xemu/hw/integratorcp.c
Peter Maydell df3f457b4b hw/integratorcp: Fix bugs in writes to CM_CTRL system register
Fix a number of bugs in the implementation of writes to the CM_CTRL
system register:
 * write to cm_ctrl, not cm_init !
 * an '&' vs '^' typo meant we would write the inverse of the bits
 * handling the LED via printf() meant we spew lots of output
   to stdout when Linux uses the LED as a heartbeat indicator
 * we would hw_error() if a reset was requested rather than
   actually resetting

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2011-09-16 08:28:46 -05:00

563 lines
16 KiB
C

/*
* ARM Integrator CP System emulation.
*
* Copyright (c) 2005-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL
*/
#include "sysbus.h"
#include "primecell.h"
#include "devices.h"
#include "boards.h"
#include "arm-misc.h"
#include "net.h"
#include "exec-memory.h"
#include "sysemu.h"
typedef struct {
SysBusDevice busdev;
uint32_t memsz;
MemoryRegion flash;
bool flash_mapped;
uint32_t cm_osc;
uint32_t cm_ctrl;
uint32_t cm_lock;
uint32_t cm_auxosc;
uint32_t cm_sdram;
uint32_t cm_init;
uint32_t cm_flags;
uint32_t cm_nvflags;
uint32_t int_level;
uint32_t irq_enabled;
uint32_t fiq_enabled;
} integratorcm_state;
static uint8_t integrator_spd[128] = {
128, 8, 4, 11, 9, 1, 64, 0, 2, 0xa0, 0xa0, 0, 0, 8, 0, 1,
0xe, 4, 0x1c, 1, 2, 0x20, 0xc0, 0, 0, 0, 0, 0x30, 0x28, 0x30, 0x28, 0x40
};
static uint32_t integratorcm_read(void *opaque, target_phys_addr_t offset)
{
integratorcm_state *s = (integratorcm_state *)opaque;
if (offset >= 0x100 && offset < 0x200) {
/* CM_SPD */
if (offset >= 0x180)
return 0;
return integrator_spd[offset >> 2];
}
switch (offset >> 2) {
case 0: /* CM_ID */
return 0x411a3001;
case 1: /* CM_PROC */
return 0;
case 2: /* CM_OSC */
return s->cm_osc;
case 3: /* CM_CTRL */
return s->cm_ctrl;
case 4: /* CM_STAT */
return 0x00100000;
case 5: /* CM_LOCK */
if (s->cm_lock == 0xa05f) {
return 0x1a05f;
} else {
return s->cm_lock;
}
case 6: /* CM_LMBUSCNT */
/* ??? High frequency timer. */
hw_error("integratorcm_read: CM_LMBUSCNT");
case 7: /* CM_AUXOSC */
return s->cm_auxosc;
case 8: /* CM_SDRAM */
return s->cm_sdram;
case 9: /* CM_INIT */
return s->cm_init;
case 10: /* CM_REFCT */
/* ??? High frequency timer. */
hw_error("integratorcm_read: CM_REFCT");
case 12: /* CM_FLAGS */
return s->cm_flags;
case 14: /* CM_NVFLAGS */
return s->cm_nvflags;
case 16: /* CM_IRQ_STAT */
return s->int_level & s->irq_enabled;
case 17: /* CM_IRQ_RSTAT */
return s->int_level;
case 18: /* CM_IRQ_ENSET */
return s->irq_enabled;
case 20: /* CM_SOFT_INTSET */
return s->int_level & 1;
case 24: /* CM_FIQ_STAT */
return s->int_level & s->fiq_enabled;
case 25: /* CM_FIQ_RSTAT */
return s->int_level;
case 26: /* CM_FIQ_ENSET */
return s->fiq_enabled;
case 32: /* CM_VOLTAGE_CTL0 */
case 33: /* CM_VOLTAGE_CTL1 */
case 34: /* CM_VOLTAGE_CTL2 */
case 35: /* CM_VOLTAGE_CTL3 */
/* ??? Voltage control unimplemented. */
return 0;
default:
hw_error("integratorcm_read: Unimplemented offset 0x%x\n",
(int)offset);
return 0;
}
}
static void integratorcm_do_remap(integratorcm_state *s, int flash)
{
if (flash) {
if (s->flash_mapped) {
sysbus_del_memory(&s->busdev, &s->flash);
s->flash_mapped = false;
}
} else {
if (!s->flash_mapped) {
sysbus_add_memory_overlap(&s->busdev, 0, &s->flash, 1);
s->flash_mapped = true;
}
}
//??? tlb_flush (cpu_single_env, 1);
}
static void integratorcm_set_ctrl(integratorcm_state *s, uint32_t value)
{
if (value & 8) {
qemu_system_reset_request();
}
if ((s->cm_ctrl ^ value) & 4) {
integratorcm_do_remap(s, (value & 4) == 0);
}
if ((s->cm_ctrl ^ value) & 1) {
/* (value & 1) != 0 means the green "MISC LED" is lit.
* We don't have any nice place to display LEDs. printf is a bad
* idea because Linux uses the LED as a heartbeat and the output
* will swamp anything else on the terminal.
*/
}
/* Note that the RESET bit [3] always reads as zero */
s->cm_ctrl = (s->cm_ctrl & ~5) | (value & 5);
}
static void integratorcm_update(integratorcm_state *s)
{
/* ??? The CPU irq/fiq is raised when either the core module or base PIC
are active. */
if (s->int_level & (s->irq_enabled | s->fiq_enabled))
hw_error("Core module interrupt\n");
}
static void integratorcm_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
integratorcm_state *s = (integratorcm_state *)opaque;
switch (offset >> 2) {
case 2: /* CM_OSC */
if (s->cm_lock == 0xa05f)
s->cm_osc = value;
break;
case 3: /* CM_CTRL */
integratorcm_set_ctrl(s, value);
break;
case 5: /* CM_LOCK */
s->cm_lock = value & 0xffff;
break;
case 7: /* CM_AUXOSC */
if (s->cm_lock == 0xa05f)
s->cm_auxosc = value;
break;
case 8: /* CM_SDRAM */
s->cm_sdram = value;
break;
case 9: /* CM_INIT */
/* ??? This can change the memory bus frequency. */
s->cm_init = value;
break;
case 12: /* CM_FLAGSS */
s->cm_flags |= value;
break;
case 13: /* CM_FLAGSC */
s->cm_flags &= ~value;
break;
case 14: /* CM_NVFLAGSS */
s->cm_nvflags |= value;
break;
case 15: /* CM_NVFLAGSS */
s->cm_nvflags &= ~value;
break;
case 18: /* CM_IRQ_ENSET */
s->irq_enabled |= value;
integratorcm_update(s);
break;
case 19: /* CM_IRQ_ENCLR */
s->irq_enabled &= ~value;
integratorcm_update(s);
break;
case 20: /* CM_SOFT_INTSET */
s->int_level |= (value & 1);
integratorcm_update(s);
break;
case 21: /* CM_SOFT_INTCLR */
s->int_level &= ~(value & 1);
integratorcm_update(s);
break;
case 26: /* CM_FIQ_ENSET */
s->fiq_enabled |= value;
integratorcm_update(s);
break;
case 27: /* CM_FIQ_ENCLR */
s->fiq_enabled &= ~value;
integratorcm_update(s);
break;
case 32: /* CM_VOLTAGE_CTL0 */
case 33: /* CM_VOLTAGE_CTL1 */
case 34: /* CM_VOLTAGE_CTL2 */
case 35: /* CM_VOLTAGE_CTL3 */
/* ??? Voltage control unimplemented. */
break;
default:
hw_error("integratorcm_write: Unimplemented offset 0x%x\n",
(int)offset);
break;
}
}
/* Integrator/CM control registers. */
static CPUReadMemoryFunc * const integratorcm_readfn[] = {
integratorcm_read,
integratorcm_read,
integratorcm_read
};
static CPUWriteMemoryFunc * const integratorcm_writefn[] = {
integratorcm_write,
integratorcm_write,
integratorcm_write
};
static int integratorcm_init(SysBusDevice *dev)
{
int iomemtype;
integratorcm_state *s = FROM_SYSBUS(integratorcm_state, dev);
s->cm_osc = 0x01000048;
/* ??? What should the high bits of this value be? */
s->cm_auxosc = 0x0007feff;
s->cm_sdram = 0x00011122;
if (s->memsz >= 256) {
integrator_spd[31] = 64;
s->cm_sdram |= 0x10;
} else if (s->memsz >= 128) {
integrator_spd[31] = 32;
s->cm_sdram |= 0x0c;
} else if (s->memsz >= 64) {
integrator_spd[31] = 16;
s->cm_sdram |= 0x08;
} else if (s->memsz >= 32) {
integrator_spd[31] = 4;
s->cm_sdram |= 0x04;
} else {
integrator_spd[31] = 2;
}
memcpy(integrator_spd + 73, "QEMU-MEMORY", 11);
s->cm_init = 0x00000112;
memory_region_init_ram(&s->flash, NULL, "integrator.flash", 0x100000);
s->flash_mapped = false;
iomemtype = cpu_register_io_memory(integratorcm_readfn,
integratorcm_writefn, s,
DEVICE_NATIVE_ENDIAN);
sysbus_init_mmio(dev, 0x00800000, iomemtype);
integratorcm_do_remap(s, 1);
/* ??? Save/restore. */
return 0;
}
/* Integrator/CP hardware emulation. */
/* Primary interrupt controller. */
typedef struct icp_pic_state
{
SysBusDevice busdev;
uint32_t level;
uint32_t irq_enabled;
uint32_t fiq_enabled;
qemu_irq parent_irq;
qemu_irq parent_fiq;
} icp_pic_state;
static void icp_pic_update(icp_pic_state *s)
{
uint32_t flags;
flags = (s->level & s->irq_enabled);
qemu_set_irq(s->parent_irq, flags != 0);
flags = (s->level & s->fiq_enabled);
qemu_set_irq(s->parent_fiq, flags != 0);
}
static void icp_pic_set_irq(void *opaque, int irq, int level)
{
icp_pic_state *s = (icp_pic_state *)opaque;
if (level)
s->level |= 1 << irq;
else
s->level &= ~(1 << irq);
icp_pic_update(s);
}
static uint32_t icp_pic_read(void *opaque, target_phys_addr_t offset)
{
icp_pic_state *s = (icp_pic_state *)opaque;
switch (offset >> 2) {
case 0: /* IRQ_STATUS */
return s->level & s->irq_enabled;
case 1: /* IRQ_RAWSTAT */
return s->level;
case 2: /* IRQ_ENABLESET */
return s->irq_enabled;
case 4: /* INT_SOFTSET */
return s->level & 1;
case 8: /* FRQ_STATUS */
return s->level & s->fiq_enabled;
case 9: /* FRQ_RAWSTAT */
return s->level;
case 10: /* FRQ_ENABLESET */
return s->fiq_enabled;
case 3: /* IRQ_ENABLECLR */
case 5: /* INT_SOFTCLR */
case 11: /* FRQ_ENABLECLR */
default:
printf ("icp_pic_read: Bad register offset 0x%x\n", (int)offset);
return 0;
}
}
static void icp_pic_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
icp_pic_state *s = (icp_pic_state *)opaque;
switch (offset >> 2) {
case 2: /* IRQ_ENABLESET */
s->irq_enabled |= value;
break;
case 3: /* IRQ_ENABLECLR */
s->irq_enabled &= ~value;
break;
case 4: /* INT_SOFTSET */
if (value & 1)
icp_pic_set_irq(s, 0, 1);
break;
case 5: /* INT_SOFTCLR */
if (value & 1)
icp_pic_set_irq(s, 0, 0);
break;
case 10: /* FRQ_ENABLESET */
s->fiq_enabled |= value;
break;
case 11: /* FRQ_ENABLECLR */
s->fiq_enabled &= ~value;
break;
case 0: /* IRQ_STATUS */
case 1: /* IRQ_RAWSTAT */
case 8: /* FRQ_STATUS */
case 9: /* FRQ_RAWSTAT */
default:
printf ("icp_pic_write: Bad register offset 0x%x\n", (int)offset);
return;
}
icp_pic_update(s);
}
static CPUReadMemoryFunc * const icp_pic_readfn[] = {
icp_pic_read,
icp_pic_read,
icp_pic_read
};
static CPUWriteMemoryFunc * const icp_pic_writefn[] = {
icp_pic_write,
icp_pic_write,
icp_pic_write
};
static int icp_pic_init(SysBusDevice *dev)
{
icp_pic_state *s = FROM_SYSBUS(icp_pic_state, dev);
int iomemtype;
qdev_init_gpio_in(&dev->qdev, icp_pic_set_irq, 32);
sysbus_init_irq(dev, &s->parent_irq);
sysbus_init_irq(dev, &s->parent_fiq);
iomemtype = cpu_register_io_memory(icp_pic_readfn,
icp_pic_writefn, s,
DEVICE_NATIVE_ENDIAN);
sysbus_init_mmio(dev, 0x00800000, iomemtype);
return 0;
}
/* CP control registers. */
static uint32_t icp_control_read(void *opaque, target_phys_addr_t offset)
{
switch (offset >> 2) {
case 0: /* CP_IDFIELD */
return 0x41034003;
case 1: /* CP_FLASHPROG */
return 0;
case 2: /* CP_INTREG */
return 0;
case 3: /* CP_DECODE */
return 0x11;
default:
hw_error("icp_control_read: Bad offset %x\n", (int)offset);
return 0;
}
}
static void icp_control_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
switch (offset >> 2) {
case 1: /* CP_FLASHPROG */
case 2: /* CP_INTREG */
case 3: /* CP_DECODE */
/* Nothing interesting implemented yet. */
break;
default:
hw_error("icp_control_write: Bad offset %x\n", (int)offset);
}
}
static CPUReadMemoryFunc * const icp_control_readfn[] = {
icp_control_read,
icp_control_read,
icp_control_read
};
static CPUWriteMemoryFunc * const icp_control_writefn[] = {
icp_control_write,
icp_control_write,
icp_control_write
};
static void icp_control_init(uint32_t base)
{
int iomemtype;
iomemtype = cpu_register_io_memory(icp_control_readfn,
icp_control_writefn, NULL,
DEVICE_NATIVE_ENDIAN);
cpu_register_physical_memory(base, 0x00800000, iomemtype);
/* ??? Save/restore. */
}
/* Board init. */
static struct arm_boot_info integrator_binfo = {
.loader_start = 0x0,
.board_id = 0x113,
};
static void integratorcp_init(ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *ram_alias = g_new(MemoryRegion, 1);
qemu_irq pic[32];
qemu_irq *cpu_pic;
DeviceState *dev;
int i;
if (!cpu_model)
cpu_model = "arm926";
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
memory_region_init_ram(ram, NULL, "integrator.ram", ram_size);
/* ??? On a real system the first 1Mb is mapped as SSRAM or boot flash. */
/* ??? RAM should repeat to fill physical memory space. */
/* SDRAM at address zero*/
memory_region_add_subregion(address_space_mem, 0, ram);
/* And again at address 0x80000000 */
memory_region_init_alias(ram_alias, "ram.alias", ram, 0, ram_size);
memory_region_add_subregion(address_space_mem, 0x80000000, ram_alias);
dev = qdev_create(NULL, "integrator_core");
qdev_prop_set_uint32(dev, "memsz", ram_size >> 20);
qdev_init_nofail(dev);
sysbus_mmio_map((SysBusDevice *)dev, 0, 0x10000000);
cpu_pic = arm_pic_init_cpu(env);
dev = sysbus_create_varargs("integrator_pic", 0x14000000,
cpu_pic[ARM_PIC_CPU_IRQ],
cpu_pic[ARM_PIC_CPU_FIQ], NULL);
for (i = 0; i < 32; i++) {
pic[i] = qdev_get_gpio_in(dev, i);
}
sysbus_create_simple("integrator_pic", 0xca000000, pic[26]);
sysbus_create_varargs("integrator_pit", 0x13000000,
pic[5], pic[6], pic[7], NULL);
sysbus_create_simple("pl031", 0x15000000, pic[8]);
sysbus_create_simple("pl011", 0x16000000, pic[1]);
sysbus_create_simple("pl011", 0x17000000, pic[2]);
icp_control_init(0xcb000000);
sysbus_create_simple("pl050_keyboard", 0x18000000, pic[3]);
sysbus_create_simple("pl050_mouse", 0x19000000, pic[4]);
sysbus_create_varargs("pl181", 0x1c000000, pic[23], pic[24], NULL);
if (nd_table[0].vlan)
smc91c111_init(&nd_table[0], 0xc8000000, pic[27]);
sysbus_create_simple("pl110", 0xc0000000, pic[22]);
integrator_binfo.ram_size = ram_size;
integrator_binfo.kernel_filename = kernel_filename;
integrator_binfo.kernel_cmdline = kernel_cmdline;
integrator_binfo.initrd_filename = initrd_filename;
arm_load_kernel(env, &integrator_binfo);
}
static QEMUMachine integratorcp_machine = {
.name = "integratorcp",
.desc = "ARM Integrator/CP (ARM926EJ-S)",
.init = integratorcp_init,
.is_default = 1,
};
static void integratorcp_machine_init(void)
{
qemu_register_machine(&integratorcp_machine);
}
machine_init(integratorcp_machine_init);
static SysBusDeviceInfo core_info = {
.init = integratorcm_init,
.qdev.name = "integrator_core",
.qdev.size = sizeof(integratorcm_state),
.qdev.props = (Property[]) {
DEFINE_PROP_UINT32("memsz", integratorcm_state, memsz, 0),
DEFINE_PROP_END_OF_LIST(),
}
};
static void integratorcp_register_devices(void)
{
sysbus_register_dev("integrator_pic", sizeof(icp_pic_state), icp_pic_init);
sysbus_register_withprop(&core_info);
}
device_init(integratorcp_register_devices)