xemu/target-arm/cpu.c
Aurelio C. Remonda ba890a9b25 target-arm: Add the Cortex-M4 CPU
This patch adds the Cortex-M4 CPU. The M4 is basically the same as
the M3, the main differences being the DSP instructions and an
optional FPU.  Only no-FPU cortex-M4 is implemented here, cortex-M4F
is not because the core target-arm code doesn't support the M-profile
FPU model yet.

Signed-off-by: Aurelio C. Remonda <aurelioremonda@gmail.com>
Message-id: 1434461850-4104-1-git-send-email-aurelioremonda@gmail.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2015-06-19 14:17:44 +01:00

1352 lines
42 KiB
C

/*
* QEMU ARM CPU
*
* Copyright (c) 2012 SUSE LINUX Products GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "cpu.h"
#include "internals.h"
#include "qemu-common.h"
#include "hw/qdev-properties.h"
#include "qapi/qmp/qerror.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif
#include "hw/arm/arm.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
static void arm_cpu_set_pc(CPUState *cs, vaddr value)
{
ARMCPU *cpu = ARM_CPU(cs);
cpu->env.regs[15] = value;
}
static bool arm_cpu_has_work(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
return !cpu->powered_off
&& cs->interrupt_request &
(CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
| CPU_INTERRUPT_EXITTB);
}
static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
{
/* Reset a single ARMCPRegInfo register */
ARMCPRegInfo *ri = value;
ARMCPU *cpu = opaque;
if (ri->type & ARM_CP_SPECIAL) {
return;
}
if (ri->resetfn) {
ri->resetfn(&cpu->env, ri);
return;
}
/* A zero offset is never possible as it would be regs[0]
* so we use it to indicate that reset is being handled elsewhere.
* This is basically only used for fields in non-core coprocessors
* (like the pxa2xx ones).
*/
if (!ri->fieldoffset) {
return;
}
if (cpreg_field_is_64bit(ri)) {
CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
} else {
CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
}
}
/* CPUClass::reset() */
static void arm_cpu_reset(CPUState *s)
{
ARMCPU *cpu = ARM_CPU(s);
ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
CPUARMState *env = &cpu->env;
acc->parent_reset(s);
memset(env, 0, offsetof(CPUARMState, features));
g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
cpu->powered_off = cpu->start_powered_off;
s->halted = cpu->start_powered_off;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
}
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/* 64 bit CPUs always start in 64 bit mode */
env->aarch64 = 1;
#if defined(CONFIG_USER_ONLY)
env->pstate = PSTATE_MODE_EL0t;
/* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
/* and to the FP/Neon instructions */
env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
#else
/* Reset into the highest available EL */
if (arm_feature(env, ARM_FEATURE_EL3)) {
env->pstate = PSTATE_MODE_EL3h;
} else if (arm_feature(env, ARM_FEATURE_EL2)) {
env->pstate = PSTATE_MODE_EL2h;
} else {
env->pstate = PSTATE_MODE_EL1h;
}
env->pc = cpu->rvbar;
#endif
} else {
#if defined(CONFIG_USER_ONLY)
/* Userspace expects access to cp10 and cp11 for FP/Neon */
env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
#endif
}
#if defined(CONFIG_USER_ONLY)
env->uncached_cpsr = ARM_CPU_MODE_USR;
/* For user mode we must enable access to coprocessors */
env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
env->cp15.c15_cpar = 3;
} else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
env->cp15.c15_cpar = 1;
}
#else
/* SVC mode with interrupts disabled. */
env->uncached_cpsr = ARM_CPU_MODE_SVC;
env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
/* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
* clear at reset. Initial SP and PC are loaded from ROM.
*/
if (IS_M(env)) {
uint32_t initial_msp; /* Loaded from 0x0 */
uint32_t initial_pc; /* Loaded from 0x4 */
uint8_t *rom;
env->daif &= ~PSTATE_I;
rom = rom_ptr(0);
if (rom) {
/* Address zero is covered by ROM which hasn't yet been
* copied into physical memory.
*/
initial_msp = ldl_p(rom);
initial_pc = ldl_p(rom + 4);
} else {
/* Address zero not covered by a ROM blob, or the ROM blob
* is in non-modifiable memory and this is a second reset after
* it got copied into memory. In the latter case, rom_ptr
* will return a NULL pointer and we should use ldl_phys instead.
*/
initial_msp = ldl_phys(s->as, 0);
initial_pc = ldl_phys(s->as, 4);
}
env->regs[13] = initial_msp & 0xFFFFFFFC;
env->regs[15] = initial_pc & ~1;
env->thumb = initial_pc & 1;
}
/* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
* executing as AArch32 then check if highvecs are enabled and
* adjust the PC accordingly.
*/
if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
env->regs[15] = 0xFFFF0000;
}
env->vfp.xregs[ARM_VFP_FPEXC] = 0;
#endif
set_flush_to_zero(1, &env->vfp.standard_fp_status);
set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
set_default_nan_mode(1, &env->vfp.standard_fp_status);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.fp_status);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.standard_fp_status);
tlb_flush(s, 1);
#ifndef CONFIG_USER_ONLY
if (kvm_enabled()) {
kvm_arm_reset_vcpu(cpu);
}
#endif
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
}
bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUClass *cc = CPU_GET_CLASS(cs);
CPUARMState *env = cs->env_ptr;
uint32_t cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
uint32_t target_el;
uint32_t excp_idx;
bool ret = false;
if (interrupt_request & CPU_INTERRUPT_FIQ) {
excp_idx = EXCP_FIQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el)) {
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cc->do_interrupt(cs);
ret = true;
}
}
if (interrupt_request & CPU_INTERRUPT_HARD) {
excp_idx = EXCP_IRQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el)) {
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cc->do_interrupt(cs);
ret = true;
}
}
if (interrupt_request & CPU_INTERRUPT_VIRQ) {
excp_idx = EXCP_VIRQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el)) {
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cc->do_interrupt(cs);
ret = true;
}
}
if (interrupt_request & CPU_INTERRUPT_VFIQ) {
excp_idx = EXCP_VFIQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el)) {
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cc->do_interrupt(cs);
ret = true;
}
}
return ret;
}
#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUClass *cc = CPU_GET_CLASS(cs);
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
bool ret = false;
if (interrupt_request & CPU_INTERRUPT_FIQ
&& !(env->daif & PSTATE_F)) {
cs->exception_index = EXCP_FIQ;
cc->do_interrupt(cs);
ret = true;
}
/* ARMv7-M interrupt return works by loading a magic value
* into the PC. On real hardware the load causes the
* return to occur. The qemu implementation performs the
* jump normally, then does the exception return when the
* CPU tries to execute code at the magic address.
* This will cause the magic PC value to be pushed to
* the stack if an interrupt occurred at the wrong time.
* We avoid this by disabling interrupts when
* pc contains a magic address.
*/
if (interrupt_request & CPU_INTERRUPT_HARD
&& !(env->daif & PSTATE_I)
&& (env->regs[15] < 0xfffffff0)) {
cs->exception_index = EXCP_IRQ;
cc->do_interrupt(cs);
ret = true;
}
return ret;
}
#endif
#ifndef CONFIG_USER_ONLY
static void arm_cpu_set_irq(void *opaque, int irq, int level)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
static const int mask[] = {
[ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
[ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
[ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
[ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
};
switch (irq) {
case ARM_CPU_VIRQ:
case ARM_CPU_VFIQ:
if (!arm_feature(env, ARM_FEATURE_EL2)) {
hw_error("%s: Virtual interrupt line %d with no EL2 support\n",
__func__, irq);
}
/* fall through */
case ARM_CPU_IRQ:
case ARM_CPU_FIQ:
if (level) {
cpu_interrupt(cs, mask[irq]);
} else {
cpu_reset_interrupt(cs, mask[irq]);
}
break;
default:
hw_error("arm_cpu_set_irq: Bad interrupt line %d\n", irq);
}
}
static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
{
#ifdef CONFIG_KVM
ARMCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
switch (irq) {
case ARM_CPU_IRQ:
kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
break;
case ARM_CPU_FIQ:
kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
break;
default:
hw_error("arm_cpu_kvm_set_irq: Bad interrupt line %d\n", irq);
}
kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
#endif
}
static bool arm_cpu_is_big_endian(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
int cur_el;
cpu_synchronize_state(cs);
/* In 32bit guest endianness is determined by looking at CPSR's E bit */
if (!is_a64(env)) {
return (env->uncached_cpsr & CPSR_E) ? 1 : 0;
}
cur_el = arm_current_el(env);
if (cur_el == 0) {
return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
}
return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
}
#endif
static inline void set_feature(CPUARMState *env, int feature)
{
env->features |= 1ULL << feature;
}
static inline void unset_feature(CPUARMState *env, int feature)
{
env->features &= ~(1ULL << feature);
}
#define ARM_CPUS_PER_CLUSTER 8
static void arm_cpu_initfn(Object *obj)
{
CPUState *cs = CPU(obj);
ARMCPU *cpu = ARM_CPU(obj);
static bool inited;
uint32_t Aff1, Aff0;
cs->env_ptr = &cpu->env;
cpu_exec_init(&cpu->env);
cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
g_free, g_free);
/* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
* We don't support setting cluster ID ([16..23]) (known as Aff2
* in later ARM ARM versions), or any of the higher affinity level fields,
* so these bits always RAZ.
*/
Aff1 = cs->cpu_index / ARM_CPUS_PER_CLUSTER;
Aff0 = cs->cpu_index % ARM_CPUS_PER_CLUSTER;
cpu->mp_affinity = (Aff1 << 8) | Aff0;
#ifndef CONFIG_USER_ONLY
/* Our inbound IRQ and FIQ lines */
if (kvm_enabled()) {
/* VIRQ and VFIQ are unused with KVM but we add them to maintain
* the same interface as non-KVM CPUs.
*/
qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
} else {
qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
}
cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
arm_gt_ptimer_cb, cpu);
cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
arm_gt_vtimer_cb, cpu);
qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
ARRAY_SIZE(cpu->gt_timer_outputs));
#endif
/* DTB consumers generally don't in fact care what the 'compatible'
* string is, so always provide some string and trust that a hypothetical
* picky DTB consumer will also provide a helpful error message.
*/
cpu->dtb_compatible = "qemu,unknown";
cpu->psci_version = 1; /* By default assume PSCI v0.1 */
cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
if (tcg_enabled()) {
cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
if (!inited) {
inited = true;
arm_translate_init();
}
}
}
static Property arm_cpu_reset_cbar_property =
DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
static Property arm_cpu_reset_hivecs_property =
DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
static Property arm_cpu_rvbar_property =
DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
static Property arm_cpu_has_el3_property =
DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
static Property arm_cpu_has_mpu_property =
DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
static void arm_cpu_post_init(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
&error_abort);
}
if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
&error_abort);
}
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
&error_abort);
}
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
/* Add the has_el3 state CPU property only if EL3 is allowed. This will
* prevent "has_el3" from existing on CPUs which cannot support EL3.
*/
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
&error_abort);
}
if (arm_feature(&cpu->env, ARM_FEATURE_MPU)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
&error_abort);
}
}
static void arm_cpu_finalizefn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
g_hash_table_destroy(cpu->cp_regs);
}
static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
ARMCPU *cpu = ARM_CPU(dev);
ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
CPUARMState *env = &cpu->env;
/* Some features automatically imply others: */
if (arm_feature(env, ARM_FEATURE_V8)) {
set_feature(env, ARM_FEATURE_V7);
set_feature(env, ARM_FEATURE_ARM_DIV);
set_feature(env, ARM_FEATURE_LPAE);
}
if (arm_feature(env, ARM_FEATURE_V7)) {
set_feature(env, ARM_FEATURE_VAPA);
set_feature(env, ARM_FEATURE_THUMB2);
set_feature(env, ARM_FEATURE_MPIDR);
if (!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_V6K);
} else {
set_feature(env, ARM_FEATURE_V6);
}
}
if (arm_feature(env, ARM_FEATURE_V6K)) {
set_feature(env, ARM_FEATURE_V6);
set_feature(env, ARM_FEATURE_MVFR);
}
if (arm_feature(env, ARM_FEATURE_V6)) {
set_feature(env, ARM_FEATURE_V5);
if (!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_AUXCR);
}
}
if (arm_feature(env, ARM_FEATURE_V5)) {
set_feature(env, ARM_FEATURE_V4T);
}
if (arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_THUMB_DIV);
}
if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
set_feature(env, ARM_FEATURE_THUMB_DIV);
}
if (arm_feature(env, ARM_FEATURE_VFP4)) {
set_feature(env, ARM_FEATURE_VFP3);
set_feature(env, ARM_FEATURE_VFP_FP16);
}
if (arm_feature(env, ARM_FEATURE_VFP3)) {
set_feature(env, ARM_FEATURE_VFP);
}
if (arm_feature(env, ARM_FEATURE_LPAE)) {
set_feature(env, ARM_FEATURE_V7MP);
set_feature(env, ARM_FEATURE_PXN);
}
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
set_feature(env, ARM_FEATURE_CBAR);
}
if (arm_feature(env, ARM_FEATURE_THUMB2) &&
!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_THUMB_DSP);
}
if (cpu->reset_hivecs) {
cpu->reset_sctlr |= (1 << 13);
}
if (!cpu->has_el3) {
/* If the has_el3 CPU property is disabled then we need to disable the
* feature.
*/
unset_feature(env, ARM_FEATURE_EL3);
/* Disable the security extension feature bits in the processor feature
* registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
*/
cpu->id_pfr1 &= ~0xf0;
cpu->id_aa64pfr0 &= ~0xf000;
}
if (!cpu->has_mpu) {
unset_feature(env, ARM_FEATURE_MPU);
}
register_cp_regs_for_features(cpu);
arm_cpu_register_gdb_regs_for_features(cpu);
init_cpreg_list(cpu);
qemu_init_vcpu(cs);
cpu_reset(cs);
acc->parent_realize(dev, errp);
}
static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
{
ObjectClass *oc;
char *typename;
char **cpuname;
if (!cpu_model) {
return NULL;
}
cpuname = g_strsplit(cpu_model, ",", 1);
typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
oc = object_class_by_name(typename);
g_strfreev(cpuname);
g_free(typename);
if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
object_class_is_abstract(oc)) {
return NULL;
}
return oc;
}
/* CPU models. These are not needed for the AArch64 linux-user build. */
#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
static void arm926_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,arm926";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
cpu->midr = 0x41069265;
cpu->reset_fpsid = 0x41011090;
cpu->ctr = 0x1dd20d2;
cpu->reset_sctlr = 0x00090078;
}
static void arm946_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,arm946";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_MPU);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
cpu->midr = 0x41059461;
cpu->ctr = 0x0f004006;
cpu->reset_sctlr = 0x00000078;
}
static void arm1026_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,arm1026";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_AUXCR);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
cpu->midr = 0x4106a262;
cpu->reset_fpsid = 0x410110a0;
cpu->ctr = 0x1dd20d2;
cpu->reset_sctlr = 0x00090078;
cpu->reset_auxcr = 1;
{
/* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
ARMCPRegInfo ifar = {
.name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
.resetvalue = 0
};
define_one_arm_cp_reg(cpu, &ifar);
}
}
static void arm1136_r2_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
/* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
* older core than plain "arm1136". In particular this does not
* have the v6K features.
* These ID register values are correct for 1136 but may be wrong
* for 1136_r2 (in particular r0p2 does not actually implement most
* of the ID registers).
*/
cpu->dtb_compatible = "arm,arm1136";
set_feature(&cpu->env, ARM_FEATURE_V6);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
cpu->midr = 0x4107b362;
cpu->reset_fpsid = 0x410120b4;
cpu->mvfr0 = 0x11111111;
cpu->mvfr1 = 0x00000000;
cpu->ctr = 0x1dd20d2;
cpu->reset_sctlr = 0x00050078;
cpu->id_pfr0 = 0x111;
cpu->id_pfr1 = 0x1;
cpu->id_dfr0 = 0x2;
cpu->id_afr0 = 0x3;
cpu->id_mmfr0 = 0x01130003;
cpu->id_mmfr1 = 0x10030302;
cpu->id_mmfr2 = 0x01222110;
cpu->id_isar0 = 0x00140011;
cpu->id_isar1 = 0x12002111;
cpu->id_isar2 = 0x11231111;
cpu->id_isar3 = 0x01102131;
cpu->id_isar4 = 0x141;
cpu->reset_auxcr = 7;
}
static void arm1136_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,arm1136";
set_feature(&cpu->env, ARM_FEATURE_V6K);
set_feature(&cpu->env, ARM_FEATURE_V6);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
cpu->midr = 0x4117b363;
cpu->reset_fpsid = 0x410120b4;
cpu->mvfr0 = 0x11111111;
cpu->mvfr1 = 0x00000000;
cpu->ctr = 0x1dd20d2;
cpu->reset_sctlr = 0x00050078;
cpu->id_pfr0 = 0x111;
cpu->id_pfr1 = 0x1;
cpu->id_dfr0 = 0x2;
cpu->id_afr0 = 0x3;
cpu->id_mmfr0 = 0x01130003;
cpu->id_mmfr1 = 0x10030302;
cpu->id_mmfr2 = 0x01222110;
cpu->id_isar0 = 0x00140011;
cpu->id_isar1 = 0x12002111;
cpu->id_isar2 = 0x11231111;
cpu->id_isar3 = 0x01102131;
cpu->id_isar4 = 0x141;
cpu->reset_auxcr = 7;
}
static void arm1176_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,arm1176";
set_feature(&cpu->env, ARM_FEATURE_V6K);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_VAPA);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
set_feature(&cpu->env, ARM_FEATURE_EL3);
cpu->midr = 0x410fb767;
cpu->reset_fpsid = 0x410120b5;
cpu->mvfr0 = 0x11111111;
cpu->mvfr1 = 0x00000000;
cpu->ctr = 0x1dd20d2;
cpu->reset_sctlr = 0x00050078;
cpu->id_pfr0 = 0x111;
cpu->id_pfr1 = 0x11;
cpu->id_dfr0 = 0x33;
cpu->id_afr0 = 0;
cpu->id_mmfr0 = 0x01130003;
cpu->id_mmfr1 = 0x10030302;
cpu->id_mmfr2 = 0x01222100;
cpu->id_isar0 = 0x0140011;
cpu->id_isar1 = 0x12002111;
cpu->id_isar2 = 0x11231121;
cpu->id_isar3 = 0x01102131;
cpu->id_isar4 = 0x01141;
cpu->reset_auxcr = 7;
}
static void arm11mpcore_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,arm11mpcore";
set_feature(&cpu->env, ARM_FEATURE_V6K);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_VAPA);
set_feature(&cpu->env, ARM_FEATURE_MPIDR);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
cpu->midr = 0x410fb022;
cpu->reset_fpsid = 0x410120b4;
cpu->mvfr0 = 0x11111111;
cpu->mvfr1 = 0x00000000;
cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
cpu->id_pfr0 = 0x111;
cpu->id_pfr1 = 0x1;
cpu->id_dfr0 = 0;
cpu->id_afr0 = 0x2;
cpu->id_mmfr0 = 0x01100103;
cpu->id_mmfr1 = 0x10020302;
cpu->id_mmfr2 = 0x01222000;
cpu->id_isar0 = 0x00100011;
cpu->id_isar1 = 0x12002111;
cpu->id_isar2 = 0x11221011;
cpu->id_isar3 = 0x01102131;
cpu->id_isar4 = 0x141;
cpu->reset_auxcr = 1;
}
static void cortex_m3_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_M);
cpu->midr = 0x410fc231;
}
static void cortex_m4_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_M);
set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
cpu->midr = 0x410fc240; /* r0p0 */
}
static void arm_v7m_class_init(ObjectClass *oc, void *data)
{
CPUClass *cc = CPU_CLASS(oc);
#ifndef CONFIG_USER_ONLY
cc->do_interrupt = arm_v7m_cpu_do_interrupt;
#endif
cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
}
static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
{ .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void cortex_a8_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a8";
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_VFP3);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_EL3);
cpu->midr = 0x410fc080;
cpu->reset_fpsid = 0x410330c0;
cpu->mvfr0 = 0x11110222;
cpu->mvfr1 = 0x00011100;
cpu->ctr = 0x82048004;
cpu->reset_sctlr = 0x00c50078;
cpu->id_pfr0 = 0x1031;
cpu->id_pfr1 = 0x11;
cpu->id_dfr0 = 0x400;
cpu->id_afr0 = 0;
cpu->id_mmfr0 = 0x31100003;
cpu->id_mmfr1 = 0x20000000;
cpu->id_mmfr2 = 0x01202000;
cpu->id_mmfr3 = 0x11;
cpu->id_isar0 = 0x00101111;
cpu->id_isar1 = 0x12112111;
cpu->id_isar2 = 0x21232031;
cpu->id_isar3 = 0x11112131;
cpu->id_isar4 = 0x00111142;
cpu->dbgdidr = 0x15141000;
cpu->clidr = (1 << 27) | (2 << 24) | 3;
cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
cpu->reset_auxcr = 2;
define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
}
static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
/* power_control should be set to maximum latency. Again,
* default to 0 and set by private hook
*/
{ .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
{ .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
{ .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
{ .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
/* TLB lockdown control */
{ .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
.access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
{ .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
.access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
{ .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
{ .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
{ .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
REGINFO_SENTINEL
};
static void cortex_a9_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a9";
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_VFP3);
set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_EL3);
/* Note that A9 supports the MP extensions even for
* A9UP and single-core A9MP (which are both different
* and valid configurations; we don't model A9UP).
*/
set_feature(&cpu->env, ARM_FEATURE_V7MP);
set_feature(&cpu->env, ARM_FEATURE_CBAR);
cpu->midr = 0x410fc090;
cpu->reset_fpsid = 0x41033090;
cpu->mvfr0 = 0x11110222;
cpu->mvfr1 = 0x01111111;
cpu->ctr = 0x80038003;
cpu->reset_sctlr = 0x00c50078;
cpu->id_pfr0 = 0x1031;
cpu->id_pfr1 = 0x11;
cpu->id_dfr0 = 0x000;
cpu->id_afr0 = 0;
cpu->id_mmfr0 = 0x00100103;
cpu->id_mmfr1 = 0x20000000;
cpu->id_mmfr2 = 0x01230000;
cpu->id_mmfr3 = 0x00002111;
cpu->id_isar0 = 0x00101111;
cpu->id_isar1 = 0x13112111;
cpu->id_isar2 = 0x21232041;
cpu->id_isar3 = 0x11112131;
cpu->id_isar4 = 0x00111142;
cpu->dbgdidr = 0x35141000;
cpu->clidr = (1 << 27) | (1 << 24) | 3;
cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
}
#ifndef CONFIG_USER_ONLY
static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Linux wants the number of processors from here.
* Might as well set the interrupt-controller bit too.
*/
return ((smp_cpus - 1) << 24) | (1 << 23);
}
#endif
static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
#ifndef CONFIG_USER_ONLY
{ .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
.access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
.writefn = arm_cp_write_ignore, },
#endif
{ .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void cortex_a15_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a15";
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_LPAE);
set_feature(&cpu->env, ARM_FEATURE_EL3);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
cpu->midr = 0x412fc0f1;
cpu->reset_fpsid = 0x410430f0;
cpu->mvfr0 = 0x10110222;
cpu->mvfr1 = 0x11111111;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50078;
cpu->id_pfr0 = 0x00001131;
cpu->id_pfr1 = 0x00011011;
cpu->id_dfr0 = 0x02010555;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x10201105;
cpu->id_mmfr1 = 0x20000000;
cpu->id_mmfr2 = 0x01240000;
cpu->id_mmfr3 = 0x02102211;
cpu->id_isar0 = 0x02101110;
cpu->id_isar1 = 0x13112111;
cpu->id_isar2 = 0x21232041;
cpu->id_isar3 = 0x11112131;
cpu->id_isar4 = 0x10011142;
cpu->dbgdidr = 0x3515f021;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
}
static void ti925t_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
set_feature(&cpu->env, ARM_FEATURE_V4T);
set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
cpu->midr = ARM_CPUID_TI925T;
cpu->ctr = 0x5109149;
cpu->reset_sctlr = 0x00000070;
}
static void sa1100_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "intel,sa1100";
set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
cpu->midr = 0x4401A11B;
cpu->reset_sctlr = 0x00000070;
}
static void sa1110_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
cpu->midr = 0x6901B119;
cpu->reset_sctlr = 0x00000070;
}
static void pxa250_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
cpu->midr = 0x69052100;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa255_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
cpu->midr = 0x69052d00;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa260_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
cpu->midr = 0x69052903;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa261_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
cpu->midr = 0x69052d05;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa262_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
cpu->midr = 0x69052d06;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270a0_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054110;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270a1_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054111;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270b0_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054112;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270b1_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054113;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270c0_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054114;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270c5_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054117;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
#ifdef CONFIG_USER_ONLY
static void arm_any_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_V8_AES);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
set_feature(&cpu->env, ARM_FEATURE_CRC);
cpu->midr = 0xffffffff;
}
#endif
#endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
typedef struct ARMCPUInfo {
const char *name;
void (*initfn)(Object *obj);
void (*class_init)(ObjectClass *oc, void *data);
} ARMCPUInfo;
static const ARMCPUInfo arm_cpus[] = {
#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
{ .name = "arm926", .initfn = arm926_initfn },
{ .name = "arm946", .initfn = arm946_initfn },
{ .name = "arm1026", .initfn = arm1026_initfn },
/* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
* older core than plain "arm1136". In particular this does not
* have the v6K features.
*/
{ .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
{ .name = "arm1136", .initfn = arm1136_initfn },
{ .name = "arm1176", .initfn = arm1176_initfn },
{ .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
{ .name = "cortex-m3", .initfn = cortex_m3_initfn,
.class_init = arm_v7m_class_init },
{ .name = "cortex-m4", .initfn = cortex_m4_initfn,
.class_init = arm_v7m_class_init },
{ .name = "cortex-a8", .initfn = cortex_a8_initfn },
{ .name = "cortex-a9", .initfn = cortex_a9_initfn },
{ .name = "cortex-a15", .initfn = cortex_a15_initfn },
{ .name = "ti925t", .initfn = ti925t_initfn },
{ .name = "sa1100", .initfn = sa1100_initfn },
{ .name = "sa1110", .initfn = sa1110_initfn },
{ .name = "pxa250", .initfn = pxa250_initfn },
{ .name = "pxa255", .initfn = pxa255_initfn },
{ .name = "pxa260", .initfn = pxa260_initfn },
{ .name = "pxa261", .initfn = pxa261_initfn },
{ .name = "pxa262", .initfn = pxa262_initfn },
/* "pxa270" is an alias for "pxa270-a0" */
{ .name = "pxa270", .initfn = pxa270a0_initfn },
{ .name = "pxa270-a0", .initfn = pxa270a0_initfn },
{ .name = "pxa270-a1", .initfn = pxa270a1_initfn },
{ .name = "pxa270-b0", .initfn = pxa270b0_initfn },
{ .name = "pxa270-b1", .initfn = pxa270b1_initfn },
{ .name = "pxa270-c0", .initfn = pxa270c0_initfn },
{ .name = "pxa270-c5", .initfn = pxa270c5_initfn },
#ifdef CONFIG_USER_ONLY
{ .name = "any", .initfn = arm_any_initfn },
#endif
#endif
{ .name = NULL }
};
static Property arm_cpu_properties[] = {
DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
DEFINE_PROP_END_OF_LIST()
};
#ifdef CONFIG_USER_ONLY
static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
int mmu_idx)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
env->exception.vaddress = address;
if (rw == 2) {
cs->exception_index = EXCP_PREFETCH_ABORT;
} else {
cs->exception_index = EXCP_DATA_ABORT;
}
return 1;
}
#endif
static void arm_cpu_class_init(ObjectClass *oc, void *data)
{
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
CPUClass *cc = CPU_CLASS(acc);
DeviceClass *dc = DEVICE_CLASS(oc);
acc->parent_realize = dc->realize;
dc->realize = arm_cpu_realizefn;
dc->props = arm_cpu_properties;
acc->parent_reset = cc->reset;
cc->reset = arm_cpu_reset;
cc->class_by_name = arm_cpu_class_by_name;
cc->has_work = arm_cpu_has_work;
cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
cc->dump_state = arm_cpu_dump_state;
cc->set_pc = arm_cpu_set_pc;
cc->gdb_read_register = arm_cpu_gdb_read_register;
cc->gdb_write_register = arm_cpu_gdb_write_register;
#ifdef CONFIG_USER_ONLY
cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
#else
cc->do_interrupt = arm_cpu_do_interrupt;
cc->get_phys_page_debug = arm_cpu_get_phys_page_debug;
cc->vmsd = &vmstate_arm_cpu;
cc->virtio_is_big_endian = arm_cpu_is_big_endian;
#endif
cc->gdb_num_core_regs = 26;
cc->gdb_core_xml_file = "arm-core.xml";
cc->gdb_stop_before_watchpoint = true;
cc->debug_excp_handler = arm_debug_excp_handler;
}
static void cpu_register(const ARMCPUInfo *info)
{
TypeInfo type_info = {
.parent = TYPE_ARM_CPU,
.instance_size = sizeof(ARMCPU),
.instance_init = info->initfn,
.class_size = sizeof(ARMCPUClass),
.class_init = info->class_init,
};
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
type_register(&type_info);
g_free((void *)type_info.name);
}
static const TypeInfo arm_cpu_type_info = {
.name = TYPE_ARM_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(ARMCPU),
.instance_init = arm_cpu_initfn,
.instance_post_init = arm_cpu_post_init,
.instance_finalize = arm_cpu_finalizefn,
.abstract = true,
.class_size = sizeof(ARMCPUClass),
.class_init = arm_cpu_class_init,
};
static void arm_cpu_register_types(void)
{
const ARMCPUInfo *info = arm_cpus;
type_register_static(&arm_cpu_type_info);
while (info->name) {
cpu_register(info);
info++;
}
}
type_init(arm_cpu_register_types)