
|
* - in the lower TARGET_PAGE_BITS, a physical section number
|
|
* - with the lower TARGET_PAGE_BITS masked off, an offset which
|
|
* must be added to the virtual address to obtain:
|
|
* + the ram_addr_t of the target RAM (if the physical section
|
|
* number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
|
|
* + the offset within the target MemoryRegion (otherwise)
|
|
*/
|
|
hwaddr addr;
|
|
MemTxAttrs attrs;
|
|
} CPUIOTLBEntry;
|
|
|
|
/**
|
|
* struct CPUTLBWindow
|
|
* @begin_ns: host time (in ns) at the beginning of the time window
|
|
* @max_entries: maximum number of entries observed in the window
|
|
*
|
|
* See also: tlb_mmu_resize_locked()
|
|
*/
|
|
typedef struct CPUTLBWindow {
|
|
int64_t begin_ns;
|
|
size_t max_entries;
|
|
} CPUTLBWindow;
|
|
|
|
typedef struct CPUTLBDesc {
|
|
/*
|
|
* Describe a region covering all of the large pages allocated
|
|
* into the tlb. When any page within this region is flushed,
|
|
* we must flush the entire tlb. The region is matched if
|
|
* (addr & large_page_mask) == large_page_addr.
|
|
*/
|
|
target_ulong large_page_addr;
|
|
target_ulong large_page_mask;
|
|
/* The next index to use in the tlb victim table. */
|
|
size_t vindex;
|
|
CPUTLBWindow window;
|
|
size_t n_used_entries;
|
|
} CPUTLBDesc;
|
|
|
|
/*
|
|
* Data elements that are shared between all MMU modes.
|
|
*/
|
|
typedef struct CPUTLBCommon {
|
|
/* Serialize updates to tlb_table and tlb_v_table, and others as noted. */
|
|
QemuSpin lock;
|
|
/*
|
|
* Within dirty, for each bit N, modifications have been made to
|
|
* mmu_idx N since the last time that mmu_idx was flushed.
|
|
* Protected by tlb_c.lock.
|
|
*/
|
|
uint16_t dirty;
|
|
/*
|
|
* Statistics. These are not lock protected, but are read and
|
|
* written atomically. This allows the monitor to print a snapshot
|
|
* of the stats without interfering with the cpu.
|
|
*/
|
|
size_t full_flush_count;
|
|
size_t part_flush_count;
|
|
size_t elide_flush_count;
|
|
} CPUTLBCommon;
|
|
|
|
# define CPU_TLB \
|
|
/* tlb_mask[i] contains (n_entries - 1) << CPU_TLB_ENTRY_BITS */ \
|
|
uintptr_t tlb_mask[NB_MMU_MODES]; \
|
|
CPUTLBEntry *tlb_table[NB_MMU_MODES];
|
|
# define CPU_IOTLB \
|
|
CPUIOTLBEntry *iotlb[NB_MMU_MODES];
|
|
|
|
/*
|
|
* The meaning of each of the MMU modes is defined in the target code.
|
|
* Note that NB_MMU_MODES is not yet defined; we can only reference it
|
|
* within preprocessor defines that will be expanded later.
|
|
*/
|
|
#define CPU_COMMON_TLB \
|
|
CPUTLBCommon tlb_c; \
|
|
CPUTLBDesc tlb_d[NB_MMU_MODES]; \
|
|
CPU_TLB \
|
|
CPUTLBEntry tlb_v_table[NB_MMU_MODES][CPU_VTLB_SIZE]; \
|
|
CPU_IOTLB \
|
|
CPUIOTLBEntry iotlb_v[NB_MMU_MODES][CPU_VTLB_SIZE];
|
|
|
|
#else
|
|
|
|
#define CPU_COMMON_TLB
|
|
|
|
#endif
|
|
|
|
|
|
#define CPU_COMMON \
|
|
/* soft mmu support */ \
|
|
CPU_COMMON_TLB \
|
|
|
|
#endif
|