mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-27 13:30:52 +00:00
e6b0408a17
It's obvious that PDMA supports 64-bit access of 64-bit registers, and in previous commit, we confirm that PDMA supports 32-bit access of both 32/64-bit registers. Thus, we configure 32/64-bit memory access of PDMA registers as valid in general. Signed-off-by: Jim Shu <jim.shu@sifive.com> Reviewed-by: Frank Chang <frank.chang@sifive.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Reviewed-by: Bin Meng <bmeng.cn@gmail.com> Tested-by: Bin Meng <bmeng.cn@gmail.com> Message-id: 20220104063408.658169-3-jim.shu@sifive.com Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
489 lines
14 KiB
C
489 lines
14 KiB
C
/*
|
|
* SiFive Platform DMA emulation
|
|
*
|
|
* Copyright (c) 2020 Wind River Systems, Inc.
|
|
*
|
|
* Author:
|
|
* Bin Meng <bin.meng@windriver.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 or
|
|
* (at your option) version 3 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/log.h"
|
|
#include "qapi/error.h"
|
|
#include "hw/irq.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "hw/sysbus.h"
|
|
#include "migration/vmstate.h"
|
|
#include "sysemu/dma.h"
|
|
#include "hw/dma/sifive_pdma.h"
|
|
|
|
#define DMA_CONTROL 0x000
|
|
#define CONTROL_CLAIM BIT(0)
|
|
#define CONTROL_RUN BIT(1)
|
|
#define CONTROL_DONE_IE BIT(14)
|
|
#define CONTROL_ERR_IE BIT(15)
|
|
#define CONTROL_DONE BIT(30)
|
|
#define CONTROL_ERR BIT(31)
|
|
|
|
#define DMA_NEXT_CONFIG 0x004
|
|
#define CONFIG_REPEAT BIT(2)
|
|
#define CONFIG_ORDER BIT(3)
|
|
#define CONFIG_WRSZ_SHIFT 24
|
|
#define CONFIG_RDSZ_SHIFT 28
|
|
#define CONFIG_SZ_MASK 0xf
|
|
|
|
#define DMA_NEXT_BYTES 0x008
|
|
#define DMA_NEXT_DST 0x010
|
|
#define DMA_NEXT_SRC 0x018
|
|
#define DMA_EXEC_CONFIG 0x104
|
|
#define DMA_EXEC_BYTES 0x108
|
|
#define DMA_EXEC_DST 0x110
|
|
#define DMA_EXEC_SRC 0x118
|
|
|
|
/*
|
|
* FU540/FU740 docs are incorrect with NextConfig.wsize/rsize reset values.
|
|
* The reset values tested on Unleashed/Unmatched boards are 6 instead of 0.
|
|
*/
|
|
#define CONFIG_WRSZ_DEFAULT 6
|
|
#define CONFIG_RDSZ_DEFAULT 6
|
|
|
|
enum dma_chan_state {
|
|
DMA_CHAN_STATE_IDLE,
|
|
DMA_CHAN_STATE_STARTED,
|
|
DMA_CHAN_STATE_ERROR,
|
|
DMA_CHAN_STATE_DONE
|
|
};
|
|
|
|
static void sifive_pdma_run(SiFivePDMAState *s, int ch)
|
|
{
|
|
uint64_t bytes = s->chan[ch].next_bytes;
|
|
uint64_t dst = s->chan[ch].next_dst;
|
|
uint64_t src = s->chan[ch].next_src;
|
|
uint32_t config = s->chan[ch].next_config;
|
|
int wsize, rsize, size, remainder;
|
|
uint8_t buf[64];
|
|
int n;
|
|
|
|
/* do nothing if bytes to transfer is zero */
|
|
if (!bytes) {
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* The manual does not describe how the hardware behaviors when
|
|
* config.wsize and config.rsize are given different values.
|
|
* A common case is memory to memory DMA, and in this case they
|
|
* are normally the same. Abort if this expectation fails.
|
|
*/
|
|
wsize = (config >> CONFIG_WRSZ_SHIFT) & CONFIG_SZ_MASK;
|
|
rsize = (config >> CONFIG_RDSZ_SHIFT) & CONFIG_SZ_MASK;
|
|
if (wsize != rsize) {
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Calculate the transaction size
|
|
*
|
|
* size field is base 2 logarithm of DMA transaction size,
|
|
* but there is an upper limit of 64 bytes per transaction.
|
|
*/
|
|
size = wsize;
|
|
if (size > 6) {
|
|
size = 6;
|
|
}
|
|
size = 1 << size;
|
|
remainder = bytes % size;
|
|
|
|
/* indicate a DMA transfer is started */
|
|
s->chan[ch].state = DMA_CHAN_STATE_STARTED;
|
|
s->chan[ch].control &= ~CONTROL_DONE;
|
|
s->chan[ch].control &= ~CONTROL_ERR;
|
|
|
|
/* load the next_ registers into their exec_ counterparts */
|
|
s->chan[ch].exec_config = config;
|
|
s->chan[ch].exec_bytes = bytes;
|
|
s->chan[ch].exec_dst = dst;
|
|
s->chan[ch].exec_src = src;
|
|
|
|
for (n = 0; n < bytes / size; n++) {
|
|
cpu_physical_memory_read(s->chan[ch].exec_src, buf, size);
|
|
cpu_physical_memory_write(s->chan[ch].exec_dst, buf, size);
|
|
s->chan[ch].exec_src += size;
|
|
s->chan[ch].exec_dst += size;
|
|
s->chan[ch].exec_bytes -= size;
|
|
}
|
|
|
|
if (remainder) {
|
|
cpu_physical_memory_read(s->chan[ch].exec_src, buf, remainder);
|
|
cpu_physical_memory_write(s->chan[ch].exec_dst, buf, remainder);
|
|
s->chan[ch].exec_src += remainder;
|
|
s->chan[ch].exec_dst += remainder;
|
|
s->chan[ch].exec_bytes -= remainder;
|
|
}
|
|
|
|
/* reload exec_ registers if repeat is required */
|
|
if (s->chan[ch].next_config & CONFIG_REPEAT) {
|
|
s->chan[ch].exec_bytes = bytes;
|
|
s->chan[ch].exec_dst = dst;
|
|
s->chan[ch].exec_src = src;
|
|
}
|
|
|
|
done:
|
|
/* indicate a DMA transfer is done */
|
|
s->chan[ch].state = DMA_CHAN_STATE_DONE;
|
|
s->chan[ch].control &= ~CONTROL_RUN;
|
|
s->chan[ch].control |= CONTROL_DONE;
|
|
return;
|
|
|
|
error:
|
|
s->chan[ch].state = DMA_CHAN_STATE_ERROR;
|
|
s->chan[ch].control |= CONTROL_ERR;
|
|
return;
|
|
}
|
|
|
|
static inline void sifive_pdma_update_irq(SiFivePDMAState *s, int ch)
|
|
{
|
|
bool done_ie, err_ie;
|
|
|
|
done_ie = !!(s->chan[ch].control & CONTROL_DONE_IE);
|
|
err_ie = !!(s->chan[ch].control & CONTROL_ERR_IE);
|
|
|
|
if (done_ie && (s->chan[ch].control & CONTROL_DONE)) {
|
|
qemu_irq_raise(s->irq[ch * 2]);
|
|
} else {
|
|
qemu_irq_lower(s->irq[ch * 2]);
|
|
}
|
|
|
|
if (err_ie && (s->chan[ch].control & CONTROL_ERR)) {
|
|
qemu_irq_raise(s->irq[ch * 2 + 1]);
|
|
} else {
|
|
qemu_irq_lower(s->irq[ch * 2 + 1]);
|
|
}
|
|
|
|
s->chan[ch].state = DMA_CHAN_STATE_IDLE;
|
|
}
|
|
|
|
static uint64_t sifive_pdma_readq(SiFivePDMAState *s, int ch, hwaddr offset)
|
|
{
|
|
uint64_t val = 0;
|
|
|
|
offset &= 0xfff;
|
|
switch (offset) {
|
|
case DMA_NEXT_BYTES:
|
|
val = s->chan[ch].next_bytes;
|
|
break;
|
|
case DMA_NEXT_DST:
|
|
val = s->chan[ch].next_dst;
|
|
break;
|
|
case DMA_NEXT_SRC:
|
|
val = s->chan[ch].next_src;
|
|
break;
|
|
case DMA_EXEC_BYTES:
|
|
val = s->chan[ch].exec_bytes;
|
|
break;
|
|
case DMA_EXEC_DST:
|
|
val = s->chan[ch].exec_dst;
|
|
break;
|
|
case DMA_EXEC_SRC:
|
|
val = s->chan[ch].exec_src;
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: Unexpected 64-bit access to 0x%" HWADDR_PRIX "\n",
|
|
__func__, offset);
|
|
break;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static uint32_t sifive_pdma_readl(SiFivePDMAState *s, int ch, hwaddr offset)
|
|
{
|
|
uint32_t val = 0;
|
|
|
|
offset &= 0xfff;
|
|
switch (offset) {
|
|
case DMA_CONTROL:
|
|
val = s->chan[ch].control;
|
|
break;
|
|
case DMA_NEXT_CONFIG:
|
|
val = s->chan[ch].next_config;
|
|
break;
|
|
case DMA_NEXT_BYTES:
|
|
val = extract64(s->chan[ch].next_bytes, 0, 32);
|
|
break;
|
|
case DMA_NEXT_BYTES + 4:
|
|
val = extract64(s->chan[ch].next_bytes, 32, 32);
|
|
break;
|
|
case DMA_NEXT_DST:
|
|
val = extract64(s->chan[ch].next_dst, 0, 32);
|
|
break;
|
|
case DMA_NEXT_DST + 4:
|
|
val = extract64(s->chan[ch].next_dst, 32, 32);
|
|
break;
|
|
case DMA_NEXT_SRC:
|
|
val = extract64(s->chan[ch].next_src, 0, 32);
|
|
break;
|
|
case DMA_NEXT_SRC + 4:
|
|
val = extract64(s->chan[ch].next_src, 32, 32);
|
|
break;
|
|
case DMA_EXEC_CONFIG:
|
|
val = s->chan[ch].exec_config;
|
|
break;
|
|
case DMA_EXEC_BYTES:
|
|
val = extract64(s->chan[ch].exec_bytes, 0, 32);
|
|
break;
|
|
case DMA_EXEC_BYTES + 4:
|
|
val = extract64(s->chan[ch].exec_bytes, 32, 32);
|
|
break;
|
|
case DMA_EXEC_DST:
|
|
val = extract64(s->chan[ch].exec_dst, 0, 32);
|
|
break;
|
|
case DMA_EXEC_DST + 4:
|
|
val = extract64(s->chan[ch].exec_dst, 32, 32);
|
|
break;
|
|
case DMA_EXEC_SRC:
|
|
val = extract64(s->chan[ch].exec_src, 0, 32);
|
|
break;
|
|
case DMA_EXEC_SRC + 4:
|
|
val = extract64(s->chan[ch].exec_src, 32, 32);
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: Unexpected 32-bit access to 0x%" HWADDR_PRIX "\n",
|
|
__func__, offset);
|
|
break;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static uint64_t sifive_pdma_read(void *opaque, hwaddr offset, unsigned size)
|
|
{
|
|
SiFivePDMAState *s = opaque;
|
|
int ch = SIFIVE_PDMA_CHAN_NO(offset);
|
|
uint64_t val = 0;
|
|
|
|
if (ch >= SIFIVE_PDMA_CHANS) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid channel no %d\n",
|
|
__func__, ch);
|
|
return 0;
|
|
}
|
|
|
|
switch (size) {
|
|
case 8:
|
|
val = sifive_pdma_readq(s, ch, offset);
|
|
break;
|
|
case 4:
|
|
val = sifive_pdma_readl(s, ch, offset);
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid read size %u to PDMA\n",
|
|
__func__, size);
|
|
return 0;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void sifive_pdma_writeq(SiFivePDMAState *s, int ch,
|
|
hwaddr offset, uint64_t value)
|
|
{
|
|
offset &= 0xfff;
|
|
switch (offset) {
|
|
case DMA_NEXT_BYTES:
|
|
s->chan[ch].next_bytes = value;
|
|
break;
|
|
case DMA_NEXT_DST:
|
|
s->chan[ch].next_dst = value;
|
|
break;
|
|
case DMA_NEXT_SRC:
|
|
s->chan[ch].next_src = value;
|
|
break;
|
|
case DMA_EXEC_BYTES:
|
|
case DMA_EXEC_DST:
|
|
case DMA_EXEC_SRC:
|
|
/* these are read-only registers */
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: Unexpected 64-bit access to 0x%" HWADDR_PRIX "\n",
|
|
__func__, offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void sifive_pdma_writel(SiFivePDMAState *s, int ch,
|
|
hwaddr offset, uint32_t value)
|
|
{
|
|
bool claimed, run;
|
|
|
|
offset &= 0xfff;
|
|
switch (offset) {
|
|
case DMA_CONTROL:
|
|
claimed = !!(s->chan[ch].control & CONTROL_CLAIM);
|
|
run = !!(s->chan[ch].control & CONTROL_RUN);
|
|
|
|
if (!claimed && (value & CONTROL_CLAIM)) {
|
|
/* reset Next* registers */
|
|
s->chan[ch].next_config = (CONFIG_RDSZ_DEFAULT << CONFIG_RDSZ_SHIFT) |
|
|
(CONFIG_WRSZ_DEFAULT << CONFIG_WRSZ_SHIFT);
|
|
s->chan[ch].next_bytes = 0;
|
|
s->chan[ch].next_dst = 0;
|
|
s->chan[ch].next_src = 0;
|
|
}
|
|
|
|
/* claim bit can only be cleared when run is low */
|
|
if (run && !(value & CONTROL_CLAIM)) {
|
|
value |= CONTROL_CLAIM;
|
|
}
|
|
|
|
s->chan[ch].control = value;
|
|
|
|
/*
|
|
* If channel was not claimed before run bit is set,
|
|
* or if the channel is disclaimed when run was low,
|
|
* DMA won't run.
|
|
*/
|
|
if (!claimed || (!run && !(value & CONTROL_CLAIM))) {
|
|
s->chan[ch].control &= ~CONTROL_RUN;
|
|
return;
|
|
}
|
|
|
|
if (value & CONTROL_RUN) {
|
|
sifive_pdma_run(s, ch);
|
|
}
|
|
|
|
sifive_pdma_update_irq(s, ch);
|
|
break;
|
|
case DMA_NEXT_CONFIG:
|
|
s->chan[ch].next_config = value;
|
|
break;
|
|
case DMA_NEXT_BYTES:
|
|
s->chan[ch].next_bytes =
|
|
deposit64(s->chan[ch].next_bytes, 0, 32, value);
|
|
break;
|
|
case DMA_NEXT_BYTES + 4:
|
|
s->chan[ch].next_bytes =
|
|
deposit64(s->chan[ch].next_bytes, 32, 32, value);
|
|
break;
|
|
case DMA_NEXT_DST:
|
|
s->chan[ch].next_dst = deposit64(s->chan[ch].next_dst, 0, 32, value);
|
|
break;
|
|
case DMA_NEXT_DST + 4:
|
|
s->chan[ch].next_dst = deposit64(s->chan[ch].next_dst, 32, 32, value);
|
|
break;
|
|
case DMA_NEXT_SRC:
|
|
s->chan[ch].next_src = deposit64(s->chan[ch].next_src, 0, 32, value);
|
|
break;
|
|
case DMA_NEXT_SRC + 4:
|
|
s->chan[ch].next_src = deposit64(s->chan[ch].next_src, 32, 32, value);
|
|
break;
|
|
case DMA_EXEC_CONFIG:
|
|
case DMA_EXEC_BYTES:
|
|
case DMA_EXEC_BYTES + 4:
|
|
case DMA_EXEC_DST:
|
|
case DMA_EXEC_DST + 4:
|
|
case DMA_EXEC_SRC:
|
|
case DMA_EXEC_SRC + 4:
|
|
/* these are read-only registers */
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: Unexpected 32-bit access to 0x%" HWADDR_PRIX "\n",
|
|
__func__, offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void sifive_pdma_write(void *opaque, hwaddr offset,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
SiFivePDMAState *s = opaque;
|
|
int ch = SIFIVE_PDMA_CHAN_NO(offset);
|
|
|
|
if (ch >= SIFIVE_PDMA_CHANS) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid channel no %d\n",
|
|
__func__, ch);
|
|
return;
|
|
}
|
|
|
|
switch (size) {
|
|
case 8:
|
|
sifive_pdma_writeq(s, ch, offset, value);
|
|
break;
|
|
case 4:
|
|
sifive_pdma_writel(s, ch, offset, (uint32_t) value);
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid write size %u to PDMA\n",
|
|
__func__, size);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps sifive_pdma_ops = {
|
|
.read = sifive_pdma_read,
|
|
.write = sifive_pdma_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
/* there are 32-bit and 64-bit wide registers */
|
|
.impl = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 8,
|
|
},
|
|
.valid = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 8,
|
|
}
|
|
};
|
|
|
|
static void sifive_pdma_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
SiFivePDMAState *s = SIFIVE_PDMA(dev);
|
|
int i;
|
|
|
|
memory_region_init_io(&s->iomem, OBJECT(dev), &sifive_pdma_ops, s,
|
|
TYPE_SIFIVE_PDMA, SIFIVE_PDMA_REG_SIZE);
|
|
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
|
|
|
|
for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
|
|
sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
|
|
}
|
|
}
|
|
|
|
static void sifive_pdma_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
dc->desc = "SiFive Platform DMA controller";
|
|
dc->realize = sifive_pdma_realize;
|
|
}
|
|
|
|
static const TypeInfo sifive_pdma_info = {
|
|
.name = TYPE_SIFIVE_PDMA,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(SiFivePDMAState),
|
|
.class_init = sifive_pdma_class_init,
|
|
};
|
|
|
|
static void sifive_pdma_register_types(void)
|
|
{
|
|
type_register_static(&sifive_pdma_info);
|
|
}
|
|
|
|
type_init(sifive_pdma_register_types)
|