xemu/target-i386/helper.c
Paolo Bonzini 14e6fe12a7 *_run_on_cpu: introduce run_on_cpu_data type
This changes the *_run_on_cpu APIs (and helpers) to pass data in a
run_on_cpu_data type instead of a plain void *. This is because we
sometimes want to pass a target address (target_ulong) and this fails on
32 bit hosts emulating 64 bit guests.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20161027151030.20863-24-alex.bennee@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-10-31 15:00:25 +01:00

1447 lines
44 KiB
C

/*
* i386 helpers (without register variable usage)
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "sysemu/kvm.h"
#include "kvm_i386.h"
#ifndef CONFIG_USER_ONLY
#include "sysemu/sysemu.h"
#include "monitor/monitor.h"
#include "hw/i386/apic_internal.h"
#endif
static void cpu_x86_version(CPUX86State *env, int *family, int *model)
{
int cpuver = env->cpuid_version;
if (family == NULL || model == NULL) {
return;
}
*family = (cpuver >> 8) & 0x0f;
*model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
}
/* Broadcast MCA signal for processor version 06H_EH and above */
int cpu_x86_support_mca_broadcast(CPUX86State *env)
{
int family = 0;
int model = 0;
cpu_x86_version(env, &family, &model);
if ((family == 6 && model >= 14) || family > 6) {
return 1;
}
return 0;
}
/***********************************************************/
/* x86 debug */
static const char *cc_op_str[CC_OP_NB] = {
"DYNAMIC",
"EFLAGS",
"MULB",
"MULW",
"MULL",
"MULQ",
"ADDB",
"ADDW",
"ADDL",
"ADDQ",
"ADCB",
"ADCW",
"ADCL",
"ADCQ",
"SUBB",
"SUBW",
"SUBL",
"SUBQ",
"SBBB",
"SBBW",
"SBBL",
"SBBQ",
"LOGICB",
"LOGICW",
"LOGICL",
"LOGICQ",
"INCB",
"INCW",
"INCL",
"INCQ",
"DECB",
"DECW",
"DECL",
"DECQ",
"SHLB",
"SHLW",
"SHLL",
"SHLQ",
"SARB",
"SARW",
"SARL",
"SARQ",
"BMILGB",
"BMILGW",
"BMILGL",
"BMILGQ",
"ADCX",
"ADOX",
"ADCOX",
"CLR",
};
static void
cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f, fprintf_function cpu_fprintf,
const char *name, struct SegmentCache *sc)
{
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name,
sc->selector, sc->base, sc->limit, sc->flags & 0x00ffff00);
} else
#endif
{
cpu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector,
(uint32_t)sc->base, sc->limit, sc->flags & 0x00ffff00);
}
if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK))
goto done;
cpu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT);
if (sc->flags & DESC_S_MASK) {
if (sc->flags & DESC_CS_MASK) {
cpu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" :
((sc->flags & DESC_B_MASK) ? "CS32" : "CS16"));
cpu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-',
(sc->flags & DESC_R_MASK) ? 'R' : '-');
} else {
cpu_fprintf(f,
(sc->flags & DESC_B_MASK || env->hflags & HF_LMA_MASK)
? "DS " : "DS16");
cpu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-',
(sc->flags & DESC_W_MASK) ? 'W' : '-');
}
cpu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-');
} else {
static const char *sys_type_name[2][16] = {
{ /* 32 bit mode */
"Reserved", "TSS16-avl", "LDT", "TSS16-busy",
"CallGate16", "TaskGate", "IntGate16", "TrapGate16",
"Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
"CallGate32", "Reserved", "IntGate32", "TrapGate32"
},
{ /* 64 bit mode */
"<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved",
"TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
"Reserved", "IntGate64", "TrapGate64"
}
};
cpu_fprintf(f, "%s",
sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0]
[(sc->flags & DESC_TYPE_MASK)
>> DESC_TYPE_SHIFT]);
}
done:
cpu_fprintf(f, "\n");
}
#ifndef CONFIG_USER_ONLY
/* ARRAY_SIZE check is not required because
* DeliveryMode(dm) has a size of 3 bit.
*/
static inline const char *dm2str(uint32_t dm)
{
static const char *str[] = {
"Fixed",
"...",
"SMI",
"...",
"NMI",
"INIT",
"...",
"ExtINT"
};
return str[dm];
}
static void dump_apic_lvt(FILE *f, fprintf_function cpu_fprintf,
const char *name, uint32_t lvt, bool is_timer)
{
uint32_t dm = (lvt & APIC_LVT_DELIV_MOD) >> APIC_LVT_DELIV_MOD_SHIFT;
cpu_fprintf(f,
"%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
name, lvt,
lvt & APIC_LVT_INT_POLARITY ? "active-lo" : "active-hi",
lvt & APIC_LVT_LEVEL_TRIGGER ? "level" : "edge",
lvt & APIC_LVT_MASKED ? "masked" : "",
lvt & APIC_LVT_DELIV_STS ? "pending" : "",
!is_timer ?
"" : lvt & APIC_LVT_TIMER_PERIODIC ?
"periodic" : lvt & APIC_LVT_TIMER_TSCDEADLINE ?
"tsc-deadline" : "one-shot",
dm2str(dm));
if (dm != APIC_DM_NMI) {
cpu_fprintf(f, " (vec %u)\n", lvt & APIC_VECTOR_MASK);
} else {
cpu_fprintf(f, "\n");
}
}
/* ARRAY_SIZE check is not required because
* destination shorthand has a size of 2 bit.
*/
static inline const char *shorthand2str(uint32_t shorthand)
{
const char *str[] = {
"no-shorthand", "self", "all-self", "all"
};
return str[shorthand];
}
static inline uint8_t divider_conf(uint32_t divide_conf)
{
uint8_t divide_val = ((divide_conf & 0x8) >> 1) | (divide_conf & 0x3);
return divide_val == 7 ? 1 : 2 << divide_val;
}
static inline void mask2str(char *str, uint32_t val, uint8_t size)
{
while (size--) {
*str++ = (val >> size) & 1 ? '1' : '0';
}
*str = 0;
}
#define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
static void dump_apic_icr(FILE *f, fprintf_function cpu_fprintf,
APICCommonState *s, CPUX86State *env)
{
uint32_t icr = s->icr[0], icr2 = s->icr[1];
uint8_t dest_shorthand = \
(icr & APIC_ICR_DEST_SHORT) >> APIC_ICR_DEST_SHORT_SHIFT;
bool logical_mod = icr & APIC_ICR_DEST_MOD;
char apic_id_str[MAX_LOGICAL_APIC_ID_MASK_SIZE + 1];
uint32_t dest_field;
bool x2apic;
cpu_fprintf(f, "ICR\t 0x%08x %s %s %s %s\n",
icr,
logical_mod ? "logical" : "physical",
icr & APIC_ICR_TRIGGER_MOD ? "level" : "edge",
icr & APIC_ICR_LEVEL ? "assert" : "de-assert",
shorthand2str(dest_shorthand));
cpu_fprintf(f, "ICR2\t 0x%08x", icr2);
if (dest_shorthand != 0) {
cpu_fprintf(f, "\n");
return;
}
x2apic = env->features[FEAT_1_ECX] & CPUID_EXT_X2APIC;
dest_field = x2apic ? icr2 : icr2 >> APIC_ICR_DEST_SHIFT;
if (!logical_mod) {
if (x2apic) {
cpu_fprintf(f, " cpu %u (X2APIC ID)\n", dest_field);
} else {
cpu_fprintf(f, " cpu %u (APIC ID)\n",
dest_field & APIC_LOGDEST_XAPIC_ID);
}
return;
}
if (s->dest_mode == 0xf) { /* flat mode */
mask2str(apic_id_str, icr2 >> APIC_ICR_DEST_SHIFT, 8);
cpu_fprintf(f, " mask %s (APIC ID)\n", apic_id_str);
} else if (s->dest_mode == 0) { /* cluster mode */
if (x2apic) {
mask2str(apic_id_str, dest_field & APIC_LOGDEST_X2APIC_ID, 16);
cpu_fprintf(f, " cluster %u mask %s (X2APIC ID)\n",
dest_field >> APIC_LOGDEST_X2APIC_SHIFT, apic_id_str);
} else {
mask2str(apic_id_str, dest_field & APIC_LOGDEST_XAPIC_ID, 4);
cpu_fprintf(f, " cluster %u mask %s (APIC ID)\n",
dest_field >> APIC_LOGDEST_XAPIC_SHIFT, apic_id_str);
}
}
}
static void dump_apic_interrupt(FILE *f, fprintf_function cpu_fprintf,
const char *name, uint32_t *ireg_tab,
uint32_t *tmr_tab)
{
int i, empty = true;
cpu_fprintf(f, "%s\t ", name);
for (i = 0; i < 256; i++) {
if (apic_get_bit(ireg_tab, i)) {
cpu_fprintf(f, "%u%s ", i,
apic_get_bit(tmr_tab, i) ? "(level)" : "");
empty = false;
}
}
cpu_fprintf(f, "%s\n", empty ? "(none)" : "");
}
void x86_cpu_dump_local_apic_state(CPUState *cs, FILE *f,
fprintf_function cpu_fprintf, int flags)
{
X86CPU *cpu = X86_CPU(cs);
APICCommonState *s = APIC_COMMON(cpu->apic_state);
uint32_t *lvt = s->lvt;
cpu_fprintf(f, "dumping local APIC state for CPU %-2u\n\n",
CPU(cpu)->cpu_index);
dump_apic_lvt(f, cpu_fprintf, "LVT0", lvt[APIC_LVT_LINT0], false);
dump_apic_lvt(f, cpu_fprintf, "LVT1", lvt[APIC_LVT_LINT1], false);
dump_apic_lvt(f, cpu_fprintf, "LVTPC", lvt[APIC_LVT_PERFORM], false);
dump_apic_lvt(f, cpu_fprintf, "LVTERR", lvt[APIC_LVT_ERROR], false);
dump_apic_lvt(f, cpu_fprintf, "LVTTHMR", lvt[APIC_LVT_THERMAL], false);
dump_apic_lvt(f, cpu_fprintf, "LVTT", lvt[APIC_LVT_TIMER], true);
cpu_fprintf(f, "Timer\t DCR=0x%x (divide by %u) initial_count = %u\n",
s->divide_conf & APIC_DCR_MASK,
divider_conf(s->divide_conf),
s->initial_count);
cpu_fprintf(f, "SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
s->spurious_vec,
s->spurious_vec & APIC_SPURIO_ENABLED ? "enabled" : "disabled",
s->spurious_vec & APIC_SPURIO_FOCUS ? "on" : "off",
s->spurious_vec & APIC_VECTOR_MASK);
dump_apic_icr(f, cpu_fprintf, s, &cpu->env);
cpu_fprintf(f, "ESR\t 0x%08x\n", s->esr);
dump_apic_interrupt(f, cpu_fprintf, "ISR", s->isr, s->tmr);
dump_apic_interrupt(f, cpu_fprintf, "IRR", s->irr, s->tmr);
cpu_fprintf(f, "\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
s->arb_id, s->tpr, s->dest_mode, s->log_dest);
if (s->dest_mode == 0) {
cpu_fprintf(f, "(cluster %u: id %u)",
s->log_dest >> APIC_LOGDEST_XAPIC_SHIFT,
s->log_dest & APIC_LOGDEST_XAPIC_ID);
}
cpu_fprintf(f, " PPR 0x%02x\n", apic_get_ppr(s));
}
#else
void x86_cpu_dump_local_apic_state(CPUState *cs, FILE *f,
fprintf_function cpu_fprintf, int flags)
{
}
#endif /* !CONFIG_USER_ONLY */
#define DUMP_CODE_BYTES_TOTAL 50
#define DUMP_CODE_BYTES_BACKWARD 20
void x86_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
int flags)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
int eflags, i, nb;
char cc_op_name[32];
static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
eflags = cpu_compute_eflags(env);
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f,
"RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n"
"RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n"
"R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n"
"R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n"
"RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP],
env->regs[R_ESP],
env->regs[8],
env->regs[9],
env->regs[10],
env->regs[11],
env->regs[12],
env->regs[13],
env->regs[14],
env->regs[15],
env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(env->a20_mask >> 20) & 1,
(env->hflags >> HF_SMM_SHIFT) & 1,
cs->halted);
} else
#endif
{
cpu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
"ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
"EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
(uint32_t)env->regs[R_EAX],
(uint32_t)env->regs[R_EBX],
(uint32_t)env->regs[R_ECX],
(uint32_t)env->regs[R_EDX],
(uint32_t)env->regs[R_ESI],
(uint32_t)env->regs[R_EDI],
(uint32_t)env->regs[R_EBP],
(uint32_t)env->regs[R_ESP],
(uint32_t)env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(env->a20_mask >> 20) & 1,
(env->hflags >> HF_SMM_SHIFT) & 1,
cs->halted);
}
for(i = 0; i < 6; i++) {
cpu_x86_dump_seg_cache(env, f, cpu_fprintf, seg_name[i],
&env->segs[i]);
}
cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "LDT", &env->ldt);
cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "TR", &env->tr);
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
cpu_fprintf(f, "GDT= %016" PRIx64 " %08x\n",
env->gdt.base, env->gdt.limit);
cpu_fprintf(f, "IDT= %016" PRIx64 " %08x\n",
env->idt.base, env->idt.limit);
cpu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n",
(uint32_t)env->cr[0],
env->cr[2],
env->cr[3],
(uint32_t)env->cr[4]);
for(i = 0; i < 4; i++)
cpu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]);
cpu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n",
env->dr[6], env->dr[7]);
} else
#endif
{
cpu_fprintf(f, "GDT= %08x %08x\n",
(uint32_t)env->gdt.base, env->gdt.limit);
cpu_fprintf(f, "IDT= %08x %08x\n",
(uint32_t)env->idt.base, env->idt.limit);
cpu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
(uint32_t)env->cr[0],
(uint32_t)env->cr[2],
(uint32_t)env->cr[3],
(uint32_t)env->cr[4]);
for(i = 0; i < 4; i++) {
cpu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]);
}
cpu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n",
env->dr[6], env->dr[7]);
}
if (flags & CPU_DUMP_CCOP) {
if ((unsigned)env->cc_op < CC_OP_NB)
snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
else
snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n",
env->cc_src, env->cc_dst,
cc_op_name);
} else
#endif
{
cpu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
(uint32_t)env->cc_src, (uint32_t)env->cc_dst,
cc_op_name);
}
}
cpu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer);
if (flags & CPU_DUMP_FPU) {
int fptag;
fptag = 0;
for(i = 0; i < 8; i++) {
fptag |= ((!env->fptags[i]) << i);
}
cpu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
env->fpuc,
(env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
env->fpstt,
fptag,
env->mxcsr);
for(i=0;i<8;i++) {
CPU_LDoubleU u;
u.d = env->fpregs[i].d;
cpu_fprintf(f, "FPR%d=%016" PRIx64 " %04x",
i, u.l.lower, u.l.upper);
if ((i & 1) == 1)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
if (env->hflags & HF_CS64_MASK)
nb = 16;
else
nb = 8;
for(i=0;i<nb;i++) {
cpu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
i,
env->xmm_regs[i].ZMM_L(3),
env->xmm_regs[i].ZMM_L(2),
env->xmm_regs[i].ZMM_L(1),
env->xmm_regs[i].ZMM_L(0));
if ((i & 1) == 1)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
}
if (flags & CPU_DUMP_CODE) {
target_ulong base = env->segs[R_CS].base + env->eip;
target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD);
uint8_t code;
char codestr[3];
cpu_fprintf(f, "Code=");
for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) {
if (cpu_memory_rw_debug(cs, base - offs + i, &code, 1, 0) == 0) {
snprintf(codestr, sizeof(codestr), "%02x", code);
} else {
snprintf(codestr, sizeof(codestr), "??");
}
cpu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "",
i == offs ? "<" : "", codestr, i == offs ? ">" : "");
}
cpu_fprintf(f, "\n");
}
}
/***********************************************************/
/* x86 mmu */
/* XXX: add PGE support */
void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
{
CPUX86State *env = &cpu->env;
a20_state = (a20_state != 0);
if (a20_state != ((env->a20_mask >> 20) & 1)) {
CPUState *cs = CPU(cpu);
qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
/* if the cpu is currently executing code, we must unlink it and
all the potentially executing TB */
cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
/* when a20 is changed, all the MMU mappings are invalid, so
we must flush everything */
tlb_flush(cs, 1);
env->a20_mask = ~(1 << 20) | (a20_state << 20);
}
}
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
{
X86CPU *cpu = x86_env_get_cpu(env);
int pe_state;
qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
(env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
tlb_flush(CPU(cpu), 1);
}
#ifdef TARGET_X86_64
if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LME)) {
/* enter in long mode */
/* XXX: generate an exception */
if (!(env->cr[4] & CR4_PAE_MASK))
return;
env->efer |= MSR_EFER_LMA;
env->hflags |= HF_LMA_MASK;
} else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LMA)) {
/* exit long mode */
env->efer &= ~MSR_EFER_LMA;
env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
env->eip &= 0xffffffff;
}
#endif
env->cr[0] = new_cr0 | CR0_ET_MASK;
/* update PE flag in hidden flags */
pe_state = (env->cr[0] & CR0_PE_MASK);
env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
/* ensure that ADDSEG is always set in real mode */
env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
/* update FPU flags */
env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
}
/* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
the PDPT */
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
{
X86CPU *cpu = x86_env_get_cpu(env);
env->cr[3] = new_cr3;
if (env->cr[0] & CR0_PG_MASK) {
qemu_log_mask(CPU_LOG_MMU,
"CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
tlb_flush(CPU(cpu), 0);
}
}
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
{
X86CPU *cpu = x86_env_get_cpu(env);
uint32_t hflags;
#if defined(DEBUG_MMU)
printf("CR4 update: CR4=%08x\n", (uint32_t)env->cr[4]);
#endif
if ((new_cr4 ^ env->cr[4]) &
(CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
CR4_SMEP_MASK | CR4_SMAP_MASK)) {
tlb_flush(CPU(cpu), 1);
}
/* Clear bits we're going to recompute. */
hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK);
/* SSE handling */
if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
new_cr4 &= ~CR4_OSFXSR_MASK;
}
if (new_cr4 & CR4_OSFXSR_MASK) {
hflags |= HF_OSFXSR_MASK;
}
if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
new_cr4 &= ~CR4_SMAP_MASK;
}
if (new_cr4 & CR4_SMAP_MASK) {
hflags |= HF_SMAP_MASK;
}
if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
new_cr4 &= ~CR4_PKE_MASK;
}
env->cr[4] = new_cr4;
env->hflags = hflags;
cpu_sync_bndcs_hflags(env);
}
#if defined(CONFIG_USER_ONLY)
int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr,
int is_write, int mmu_idx)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
/* user mode only emulation */
is_write &= 1;
env->cr[2] = addr;
env->error_code = (is_write << PG_ERROR_W_BIT);
env->error_code |= PG_ERROR_U_MASK;
cs->exception_index = EXCP0E_PAGE;
env->exception_is_int = 0;
env->exception_next_eip = -1;
return 1;
}
#else
/* return value:
* -1 = cannot handle fault
* 0 = nothing more to do
* 1 = generate PF fault
*/
int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr,
int is_write1, int mmu_idx)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
uint64_t ptep, pte;
target_ulong pde_addr, pte_addr;
int error_code = 0;
int is_dirty, prot, page_size, is_write, is_user;
hwaddr paddr;
uint64_t rsvd_mask = PG_HI_RSVD_MASK;
uint32_t page_offset;
target_ulong vaddr;
is_user = mmu_idx == MMU_USER_IDX;
#if defined(DEBUG_MMU)
printf("MMU fault: addr=%" VADDR_PRIx " w=%d u=%d eip=" TARGET_FMT_lx "\n",
addr, is_write1, is_user, env->eip);
#endif
is_write = is_write1 & 1;
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr;
#ifdef TARGET_X86_64
if (!(env->hflags & HF_LMA_MASK)) {
/* Without long mode we can only address 32bits in real mode */
pte = (uint32_t)pte;
}
#endif
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
page_size = 4096;
goto do_mapping;
}
if (!(env->efer & MSR_EFER_NXE)) {
rsvd_mask |= PG_NX_MASK;
}
if (env->cr[4] & CR4_PAE_MASK) {
uint64_t pde, pdpe;
target_ulong pdpe_addr;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint64_t pml4e_addr, pml4e;
int32_t sext;
/* test virtual address sign extension */
sext = (int64_t)addr >> 47;
if (sext != 0 && sext != -1) {
env->error_code = 0;
cs->exception_index = EXCP0D_GPF;
return 1;
}
pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
env->a20_mask;
pml4e = x86_ldq_phys(cs, pml4e_addr);
if (!(pml4e & PG_PRESENT_MASK)) {
goto do_fault;
}
if (pml4e & (rsvd_mask | PG_PSE_MASK)) {
goto do_fault_rsvd;
}
if (!(pml4e & PG_ACCESSED_MASK)) {
pml4e |= PG_ACCESSED_MASK;
x86_stl_phys_notdirty(cs, pml4e_addr, pml4e);
}
ptep = pml4e ^ PG_NX_MASK;
pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3)) &
env->a20_mask;
pdpe = x86_ldq_phys(cs, pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
goto do_fault;
}
if (pdpe & rsvd_mask) {
goto do_fault_rsvd;
}
ptep &= pdpe ^ PG_NX_MASK;
if (!(pdpe & PG_ACCESSED_MASK)) {
pdpe |= PG_ACCESSED_MASK;
x86_stl_phys_notdirty(cs, pdpe_addr, pdpe);
}
if (pdpe & PG_PSE_MASK) {
/* 1 GB page */
page_size = 1024 * 1024 * 1024;
pte_addr = pdpe_addr;
pte = pdpe;
goto do_check_protect;
}
} else
#endif
{
/* XXX: load them when cr3 is loaded ? */
pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
env->a20_mask;
pdpe = x86_ldq_phys(cs, pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
goto do_fault;
}
rsvd_mask |= PG_HI_USER_MASK;
if (pdpe & (rsvd_mask | PG_NX_MASK)) {
goto do_fault_rsvd;
}
ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
}
pde_addr = ((pdpe & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3)) &
env->a20_mask;
pde = x86_ldq_phys(cs, pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
goto do_fault;
}
if (pde & rsvd_mask) {
goto do_fault_rsvd;
}
ptep &= pde ^ PG_NX_MASK;
if (pde & PG_PSE_MASK) {
/* 2 MB page */
page_size = 2048 * 1024;
pte_addr = pde_addr;
pte = pde;
goto do_check_protect;
}
/* 4 KB page */
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
x86_stl_phys_notdirty(cs, pde_addr, pde);
}
pte_addr = ((pde & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3)) &
env->a20_mask;
pte = x86_ldq_phys(cs, pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
goto do_fault;
}
if (pte & rsvd_mask) {
goto do_fault_rsvd;
}
/* combine pde and pte nx, user and rw protections */
ptep &= pte ^ PG_NX_MASK;
page_size = 4096;
} else {
uint32_t pde;
/* page directory entry */
pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) &
env->a20_mask;
pde = x86_ldl_phys(cs, pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
goto do_fault;
}
ptep = pde | PG_NX_MASK;
/* if PSE bit is set, then we use a 4MB page */
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
page_size = 4096 * 1024;
pte_addr = pde_addr;
/* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
* Leave bits 20-13 in place for setting accessed/dirty bits below.
*/
pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
rsvd_mask = 0x200000;
goto do_check_protect_pse36;
}
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
x86_stl_phys_notdirty(cs, pde_addr, pde);
}
/* page directory entry */
pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) &
env->a20_mask;
pte = x86_ldl_phys(cs, pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
goto do_fault;
}
/* combine pde and pte user and rw protections */
ptep &= pte | PG_NX_MASK;
page_size = 4096;
rsvd_mask = 0;
}
do_check_protect:
rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
do_check_protect_pse36:
if (pte & rsvd_mask) {
goto do_fault_rsvd;
}
ptep ^= PG_NX_MASK;
/* can the page can be put in the TLB? prot will tell us */
if (is_user && !(ptep & PG_USER_MASK)) {
goto do_fault_protect;
}
prot = 0;
if (mmu_idx != MMU_KSMAP_IDX || !(ptep & PG_USER_MASK)) {
prot |= PAGE_READ;
if ((ptep & PG_RW_MASK) || (!is_user && !(env->cr[0] & CR0_WP_MASK))) {
prot |= PAGE_WRITE;
}
}
if (!(ptep & PG_NX_MASK) &&
(mmu_idx == MMU_USER_IDX ||
!((env->cr[4] & CR4_SMEP_MASK) && (ptep & PG_USER_MASK)))) {
prot |= PAGE_EXEC;
}
if ((env->cr[4] & CR4_PKE_MASK) && (env->hflags & HF_LMA_MASK) &&
(ptep & PG_USER_MASK) && env->pkru) {
uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT;
uint32_t pkru_ad = (env->pkru >> pk * 2) & 1;
uint32_t pkru_wd = (env->pkru >> pk * 2) & 2;
uint32_t pkru_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
if (pkru_ad) {
pkru_prot &= ~(PAGE_READ | PAGE_WRITE);
} else if (pkru_wd && (is_user || env->cr[0] & CR0_WP_MASK)) {
pkru_prot &= ~PAGE_WRITE;
}
prot &= pkru_prot;
if ((pkru_prot & (1 << is_write1)) == 0) {
assert(is_write1 != 2);
error_code |= PG_ERROR_PK_MASK;
goto do_fault_protect;
}
}
if ((prot & (1 << is_write1)) == 0) {
goto do_fault_protect;
}
/* yes, it can! */
is_dirty = is_write && !(pte & PG_DIRTY_MASK);
if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
pte |= PG_ACCESSED_MASK;
if (is_dirty) {
pte |= PG_DIRTY_MASK;
}
x86_stl_phys_notdirty(cs, pte_addr, pte);
}
if (!(pte & PG_DIRTY_MASK)) {
/* only set write access if already dirty... otherwise wait
for dirty access */
assert(!is_write);
prot &= ~PAGE_WRITE;
}
do_mapping:
pte = pte & env->a20_mask;
/* align to page_size */
pte &= PG_ADDRESS_MASK & ~(page_size - 1);
/* Even if 4MB pages, we map only one 4KB page in the cache to
avoid filling it too fast */
vaddr = addr & TARGET_PAGE_MASK;
page_offset = vaddr & (page_size - 1);
paddr = pte + page_offset;
assert(prot & (1 << is_write1));
tlb_set_page_with_attrs(cs, vaddr, paddr, cpu_get_mem_attrs(env),
prot, mmu_idx, page_size);
return 0;
do_fault_rsvd:
error_code |= PG_ERROR_RSVD_MASK;
do_fault_protect:
error_code |= PG_ERROR_P_MASK;
do_fault:
error_code |= (is_write << PG_ERROR_W_BIT);
if (is_user)
error_code |= PG_ERROR_U_MASK;
if (is_write1 == 2 &&
(((env->efer & MSR_EFER_NXE) &&
(env->cr[4] & CR4_PAE_MASK)) ||
(env->cr[4] & CR4_SMEP_MASK)))
error_code |= PG_ERROR_I_D_MASK;
if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) {
/* cr2 is not modified in case of exceptions */
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
addr);
} else {
env->cr[2] = addr;
}
env->error_code = error_code;
cs->exception_index = EXCP0E_PAGE;
return 1;
}
hwaddr x86_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
target_ulong pde_addr, pte_addr;
uint64_t pte;
uint32_t page_offset;
int page_size;
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr & env->a20_mask;
page_size = 4096;
} else if (env->cr[4] & CR4_PAE_MASK) {
target_ulong pdpe_addr;
uint64_t pde, pdpe;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint64_t pml4e_addr, pml4e;
int32_t sext;
/* test virtual address sign extension */
sext = (int64_t)addr >> 47;
if (sext != 0 && sext != -1) {
return -1;
}
pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
env->a20_mask;
pml4e = x86_ldq_phys(cs, pml4e_addr);
if (!(pml4e & PG_PRESENT_MASK)) {
return -1;
}
pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
(((addr >> 30) & 0x1ff) << 3)) & env->a20_mask;
pdpe = x86_ldq_phys(cs, pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
return -1;
}
if (pdpe & PG_PSE_MASK) {
page_size = 1024 * 1024 * 1024;
pte = pdpe;
goto out;
}
} else
#endif
{
pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
env->a20_mask;
pdpe = x86_ldq_phys(cs, pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK))
return -1;
}
pde_addr = ((pdpe & PG_ADDRESS_MASK) +
(((addr >> 21) & 0x1ff) << 3)) & env->a20_mask;
pde = x86_ldq_phys(cs, pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
return -1;
}
if (pde & PG_PSE_MASK) {
/* 2 MB page */
page_size = 2048 * 1024;
pte = pde;
} else {
/* 4 KB page */
pte_addr = ((pde & PG_ADDRESS_MASK) +
(((addr >> 12) & 0x1ff) << 3)) & env->a20_mask;
page_size = 4096;
pte = x86_ldq_phys(cs, pte_addr);
}
if (!(pte & PG_PRESENT_MASK)) {
return -1;
}
} else {
uint32_t pde;
/* page directory entry */
pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask;
pde = x86_ldl_phys(cs, pde_addr);
if (!(pde & PG_PRESENT_MASK))
return -1;
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
page_size = 4096 * 1024;
} else {
/* page directory entry */
pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask;
pte = x86_ldl_phys(cs, pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
return -1;
}
page_size = 4096;
}
pte = pte & env->a20_mask;
}
#ifdef TARGET_X86_64
out:
#endif
pte &= PG_ADDRESS_MASK & ~(page_size - 1);
page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
return pte | page_offset;
}
typedef struct MCEInjectionParams {
Monitor *mon;
int bank;
uint64_t status;
uint64_t mcg_status;
uint64_t addr;
uint64_t misc;
int flags;
} MCEInjectionParams;
static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
{
MCEInjectionParams *params = data.host_ptr;
X86CPU *cpu = X86_CPU(cs);
CPUX86State *cenv = &cpu->env;
uint64_t *banks = cenv->mce_banks + 4 * params->bank;
cpu_synchronize_state(cs);
/*
* If there is an MCE exception being processed, ignore this SRAO MCE
* unless unconditional injection was requested.
*/
if (!(params->flags & MCE_INJECT_UNCOND_AO)
&& !(params->status & MCI_STATUS_AR)
&& (cenv->mcg_status & MCG_STATUS_MCIP)) {
return;
}
if (params->status & MCI_STATUS_UC) {
/*
* if MSR_MCG_CTL is not all 1s, the uncorrected error
* reporting is disabled
*/
if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
monitor_printf(params->mon,
"CPU %d: Uncorrected error reporting disabled\n",
cs->cpu_index);
return;
}
/*
* if MSR_MCi_CTL is not all 1s, the uncorrected error
* reporting is disabled for the bank
*/
if (banks[0] != ~(uint64_t)0) {
monitor_printf(params->mon,
"CPU %d: Uncorrected error reporting disabled for"
" bank %d\n",
cs->cpu_index, params->bank);
return;
}
if ((cenv->mcg_status & MCG_STATUS_MCIP) ||
!(cenv->cr[4] & CR4_MCE_MASK)) {
monitor_printf(params->mon,
"CPU %d: Previous MCE still in progress, raising"
" triple fault\n",
cs->cpu_index);
qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
qemu_system_reset_request();
return;
}
if (banks[1] & MCI_STATUS_VAL) {
params->status |= MCI_STATUS_OVER;
}
banks[2] = params->addr;
banks[3] = params->misc;
cenv->mcg_status = params->mcg_status;
banks[1] = params->status;
cpu_interrupt(cs, CPU_INTERRUPT_MCE);
} else if (!(banks[1] & MCI_STATUS_VAL)
|| !(banks[1] & MCI_STATUS_UC)) {
if (banks[1] & MCI_STATUS_VAL) {
params->status |= MCI_STATUS_OVER;
}
banks[2] = params->addr;
banks[3] = params->misc;
banks[1] = params->status;
} else {
banks[1] |= MCI_STATUS_OVER;
}
}
void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
uint64_t status, uint64_t mcg_status, uint64_t addr,
uint64_t misc, int flags)
{
CPUState *cs = CPU(cpu);
CPUX86State *cenv = &cpu->env;
MCEInjectionParams params = {
.mon = mon,
.bank = bank,
.status = status,
.mcg_status = mcg_status,
.addr = addr,
.misc = misc,
.flags = flags,
};
unsigned bank_num = cenv->mcg_cap & 0xff;
if (!cenv->mcg_cap) {
monitor_printf(mon, "MCE injection not supported\n");
return;
}
if (bank >= bank_num) {
monitor_printf(mon, "Invalid MCE bank number\n");
return;
}
if (!(status & MCI_STATUS_VAL)) {
monitor_printf(mon, "Invalid MCE status code\n");
return;
}
if ((flags & MCE_INJECT_BROADCAST)
&& !cpu_x86_support_mca_broadcast(cenv)) {
monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
return;
}
run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
if (flags & MCE_INJECT_BROADCAST) {
CPUState *other_cs;
params.bank = 1;
params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
params.addr = 0;
params.misc = 0;
CPU_FOREACH(other_cs) {
if (other_cs == cs) {
continue;
}
run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
}
}
}
void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
{
X86CPU *cpu = x86_env_get_cpu(env);
CPUState *cs = CPU(cpu);
if (kvm_enabled()) {
env->tpr_access_type = access;
cpu_interrupt(cs, CPU_INTERRUPT_TPR);
} else {
cpu_restore_state(cs, cs->mem_io_pc);
apic_handle_tpr_access_report(cpu->apic_state, env->eip, access);
}
}
#endif /* !CONFIG_USER_ONLY */
int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
target_ulong *base, unsigned int *limit,
unsigned int *flags)
{
X86CPU *cpu = x86_env_get_cpu(env);
CPUState *cs = CPU(cpu);
SegmentCache *dt;
target_ulong ptr;
uint32_t e1, e2;
int index;
if (selector & 0x4)
dt = &env->ldt;
else
dt = &env->gdt;
index = selector & ~7;
ptr = dt->base + index;
if ((index + 7) > dt->limit
|| cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
|| cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
return 0;
*base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
*limit = (e1 & 0xffff) | (e2 & 0x000f0000);
if (e2 & DESC_G_MASK)
*limit = (*limit << 12) | 0xfff;
*flags = e2;
return 1;
}
#if !defined(CONFIG_USER_ONLY)
void do_cpu_init(X86CPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUX86State *env = &cpu->env;
CPUX86State *save = g_new(CPUX86State, 1);
int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
*save = *env;
cpu_reset(cs);
cs->interrupt_request = sipi;
memcpy(&env->start_init_save, &save->start_init_save,
offsetof(CPUX86State, end_init_save) -
offsetof(CPUX86State, start_init_save));
g_free(save);
if (kvm_enabled()) {
kvm_arch_do_init_vcpu(cpu);
}
apic_init_reset(cpu->apic_state);
}
void do_cpu_sipi(X86CPU *cpu)
{
apic_sipi(cpu->apic_state);
}
#else
void do_cpu_init(X86CPU *cpu)
{
}
void do_cpu_sipi(X86CPU *cpu)
{
}
#endif
/* Frob eflags into and out of the CPU temporary format. */
void x86_cpu_exec_enter(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
env->df = 1 - (2 * ((env->eflags >> 10) & 1));
CC_OP = CC_OP_EFLAGS;
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
}
void x86_cpu_exec_exit(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->eflags = cpu_compute_eflags(env);
}
#ifndef CONFIG_USER_ONLY
uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
return address_space_ldub(cs->as, addr,
cpu_get_mem_attrs(env),
NULL);
}
uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
return address_space_lduw(cs->as, addr,
cpu_get_mem_attrs(env),
NULL);
}
uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
return address_space_ldl(cs->as, addr,
cpu_get_mem_attrs(env),
NULL);
}
uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
return address_space_ldq(cs->as, addr,
cpu_get_mem_attrs(env),
NULL);
}
void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
address_space_stb(cs->as, addr, val,
cpu_get_mem_attrs(env),
NULL);
}
void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
address_space_stl_notdirty(cs->as, addr, val,
cpu_get_mem_attrs(env),
NULL);
}
void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
address_space_stw(cs->as, addr, val,
cpu_get_mem_attrs(env),
NULL);
}
void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
address_space_stl(cs->as, addr, val,
cpu_get_mem_attrs(env),
NULL);
}
void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
address_space_stq(cs->as, addr, val,
cpu_get_mem_attrs(env),
NULL);
}
#endif