xemu/target/cris/translate.c
Chetan Pant bf1b52d199 cris tcg cpus: Fix Lesser GPL version number
There is no "version 2" of the "Lesser" General Public License.
It is either "GPL version 2.0" or "Lesser GPL version 2.1".
This patch replaces all occurrences of "Lesser GPL version 2" with
"Lesser GPL version 2.1" in comment section.

Signed-off-by: Chetan Pant <chetan4windows@gmail.com>
Message-Id: <20201023121649.19123-1-chetan4windows@gmail.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
2020-11-15 16:39:05 +01:00

3390 lines
90 KiB
C

/*
* CRIS emulation for qemu: main translation routines.
*
* Copyright (c) 2008 AXIS Communications AB
* Written by Edgar E. Iglesias.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* FIXME:
* The condition code translation is in need of attention.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "disas/disas.h"
#include "exec/exec-all.h"
#include "tcg/tcg-op.h"
#include "exec/helper-proto.h"
#include "mmu.h"
#include "exec/cpu_ldst.h"
#include "exec/translator.h"
#include "crisv32-decode.h"
#include "qemu/qemu-print.h"
#include "exec/helper-gen.h"
#include "trace-tcg.h"
#include "exec/log.h"
#define DISAS_CRIS 0
#if DISAS_CRIS
# define LOG_DIS(...) qemu_log_mask(CPU_LOG_TB_IN_ASM, ## __VA_ARGS__)
#else
# define LOG_DIS(...) do { } while (0)
#endif
#define D(x)
#define BUG() (gen_BUG(dc, __FILE__, __LINE__))
#define BUG_ON(x) ({if (x) BUG();})
/* is_jmp field values */
#define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
#define DISAS_UPDATE DISAS_TARGET_1 /* cpu state was modified dynamically */
#define DISAS_TB_JUMP DISAS_TARGET_2 /* only pc was modified statically */
#define DISAS_SWI DISAS_TARGET_3
/* Used by the decoder. */
#define EXTRACT_FIELD(src, start, end) \
(((src) >> start) & ((1 << (end - start + 1)) - 1))
#define CC_MASK_NZ 0xc
#define CC_MASK_NZV 0xe
#define CC_MASK_NZVC 0xf
#define CC_MASK_RNZV 0x10e
static TCGv cpu_R[16];
static TCGv cpu_PR[16];
static TCGv cc_x;
static TCGv cc_src;
static TCGv cc_dest;
static TCGv cc_result;
static TCGv cc_op;
static TCGv cc_size;
static TCGv cc_mask;
static TCGv env_btaken;
static TCGv env_btarget;
static TCGv env_pc;
#include "exec/gen-icount.h"
/* This is the state at translation time. */
typedef struct DisasContext {
CRISCPU *cpu;
target_ulong pc, ppc;
/* Decoder. */
unsigned int (*decoder)(CPUCRISState *env, struct DisasContext *dc);
uint32_t ir;
uint32_t opcode;
unsigned int op1;
unsigned int op2;
unsigned int zsize, zzsize;
unsigned int mode;
unsigned int postinc;
unsigned int size;
unsigned int src;
unsigned int dst;
unsigned int cond;
int update_cc;
int cc_op;
int cc_size;
uint32_t cc_mask;
int cc_size_uptodate; /* -1 invalid or last written value. */
int cc_x_uptodate; /* 1 - ccs, 2 - known | X_FLAG. 0 not up-to-date. */
int flags_uptodate; /* Whether or not $ccs is up-to-date. */
int flagx_known; /* Whether or not flags_x has the x flag known at
translation time. */
int flags_x;
int clear_x; /* Clear x after this insn? */
int clear_prefix; /* Clear prefix after this insn? */
int clear_locked_irq; /* Clear the irq lockout. */
int cpustate_changed;
unsigned int tb_flags; /* tb dependent flags. */
int is_jmp;
#define JMP_NOJMP 0
#define JMP_DIRECT 1
#define JMP_DIRECT_CC 2
#define JMP_INDIRECT 3
int jmp; /* 0=nojmp, 1=direct, 2=indirect. */
uint32_t jmp_pc;
int delayed_branch;
struct TranslationBlock *tb;
int singlestep_enabled;
} DisasContext;
static void gen_BUG(DisasContext *dc, const char *file, int line)
{
cpu_abort(CPU(dc->cpu), "%s:%d pc=%x\n", file, line, dc->pc);
}
static const char *regnames_v32[] =
{
"$r0", "$r1", "$r2", "$r3",
"$r4", "$r5", "$r6", "$r7",
"$r8", "$r9", "$r10", "$r11",
"$r12", "$r13", "$sp", "$acr",
};
static const char *pregnames_v32[] =
{
"$bz", "$vr", "$pid", "$srs",
"$wz", "$exs", "$eda", "$mof",
"$dz", "$ebp", "$erp", "$srp",
"$nrp", "$ccs", "$usp", "$spc",
};
/* We need this table to handle preg-moves with implicit width. */
static int preg_sizes[] = {
1, /* bz. */
1, /* vr. */
4, /* pid. */
1, /* srs. */
2, /* wz. */
4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 4,
};
#define t_gen_mov_TN_env(tn, member) \
tcg_gen_ld_tl(tn, cpu_env, offsetof(CPUCRISState, member))
#define t_gen_mov_env_TN(member, tn) \
tcg_gen_st_tl(tn, cpu_env, offsetof(CPUCRISState, member))
static inline void t_gen_mov_TN_preg(TCGv tn, int r)
{
assert(r >= 0 && r <= 15);
if (r == PR_BZ || r == PR_WZ || r == PR_DZ) {
tcg_gen_mov_tl(tn, tcg_const_tl(0));
} else if (r == PR_VR) {
tcg_gen_mov_tl(tn, tcg_const_tl(32));
} else {
tcg_gen_mov_tl(tn, cpu_PR[r]);
}
}
static inline void t_gen_mov_preg_TN(DisasContext *dc, int r, TCGv tn)
{
assert(r >= 0 && r <= 15);
if (r == PR_BZ || r == PR_WZ || r == PR_DZ) {
return;
} else if (r == PR_SRS) {
tcg_gen_andi_tl(cpu_PR[r], tn, 3);
} else {
if (r == PR_PID) {
gen_helper_tlb_flush_pid(cpu_env, tn);
}
if (dc->tb_flags & S_FLAG && r == PR_SPC) {
gen_helper_spc_write(cpu_env, tn);
} else if (r == PR_CCS) {
dc->cpustate_changed = 1;
}
tcg_gen_mov_tl(cpu_PR[r], tn);
}
}
/* Sign extend at translation time. */
static int sign_extend(unsigned int val, unsigned int width)
{
int sval;
/* LSL. */
val <<= 31 - width;
sval = val;
/* ASR. */
sval >>= 31 - width;
return sval;
}
static int cris_fetch(CPUCRISState *env, DisasContext *dc, uint32_t addr,
unsigned int size, unsigned int sign)
{
int r;
switch (size) {
case 4:
{
r = cpu_ldl_code(env, addr);
break;
}
case 2:
{
if (sign) {
r = cpu_ldsw_code(env, addr);
} else {
r = cpu_lduw_code(env, addr);
}
break;
}
case 1:
{
if (sign) {
r = cpu_ldsb_code(env, addr);
} else {
r = cpu_ldub_code(env, addr);
}
break;
}
default:
cpu_abort(CPU(dc->cpu), "Invalid fetch size %d\n", size);
break;
}
return r;
}
static void cris_lock_irq(DisasContext *dc)
{
dc->clear_locked_irq = 0;
t_gen_mov_env_TN(locked_irq, tcg_const_tl(1));
}
static inline void t_gen_raise_exception(uint32_t index)
{
TCGv_i32 tmp = tcg_const_i32(index);
gen_helper_raise_exception(cpu_env, tmp);
tcg_temp_free_i32(tmp);
}
static void t_gen_lsl(TCGv d, TCGv a, TCGv b)
{
TCGv t0, t_31;
t0 = tcg_temp_new();
t_31 = tcg_const_tl(31);
tcg_gen_shl_tl(d, a, b);
tcg_gen_sub_tl(t0, t_31, b);
tcg_gen_sar_tl(t0, t0, t_31);
tcg_gen_and_tl(t0, t0, d);
tcg_gen_xor_tl(d, d, t0);
tcg_temp_free(t0);
tcg_temp_free(t_31);
}
static void t_gen_lsr(TCGv d, TCGv a, TCGv b)
{
TCGv t0, t_31;
t0 = tcg_temp_new();
t_31 = tcg_temp_new();
tcg_gen_shr_tl(d, a, b);
tcg_gen_movi_tl(t_31, 31);
tcg_gen_sub_tl(t0, t_31, b);
tcg_gen_sar_tl(t0, t0, t_31);
tcg_gen_and_tl(t0, t0, d);
tcg_gen_xor_tl(d, d, t0);
tcg_temp_free(t0);
tcg_temp_free(t_31);
}
static void t_gen_asr(TCGv d, TCGv a, TCGv b)
{
TCGv t0, t_31;
t0 = tcg_temp_new();
t_31 = tcg_temp_new();
tcg_gen_sar_tl(d, a, b);
tcg_gen_movi_tl(t_31, 31);
tcg_gen_sub_tl(t0, t_31, b);
tcg_gen_sar_tl(t0, t0, t_31);
tcg_gen_or_tl(d, d, t0);
tcg_temp_free(t0);
tcg_temp_free(t_31);
}
static void t_gen_cris_dstep(TCGv d, TCGv a, TCGv b)
{
TCGv t = tcg_temp_new();
/*
* d <<= 1
* if (d >= s)
* d -= s;
*/
tcg_gen_shli_tl(d, a, 1);
tcg_gen_sub_tl(t, d, b);
tcg_gen_movcond_tl(TCG_COND_GEU, d, d, b, t, d);
tcg_temp_free(t);
}
static void t_gen_cris_mstep(TCGv d, TCGv a, TCGv b, TCGv ccs)
{
TCGv t;
/*
* d <<= 1
* if (n)
* d += s;
*/
t = tcg_temp_new();
tcg_gen_shli_tl(d, a, 1);
tcg_gen_shli_tl(t, ccs, 31 - 3);
tcg_gen_sari_tl(t, t, 31);
tcg_gen_and_tl(t, t, b);
tcg_gen_add_tl(d, d, t);
tcg_temp_free(t);
}
/* Extended arithmetics on CRIS. */
static inline void t_gen_add_flag(TCGv d, int flag)
{
TCGv c;
c = tcg_temp_new();
t_gen_mov_TN_preg(c, PR_CCS);
/* Propagate carry into d. */
tcg_gen_andi_tl(c, c, 1 << flag);
if (flag) {
tcg_gen_shri_tl(c, c, flag);
}
tcg_gen_add_tl(d, d, c);
tcg_temp_free(c);
}
static inline void t_gen_addx_carry(DisasContext *dc, TCGv d)
{
if (dc->flagx_known) {
if (dc->flags_x) {
TCGv c;
c = tcg_temp_new();
t_gen_mov_TN_preg(c, PR_CCS);
/* C flag is already at bit 0. */
tcg_gen_andi_tl(c, c, C_FLAG);
tcg_gen_add_tl(d, d, c);
tcg_temp_free(c);
}
} else {
TCGv x, c;
x = tcg_temp_new();
c = tcg_temp_new();
t_gen_mov_TN_preg(x, PR_CCS);
tcg_gen_mov_tl(c, x);
/* Propagate carry into d if X is set. Branch free. */
tcg_gen_andi_tl(c, c, C_FLAG);
tcg_gen_andi_tl(x, x, X_FLAG);
tcg_gen_shri_tl(x, x, 4);
tcg_gen_and_tl(x, x, c);
tcg_gen_add_tl(d, d, x);
tcg_temp_free(x);
tcg_temp_free(c);
}
}
static inline void t_gen_subx_carry(DisasContext *dc, TCGv d)
{
if (dc->flagx_known) {
if (dc->flags_x) {
TCGv c;
c = tcg_temp_new();
t_gen_mov_TN_preg(c, PR_CCS);
/* C flag is already at bit 0. */
tcg_gen_andi_tl(c, c, C_FLAG);
tcg_gen_sub_tl(d, d, c);
tcg_temp_free(c);
}
} else {
TCGv x, c;
x = tcg_temp_new();
c = tcg_temp_new();
t_gen_mov_TN_preg(x, PR_CCS);
tcg_gen_mov_tl(c, x);
/* Propagate carry into d if X is set. Branch free. */
tcg_gen_andi_tl(c, c, C_FLAG);
tcg_gen_andi_tl(x, x, X_FLAG);
tcg_gen_shri_tl(x, x, 4);
tcg_gen_and_tl(x, x, c);
tcg_gen_sub_tl(d, d, x);
tcg_temp_free(x);
tcg_temp_free(c);
}
}
/* Swap the two bytes within each half word of the s operand.
T0 = ((T0 << 8) & 0xff00ff00) | ((T0 >> 8) & 0x00ff00ff) */
static inline void t_gen_swapb(TCGv d, TCGv s)
{
TCGv t, org_s;
t = tcg_temp_new();
org_s = tcg_temp_new();
/* d and s may refer to the same object. */
tcg_gen_mov_tl(org_s, s);
tcg_gen_shli_tl(t, org_s, 8);
tcg_gen_andi_tl(d, t, 0xff00ff00);
tcg_gen_shri_tl(t, org_s, 8);
tcg_gen_andi_tl(t, t, 0x00ff00ff);
tcg_gen_or_tl(d, d, t);
tcg_temp_free(t);
tcg_temp_free(org_s);
}
/* Swap the halfwords of the s operand. */
static inline void t_gen_swapw(TCGv d, TCGv s)
{
TCGv t;
/* d and s refer the same object. */
t = tcg_temp_new();
tcg_gen_mov_tl(t, s);
tcg_gen_shli_tl(d, t, 16);
tcg_gen_shri_tl(t, t, 16);
tcg_gen_or_tl(d, d, t);
tcg_temp_free(t);
}
/* Reverse the within each byte.
T0 = (((T0 << 7) & 0x80808080) |
((T0 << 5) & 0x40404040) |
((T0 << 3) & 0x20202020) |
((T0 << 1) & 0x10101010) |
((T0 >> 1) & 0x08080808) |
((T0 >> 3) & 0x04040404) |
((T0 >> 5) & 0x02020202) |
((T0 >> 7) & 0x01010101));
*/
static inline void t_gen_swapr(TCGv d, TCGv s)
{
struct {
int shift; /* LSL when positive, LSR when negative. */
uint32_t mask;
} bitrev[] = {
{7, 0x80808080},
{5, 0x40404040},
{3, 0x20202020},
{1, 0x10101010},
{-1, 0x08080808},
{-3, 0x04040404},
{-5, 0x02020202},
{-7, 0x01010101}
};
int i;
TCGv t, org_s;
/* d and s refer the same object. */
t = tcg_temp_new();
org_s = tcg_temp_new();
tcg_gen_mov_tl(org_s, s);
tcg_gen_shli_tl(t, org_s, bitrev[0].shift);
tcg_gen_andi_tl(d, t, bitrev[0].mask);
for (i = 1; i < ARRAY_SIZE(bitrev); i++) {
if (bitrev[i].shift >= 0) {
tcg_gen_shli_tl(t, org_s, bitrev[i].shift);
} else {
tcg_gen_shri_tl(t, org_s, -bitrev[i].shift);
}
tcg_gen_andi_tl(t, t, bitrev[i].mask);
tcg_gen_or_tl(d, d, t);
}
tcg_temp_free(t);
tcg_temp_free(org_s);
}
static void t_gen_cc_jmp(TCGv pc_true, TCGv pc_false)
{
TCGLabel *l1 = gen_new_label();
/* Conditional jmp. */
tcg_gen_mov_tl(env_pc, pc_false);
tcg_gen_brcondi_tl(TCG_COND_EQ, env_btaken, 0, l1);
tcg_gen_mov_tl(env_pc, pc_true);
gen_set_label(l1);
}
static inline bool use_goto_tb(DisasContext *dc, target_ulong dest)
{
#ifndef CONFIG_USER_ONLY
return (dc->tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK) ||
(dc->ppc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK);
#else
return true;
#endif
}
static void gen_goto_tb(DisasContext *dc, int n, target_ulong dest)
{
if (use_goto_tb(dc, dest)) {
tcg_gen_goto_tb(n);
tcg_gen_movi_tl(env_pc, dest);
tcg_gen_exit_tb(dc->tb, n);
} else {
tcg_gen_movi_tl(env_pc, dest);
tcg_gen_exit_tb(NULL, 0);
}
}
static inline void cris_clear_x_flag(DisasContext *dc)
{
if (dc->flagx_known && dc->flags_x) {
dc->flags_uptodate = 0;
}
dc->flagx_known = 1;
dc->flags_x = 0;
}
static void cris_flush_cc_state(DisasContext *dc)
{
if (dc->cc_size_uptodate != dc->cc_size) {
tcg_gen_movi_tl(cc_size, dc->cc_size);
dc->cc_size_uptodate = dc->cc_size;
}
tcg_gen_movi_tl(cc_op, dc->cc_op);
tcg_gen_movi_tl(cc_mask, dc->cc_mask);
}
static void cris_evaluate_flags(DisasContext *dc)
{
if (dc->flags_uptodate) {
return;
}
cris_flush_cc_state(dc);
switch (dc->cc_op) {
case CC_OP_MCP:
gen_helper_evaluate_flags_mcp(cpu_PR[PR_CCS], cpu_env,
cpu_PR[PR_CCS], cc_src,
cc_dest, cc_result);
break;
case CC_OP_MULS:
gen_helper_evaluate_flags_muls(cpu_PR[PR_CCS], cpu_env,
cpu_PR[PR_CCS], cc_result,
cpu_PR[PR_MOF]);
break;
case CC_OP_MULU:
gen_helper_evaluate_flags_mulu(cpu_PR[PR_CCS], cpu_env,
cpu_PR[PR_CCS], cc_result,
cpu_PR[PR_MOF]);
break;
case CC_OP_MOVE:
case CC_OP_AND:
case CC_OP_OR:
case CC_OP_XOR:
case CC_OP_ASR:
case CC_OP_LSR:
case CC_OP_LSL:
switch (dc->cc_size) {
case 4:
gen_helper_evaluate_flags_move_4(cpu_PR[PR_CCS],
cpu_env, cpu_PR[PR_CCS], cc_result);
break;
case 2:
gen_helper_evaluate_flags_move_2(cpu_PR[PR_CCS],
cpu_env, cpu_PR[PR_CCS], cc_result);
break;
default:
gen_helper_evaluate_flags(cpu_env);
break;
}
break;
case CC_OP_FLAGS:
/* live. */
break;
case CC_OP_SUB:
case CC_OP_CMP:
if (dc->cc_size == 4) {
gen_helper_evaluate_flags_sub_4(cpu_PR[PR_CCS], cpu_env,
cpu_PR[PR_CCS], cc_src, cc_dest, cc_result);
} else {
gen_helper_evaluate_flags(cpu_env);
}
break;
default:
switch (dc->cc_size) {
case 4:
gen_helper_evaluate_flags_alu_4(cpu_PR[PR_CCS], cpu_env,
cpu_PR[PR_CCS], cc_src, cc_dest, cc_result);
break;
default:
gen_helper_evaluate_flags(cpu_env);
break;
}
break;
}
if (dc->flagx_known) {
if (dc->flags_x) {
tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], X_FLAG);
} else if (dc->cc_op == CC_OP_FLAGS) {
tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~X_FLAG);
}
}
dc->flags_uptodate = 1;
}
static void cris_cc_mask(DisasContext *dc, unsigned int mask)
{
uint32_t ovl;
if (!mask) {
dc->update_cc = 0;
return;
}
/* Check if we need to evaluate the condition codes due to
CC overlaying. */
ovl = (dc->cc_mask ^ mask) & ~mask;
if (ovl) {
/* TODO: optimize this case. It trigs all the time. */
cris_evaluate_flags(dc);
}
dc->cc_mask = mask;
dc->update_cc = 1;
}
static void cris_update_cc_op(DisasContext *dc, int op, int size)
{
dc->cc_op = op;
dc->cc_size = size;
dc->flags_uptodate = 0;
}
static inline void cris_update_cc_x(DisasContext *dc)
{
/* Save the x flag state at the time of the cc snapshot. */
if (dc->flagx_known) {
if (dc->cc_x_uptodate == (2 | dc->flags_x)) {
return;
}
tcg_gen_movi_tl(cc_x, dc->flags_x);
dc->cc_x_uptodate = 2 | dc->flags_x;
} else {
tcg_gen_andi_tl(cc_x, cpu_PR[PR_CCS], X_FLAG);
dc->cc_x_uptodate = 1;
}
}
/* Update cc prior to executing ALU op. Needs source operands untouched. */
static void cris_pre_alu_update_cc(DisasContext *dc, int op,
TCGv dst, TCGv src, int size)
{
if (dc->update_cc) {
cris_update_cc_op(dc, op, size);
tcg_gen_mov_tl(cc_src, src);
if (op != CC_OP_MOVE
&& op != CC_OP_AND
&& op != CC_OP_OR
&& op != CC_OP_XOR
&& op != CC_OP_ASR
&& op != CC_OP_LSR
&& op != CC_OP_LSL) {
tcg_gen_mov_tl(cc_dest, dst);
}
cris_update_cc_x(dc);
}
}
/* Update cc after executing ALU op. needs the result. */
static inline void cris_update_result(DisasContext *dc, TCGv res)
{
if (dc->update_cc) {
tcg_gen_mov_tl(cc_result, res);
}
}
/* Returns one if the write back stage should execute. */
static void cris_alu_op_exec(DisasContext *dc, int op,
TCGv dst, TCGv a, TCGv b, int size)
{
/* Emit the ALU insns. */
switch (op) {
case CC_OP_ADD:
tcg_gen_add_tl(dst, a, b);
/* Extended arithmetics. */
t_gen_addx_carry(dc, dst);
break;
case CC_OP_ADDC:
tcg_gen_add_tl(dst, a, b);
t_gen_add_flag(dst, 0); /* C_FLAG. */
break;
case CC_OP_MCP:
tcg_gen_add_tl(dst, a, b);
t_gen_add_flag(dst, 8); /* R_FLAG. */
break;
case CC_OP_SUB:
tcg_gen_sub_tl(dst, a, b);
/* Extended arithmetics. */
t_gen_subx_carry(dc, dst);
break;
case CC_OP_MOVE:
tcg_gen_mov_tl(dst, b);
break;
case CC_OP_OR:
tcg_gen_or_tl(dst, a, b);
break;
case CC_OP_AND:
tcg_gen_and_tl(dst, a, b);
break;
case CC_OP_XOR:
tcg_gen_xor_tl(dst, a, b);
break;
case CC_OP_LSL:
t_gen_lsl(dst, a, b);
break;
case CC_OP_LSR:
t_gen_lsr(dst, a, b);
break;
case CC_OP_ASR:
t_gen_asr(dst, a, b);
break;
case CC_OP_NEG:
tcg_gen_neg_tl(dst, b);
/* Extended arithmetics. */
t_gen_subx_carry(dc, dst);
break;
case CC_OP_LZ:
tcg_gen_clzi_tl(dst, b, TARGET_LONG_BITS);
break;
case CC_OP_MULS:
tcg_gen_muls2_tl(dst, cpu_PR[PR_MOF], a, b);
break;
case CC_OP_MULU:
tcg_gen_mulu2_tl(dst, cpu_PR[PR_MOF], a, b);
break;
case CC_OP_DSTEP:
t_gen_cris_dstep(dst, a, b);
break;
case CC_OP_MSTEP:
t_gen_cris_mstep(dst, a, b, cpu_PR[PR_CCS]);
break;
case CC_OP_BOUND:
tcg_gen_movcond_tl(TCG_COND_LEU, dst, a, b, a, b);
break;
case CC_OP_CMP:
tcg_gen_sub_tl(dst, a, b);
/* Extended arithmetics. */
t_gen_subx_carry(dc, dst);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "illegal ALU op.\n");
BUG();
break;
}
if (size == 1) {
tcg_gen_andi_tl(dst, dst, 0xff);
} else if (size == 2) {
tcg_gen_andi_tl(dst, dst, 0xffff);
}
}
static void cris_alu(DisasContext *dc, int op,
TCGv d, TCGv op_a, TCGv op_b, int size)
{
TCGv tmp;
int writeback;
writeback = 1;
if (op == CC_OP_CMP) {
tmp = tcg_temp_new();
writeback = 0;
} else if (size == 4) {
tmp = d;
writeback = 0;
} else {
tmp = tcg_temp_new();
}
cris_pre_alu_update_cc(dc, op, op_a, op_b, size);
cris_alu_op_exec(dc, op, tmp, op_a, op_b, size);
cris_update_result(dc, tmp);
/* Writeback. */
if (writeback) {
if (size == 1) {
tcg_gen_andi_tl(d, d, ~0xff);
} else {
tcg_gen_andi_tl(d, d, ~0xffff);
}
tcg_gen_or_tl(d, d, tmp);
}
if (tmp != d) {
tcg_temp_free(tmp);
}
}
static int arith_cc(DisasContext *dc)
{
if (dc->update_cc) {
switch (dc->cc_op) {
case CC_OP_ADDC: return 1;
case CC_OP_ADD: return 1;
case CC_OP_SUB: return 1;
case CC_OP_DSTEP: return 1;
case CC_OP_LSL: return 1;
case CC_OP_LSR: return 1;
case CC_OP_ASR: return 1;
case CC_OP_CMP: return 1;
case CC_OP_NEG: return 1;
case CC_OP_OR: return 1;
case CC_OP_AND: return 1;
case CC_OP_XOR: return 1;
case CC_OP_MULU: return 1;
case CC_OP_MULS: return 1;
default:
return 0;
}
}
return 0;
}
static void gen_tst_cc (DisasContext *dc, TCGv cc, int cond)
{
int arith_opt, move_opt;
/* TODO: optimize more condition codes. */
/*
* If the flags are live, we've gotta look into the bits of CCS.
* Otherwise, if we just did an arithmetic operation we try to
* evaluate the condition code faster.
*
* When this function is done, T0 should be non-zero if the condition
* code is true.
*/
arith_opt = arith_cc(dc) && !dc->flags_uptodate;
move_opt = (dc->cc_op == CC_OP_MOVE);
switch (cond) {
case CC_EQ:
if ((arith_opt || move_opt)
&& dc->cc_x_uptodate != (2 | X_FLAG)) {
tcg_gen_setcond_tl(TCG_COND_EQ, cc,
cc_result, tcg_const_tl(0));
} else {
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc,
cpu_PR[PR_CCS], Z_FLAG);
}
break;
case CC_NE:
if ((arith_opt || move_opt)
&& dc->cc_x_uptodate != (2 | X_FLAG)) {
tcg_gen_mov_tl(cc, cc_result);
} else {
cris_evaluate_flags(dc);
tcg_gen_xori_tl(cc, cpu_PR[PR_CCS],
Z_FLAG);
tcg_gen_andi_tl(cc, cc, Z_FLAG);
}
break;
case CC_CS:
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], C_FLAG);
break;
case CC_CC:
cris_evaluate_flags(dc);
tcg_gen_xori_tl(cc, cpu_PR[PR_CCS], C_FLAG);
tcg_gen_andi_tl(cc, cc, C_FLAG);
break;
case CC_VS:
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], V_FLAG);
break;
case CC_VC:
cris_evaluate_flags(dc);
tcg_gen_xori_tl(cc, cpu_PR[PR_CCS],
V_FLAG);
tcg_gen_andi_tl(cc, cc, V_FLAG);
break;
case CC_PL:
if (arith_opt || move_opt) {
int bits = 31;
if (dc->cc_size == 1) {
bits = 7;
} else if (dc->cc_size == 2) {
bits = 15;
}
tcg_gen_shri_tl(cc, cc_result, bits);
tcg_gen_xori_tl(cc, cc, 1);
} else {
cris_evaluate_flags(dc);
tcg_gen_xori_tl(cc, cpu_PR[PR_CCS],
N_FLAG);
tcg_gen_andi_tl(cc, cc, N_FLAG);
}
break;
case CC_MI:
if (arith_opt || move_opt) {
int bits = 31;
if (dc->cc_size == 1) {
bits = 7;
} else if (dc->cc_size == 2) {
bits = 15;
}
tcg_gen_shri_tl(cc, cc_result, bits);
tcg_gen_andi_tl(cc, cc, 1);
} else {
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc, cpu_PR[PR_CCS],
N_FLAG);
}
break;
case CC_LS:
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc, cpu_PR[PR_CCS],
C_FLAG | Z_FLAG);
break;
case CC_HI:
cris_evaluate_flags(dc);
{
TCGv tmp;
tmp = tcg_temp_new();
tcg_gen_xori_tl(tmp, cpu_PR[PR_CCS],
C_FLAG | Z_FLAG);
/* Overlay the C flag on top of the Z. */
tcg_gen_shli_tl(cc, tmp, 2);
tcg_gen_and_tl(cc, tmp, cc);
tcg_gen_andi_tl(cc, cc, Z_FLAG);
tcg_temp_free(tmp);
}
break;
case CC_GE:
cris_evaluate_flags(dc);
/* Overlay the V flag on top of the N. */
tcg_gen_shli_tl(cc, cpu_PR[PR_CCS], 2);
tcg_gen_xor_tl(cc,
cpu_PR[PR_CCS], cc);
tcg_gen_andi_tl(cc, cc, N_FLAG);
tcg_gen_xori_tl(cc, cc, N_FLAG);
break;
case CC_LT:
cris_evaluate_flags(dc);
/* Overlay the V flag on top of the N. */
tcg_gen_shli_tl(cc, cpu_PR[PR_CCS], 2);
tcg_gen_xor_tl(cc,
cpu_PR[PR_CCS], cc);
tcg_gen_andi_tl(cc, cc, N_FLAG);
break;
case CC_GT:
cris_evaluate_flags(dc);
{
TCGv n, z;
n = tcg_temp_new();
z = tcg_temp_new();
/* To avoid a shift we overlay everything on
the V flag. */
tcg_gen_shri_tl(n, cpu_PR[PR_CCS], 2);
tcg_gen_shri_tl(z, cpu_PR[PR_CCS], 1);
/* invert Z. */
tcg_gen_xori_tl(z, z, 2);
tcg_gen_xor_tl(n, n, cpu_PR[PR_CCS]);
tcg_gen_xori_tl(n, n, 2);
tcg_gen_and_tl(cc, z, n);
tcg_gen_andi_tl(cc, cc, 2);
tcg_temp_free(n);
tcg_temp_free(z);
}
break;
case CC_LE:
cris_evaluate_flags(dc);
{
TCGv n, z;
n = tcg_temp_new();
z = tcg_temp_new();
/* To avoid a shift we overlay everything on
the V flag. */
tcg_gen_shri_tl(n, cpu_PR[PR_CCS], 2);
tcg_gen_shri_tl(z, cpu_PR[PR_CCS], 1);
tcg_gen_xor_tl(n, n, cpu_PR[PR_CCS]);
tcg_gen_or_tl(cc, z, n);
tcg_gen_andi_tl(cc, cc, 2);
tcg_temp_free(n);
tcg_temp_free(z);
}
break;
case CC_P:
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], P_FLAG);
break;
case CC_A:
tcg_gen_movi_tl(cc, 1);
break;
default:
BUG();
break;
};
}
static void cris_store_direct_jmp(DisasContext *dc)
{
/* Store the direct jmp state into the cpu-state. */
if (dc->jmp == JMP_DIRECT || dc->jmp == JMP_DIRECT_CC) {
if (dc->jmp == JMP_DIRECT) {
tcg_gen_movi_tl(env_btaken, 1);
}
tcg_gen_movi_tl(env_btarget, dc->jmp_pc);
dc->jmp = JMP_INDIRECT;
}
}
static void cris_prepare_cc_branch (DisasContext *dc,
int offset, int cond)
{
/* This helps us re-schedule the micro-code to insns in delay-slots
before the actual jump. */
dc->delayed_branch = 2;
dc->jmp = JMP_DIRECT_CC;
dc->jmp_pc = dc->pc + offset;
gen_tst_cc(dc, env_btaken, cond);
tcg_gen_movi_tl(env_btarget, dc->jmp_pc);
}
/* jumps, when the dest is in a live reg for example. Direct should be set
when the dest addr is constant to allow tb chaining. */
static inline void cris_prepare_jmp (DisasContext *dc, unsigned int type)
{
/* This helps us re-schedule the micro-code to insns in delay-slots
before the actual jump. */
dc->delayed_branch = 2;
dc->jmp = type;
if (type == JMP_INDIRECT) {
tcg_gen_movi_tl(env_btaken, 1);
}
}
static void gen_load64(DisasContext *dc, TCGv_i64 dst, TCGv addr)
{
int mem_index = cpu_mmu_index(&dc->cpu->env, false);
/* If we get a fault on a delayslot we must keep the jmp state in
the cpu-state to be able to re-execute the jmp. */
if (dc->delayed_branch == 1) {
cris_store_direct_jmp(dc);
}
tcg_gen_qemu_ld_i64(dst, addr, mem_index, MO_TEQ);
}
static void gen_load(DisasContext *dc, TCGv dst, TCGv addr,
unsigned int size, int sign)
{
int mem_index = cpu_mmu_index(&dc->cpu->env, false);
/* If we get a fault on a delayslot we must keep the jmp state in
the cpu-state to be able to re-execute the jmp. */
if (dc->delayed_branch == 1) {
cris_store_direct_jmp(dc);
}
tcg_gen_qemu_ld_tl(dst, addr, mem_index,
MO_TE + ctz32(size) + (sign ? MO_SIGN : 0));
}
static void gen_store (DisasContext *dc, TCGv addr, TCGv val,
unsigned int size)
{
int mem_index = cpu_mmu_index(&dc->cpu->env, false);
/* If we get a fault on a delayslot we must keep the jmp state in
the cpu-state to be able to re-execute the jmp. */
if (dc->delayed_branch == 1) {
cris_store_direct_jmp(dc);
}
/* Conditional writes. We only support the kind were X and P are known
at translation time. */
if (dc->flagx_known && dc->flags_x && (dc->tb_flags & P_FLAG)) {
dc->postinc = 0;
cris_evaluate_flags(dc);
tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], C_FLAG);
return;
}
tcg_gen_qemu_st_tl(val, addr, mem_index, MO_TE + ctz32(size));
if (dc->flagx_known && dc->flags_x) {
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~C_FLAG);
}
}
static inline void t_gen_sext(TCGv d, TCGv s, int size)
{
if (size == 1) {
tcg_gen_ext8s_i32(d, s);
} else if (size == 2) {
tcg_gen_ext16s_i32(d, s);
} else {
tcg_gen_mov_tl(d, s);
}
}
static inline void t_gen_zext(TCGv d, TCGv s, int size)
{
if (size == 1) {
tcg_gen_ext8u_i32(d, s);
} else if (size == 2) {
tcg_gen_ext16u_i32(d, s);
} else {
tcg_gen_mov_tl(d, s);
}
}
#if DISAS_CRIS
static char memsize_char(int size)
{
switch (size) {
case 1: return 'b';
case 2: return 'w';
case 4: return 'd';
default:
return 'x';
}
}
#endif
static inline unsigned int memsize_z(DisasContext *dc)
{
return dc->zsize + 1;
}
static inline unsigned int memsize_zz(DisasContext *dc)
{
switch (dc->zzsize) {
case 0: return 1;
case 1: return 2;
default:
return 4;
}
}
static inline void do_postinc (DisasContext *dc, int size)
{
if (dc->postinc) {
tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], size);
}
}
static inline void dec_prep_move_r(DisasContext *dc, int rs, int rd,
int size, int s_ext, TCGv dst)
{
if (s_ext) {
t_gen_sext(dst, cpu_R[rs], size);
} else {
t_gen_zext(dst, cpu_R[rs], size);
}
}
/* Prepare T0 and T1 for a register alu operation.
s_ext decides if the operand1 should be sign-extended or zero-extended when
needed. */
static void dec_prep_alu_r(DisasContext *dc, int rs, int rd,
int size, int s_ext, TCGv dst, TCGv src)
{
dec_prep_move_r(dc, rs, rd, size, s_ext, src);
if (s_ext) {
t_gen_sext(dst, cpu_R[rd], size);
} else {
t_gen_zext(dst, cpu_R[rd], size);
}
}
static int dec_prep_move_m(CPUCRISState *env, DisasContext *dc,
int s_ext, int memsize, TCGv dst)
{
unsigned int rs;
uint32_t imm;
int is_imm;
int insn_len = 2;
rs = dc->op1;
is_imm = rs == 15 && dc->postinc;
/* Load [$rs] onto T1. */
if (is_imm) {
insn_len = 2 + memsize;
if (memsize == 1) {
insn_len++;
}
imm = cris_fetch(env, dc, dc->pc + 2, memsize, s_ext);
tcg_gen_movi_tl(dst, imm);
dc->postinc = 0;
} else {
cris_flush_cc_state(dc);
gen_load(dc, dst, cpu_R[rs], memsize, 0);
if (s_ext) {
t_gen_sext(dst, dst, memsize);
} else {
t_gen_zext(dst, dst, memsize);
}
}
return insn_len;
}
/* Prepare T0 and T1 for a memory + alu operation.
s_ext decides if the operand1 should be sign-extended or zero-extended when
needed. */
static int dec_prep_alu_m(CPUCRISState *env, DisasContext *dc,
int s_ext, int memsize, TCGv dst, TCGv src)
{
int insn_len;
insn_len = dec_prep_move_m(env, dc, s_ext, memsize, src);
tcg_gen_mov_tl(dst, cpu_R[dc->op2]);
return insn_len;
}
#if DISAS_CRIS
static const char *cc_name(int cc)
{
static const char *cc_names[16] = {
"cc", "cs", "ne", "eq", "vc", "vs", "pl", "mi",
"ls", "hi", "ge", "lt", "gt", "le", "a", "p"
};
assert(cc < 16);
return cc_names[cc];
}
#endif
/* Start of insn decoders. */
static int dec_bccq(CPUCRISState *env, DisasContext *dc)
{
int32_t offset;
int sign;
uint32_t cond = dc->op2;
offset = EXTRACT_FIELD(dc->ir, 1, 7);
sign = EXTRACT_FIELD(dc->ir, 0, 0);
offset *= 2;
offset |= sign << 8;
offset = sign_extend(offset, 8);
LOG_DIS("b%s %x\n", cc_name(cond), dc->pc + offset);
/* op2 holds the condition-code. */
cris_cc_mask(dc, 0);
cris_prepare_cc_branch(dc, offset, cond);
return 2;
}
static int dec_addoq(CPUCRISState *env, DisasContext *dc)
{
int32_t imm;
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 7);
imm = sign_extend(dc->op1, 7);
LOG_DIS("addoq %d, $r%u\n", imm, dc->op2);
cris_cc_mask(dc, 0);
/* Fetch register operand, */
tcg_gen_addi_tl(cpu_R[R_ACR], cpu_R[dc->op2], imm);
return 2;
}
static int dec_addq(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("addq %u, $r%u\n", dc->op1, dc->op2);
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADD,
cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(dc->op1), 4);
return 2;
}
static int dec_moveq(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
imm = sign_extend(dc->op1, 5);
LOG_DIS("moveq %d, $r%u\n", imm, dc->op2);
tcg_gen_movi_tl(cpu_R[dc->op2], imm);
return 2;
}
static int dec_subq(CPUCRISState *env, DisasContext *dc)
{
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
LOG_DIS("subq %u, $r%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_SUB,
cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(dc->op1), 4);
return 2;
}
static int dec_cmpq(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
imm = sign_extend(dc->op1, 5);
LOG_DIS("cmpq %d, $r%d\n", imm, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_CMP,
cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(imm), 4);
return 2;
}
static int dec_andq(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
imm = sign_extend(dc->op1, 5);
LOG_DIS("andq %d, $r%d\n", imm, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_AND,
cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(imm), 4);
return 2;
}
static int dec_orq(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
imm = sign_extend(dc->op1, 5);
LOG_DIS("orq %d, $r%d\n", imm, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_OR,
cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(imm), 4);
return 2;
}
static int dec_btstq(CPUCRISState *env, DisasContext *dc)
{
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4);
LOG_DIS("btstq %u, $r%d\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_evaluate_flags(dc);
gen_helper_btst(cpu_PR[PR_CCS], cpu_env, cpu_R[dc->op2],
tcg_const_tl(dc->op1), cpu_PR[PR_CCS]);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4);
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
dc->flags_uptodate = 1;
return 2;
}
static int dec_asrq(CPUCRISState *env, DisasContext *dc)
{
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4);
LOG_DIS("asrq %u, $r%d\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
tcg_gen_sari_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2],
cpu_R[dc->op2], cpu_R[dc->op2], 4);
return 2;
}
static int dec_lslq(CPUCRISState *env, DisasContext *dc)
{
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4);
LOG_DIS("lslq %u, $r%d\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
tcg_gen_shli_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2],
cpu_R[dc->op2], cpu_R[dc->op2], 4);
return 2;
}
static int dec_lsrq(CPUCRISState *env, DisasContext *dc)
{
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4);
LOG_DIS("lsrq %u, $r%d\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
tcg_gen_shri_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2],
cpu_R[dc->op2], cpu_R[dc->op2], 4);
return 2;
}
static int dec_move_r(CPUCRISState *env, DisasContext *dc)
{
int size = memsize_zz(dc);
LOG_DIS("move.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
if (size == 4) {
dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, cpu_R[dc->op2]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_update_cc_op(dc, CC_OP_MOVE, 4);
cris_update_cc_x(dc);
cris_update_result(dc, cpu_R[dc->op2]);
} else {
TCGv t0;
t0 = tcg_temp_new();
dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, t0);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2],
cpu_R[dc->op2], t0, size);
tcg_temp_free(t0);
}
return 2;
}
static int dec_scc_r(CPUCRISState *env, DisasContext *dc)
{
int cond = dc->op2;
LOG_DIS("s%s $r%u\n",
cc_name(cond), dc->op1);
gen_tst_cc(dc, cpu_R[dc->op1], cond);
tcg_gen_setcondi_tl(TCG_COND_NE, cpu_R[dc->op1], cpu_R[dc->op1], 0);
cris_cc_mask(dc, 0);
return 2;
}
static inline void cris_alu_alloc_temps(DisasContext *dc, int size, TCGv *t)
{
if (size == 4) {
t[0] = cpu_R[dc->op2];
t[1] = cpu_R[dc->op1];
} else {
t[0] = tcg_temp_new();
t[1] = tcg_temp_new();
}
}
static inline void cris_alu_free_temps(DisasContext *dc, int size, TCGv *t)
{
if (size != 4) {
tcg_temp_free(t[0]);
tcg_temp_free(t[1]);
}
}
static int dec_and_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("and.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_AND, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_lz_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
LOG_DIS("lz $r%u, $r%u\n",
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
t0 = tcg_temp_new();
dec_prep_alu_r(dc, dc->op1, dc->op2, 4, 0, cpu_R[dc->op2], t0);
cris_alu(dc, CC_OP_LZ, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
static int dec_lsl_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("lsl.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
tcg_gen_andi_tl(t[1], t[1], 63);
cris_alu(dc, CC_OP_LSL, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_alloc_temps(dc, size, t);
return 2;
}
static int dec_lsr_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("lsr.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
tcg_gen_andi_tl(t[1], t[1], 63);
cris_alu(dc, CC_OP_LSR, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_asr_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("asr.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 1, t[0], t[1]);
tcg_gen_andi_tl(t[1], t[1], 63);
cris_alu(dc, CC_OP_ASR, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_muls_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("muls.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZV);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 1, t[0], t[1]);
cris_alu(dc, CC_OP_MULS, cpu_R[dc->op2], t[0], t[1], 4);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_mulu_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("mulu.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZV);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_MULU, cpu_R[dc->op2], t[0], t[1], 4);
cris_alu_alloc_temps(dc, size, t);
return 2;
}
static int dec_dstep_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("dstep $r%u, $r%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_DSTEP,
cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op1], 4);
return 2;
}
static int dec_xor_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("xor.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
BUG_ON(size != 4); /* xor is dword. */
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_XOR, cpu_R[dc->op2], t[0], t[1], 4);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_bound_r(CPUCRISState *env, DisasContext *dc)
{
TCGv l0;
int size = memsize_zz(dc);
LOG_DIS("bound.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
l0 = tcg_temp_local_new();
dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, l0);
cris_alu(dc, CC_OP_BOUND, cpu_R[dc->op2], cpu_R[dc->op2], l0, 4);
tcg_temp_free(l0);
return 2;
}
static int dec_cmp_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("cmp.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_abs_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("abs $r%u, $r%u\n",
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
tcg_gen_abs_tl(cpu_R[dc->op2], cpu_R[dc->op1]);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4);
return 2;
}
static int dec_add_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("add.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_addc_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("addc $r%u, $r%u\n",
dc->op1, dc->op2);
cris_evaluate_flags(dc);
/* Set for this insn. */
dc->flagx_known = 1;
dc->flags_x = X_FLAG;
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADDC,
cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op1], 4);
return 2;
}
static int dec_mcp_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("mcp $p%u, $r%u\n",
dc->op2, dc->op1);
cris_evaluate_flags(dc);
cris_cc_mask(dc, CC_MASK_RNZV);
cris_alu(dc, CC_OP_MCP,
cpu_R[dc->op1], cpu_R[dc->op1], cpu_PR[dc->op2], 4);
return 2;
}
#if DISAS_CRIS
static char * swapmode_name(int mode, char *modename) {
int i = 0;
if (mode & 8) {
modename[i++] = 'n';
}
if (mode & 4) {
modename[i++] = 'w';
}
if (mode & 2) {
modename[i++] = 'b';
}
if (mode & 1) {
modename[i++] = 'r';
}
modename[i++] = 0;
return modename;
}
#endif
static int dec_swap_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
#if DISAS_CRIS
char modename[4];
#endif
LOG_DIS("swap%s $r%u\n",
swapmode_name(dc->op2, modename), dc->op1);
cris_cc_mask(dc, CC_MASK_NZ);
t0 = tcg_temp_new();
tcg_gen_mov_tl(t0, cpu_R[dc->op1]);
if (dc->op2 & 8) {
tcg_gen_not_tl(t0, t0);
}
if (dc->op2 & 4) {
t_gen_swapw(t0, t0);
}
if (dc->op2 & 2) {
t_gen_swapb(t0, t0);
}
if (dc->op2 & 1) {
t_gen_swapr(t0, t0);
}
cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op1], cpu_R[dc->op1], t0, 4);
tcg_temp_free(t0);
return 2;
}
static int dec_or_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("or.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_OR, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_addi_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
LOG_DIS("addi.%c $r%u, $r%u\n",
memsize_char(memsize_zz(dc)), dc->op2, dc->op1);
cris_cc_mask(dc, 0);
t0 = tcg_temp_new();
tcg_gen_shl_tl(t0, cpu_R[dc->op2], tcg_const_tl(dc->zzsize));
tcg_gen_add_tl(cpu_R[dc->op1], cpu_R[dc->op1], t0);
tcg_temp_free(t0);
return 2;
}
static int dec_addi_acr(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
LOG_DIS("addi.%c $r%u, $r%u, $acr\n",
memsize_char(memsize_zz(dc)), dc->op2, dc->op1);
cris_cc_mask(dc, 0);
t0 = tcg_temp_new();
tcg_gen_shl_tl(t0, cpu_R[dc->op2], tcg_const_tl(dc->zzsize));
tcg_gen_add_tl(cpu_R[R_ACR], cpu_R[dc->op1], t0);
tcg_temp_free(t0);
return 2;
}
static int dec_neg_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("neg.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_NEG, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_btst_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("btst $r%u, $r%u\n",
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_evaluate_flags(dc);
gen_helper_btst(cpu_PR[PR_CCS], cpu_env, cpu_R[dc->op2],
cpu_R[dc->op1], cpu_PR[PR_CCS]);
cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2],
cpu_R[dc->op2], cpu_R[dc->op2], 4);
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
dc->flags_uptodate = 1;
return 2;
}
static int dec_sub_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("sub.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
/* Zero extension. From size to dword. */
static int dec_movu_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("movu.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
t0 = tcg_temp_new();
dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, t0);
cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
/* Sign extension. From size to dword. */
static int dec_movs_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("movs.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
t0 = tcg_temp_new();
/* Size can only be qi or hi. */
t_gen_sext(t0, cpu_R[dc->op1], size);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2], cpu_R[dc->op1], t0, 4);
tcg_temp_free(t0);
return 2;
}
/* zero extension. From size to dword. */
static int dec_addu_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("addu.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
t0 = tcg_temp_new();
/* Size can only be qi or hi. */
t_gen_zext(t0, cpu_R[dc->op1], size);
cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
/* Sign extension. From size to dword. */
static int dec_adds_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("adds.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
t0 = tcg_temp_new();
/* Size can only be qi or hi. */
t_gen_sext(t0, cpu_R[dc->op1], size);
cris_alu(dc, CC_OP_ADD,
cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
/* Zero extension. From size to dword. */
static int dec_subu_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("subu.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
t0 = tcg_temp_new();
/* Size can only be qi or hi. */
t_gen_zext(t0, cpu_R[dc->op1], size);
cris_alu(dc, CC_OP_SUB,
cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
/* Sign extension. From size to dword. */
static int dec_subs_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("subs.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
t0 = tcg_temp_new();
/* Size can only be qi or hi. */
t_gen_sext(t0, cpu_R[dc->op1], size);
cris_alu(dc, CC_OP_SUB,
cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
static int dec_setclrf(CPUCRISState *env, DisasContext *dc)
{
uint32_t flags;
int set = (~dc->opcode >> 2) & 1;
flags = (EXTRACT_FIELD(dc->ir, 12, 15) << 4)
| EXTRACT_FIELD(dc->ir, 0, 3);
if (set && flags == 0) {
LOG_DIS("nop\n");
return 2;
} else if (!set && (flags & 0x20)) {
LOG_DIS("di\n");
} else {
LOG_DIS("%sf %x\n", set ? "set" : "clr", flags);
}
/* User space is not allowed to touch these. Silently ignore. */
if (dc->tb_flags & U_FLAG) {
flags &= ~(S_FLAG | I_FLAG | U_FLAG);
}
if (flags & X_FLAG) {
dc->flagx_known = 1;
if (set) {
dc->flags_x = X_FLAG;
} else {
dc->flags_x = 0;
}
}
/* Break the TB if any of the SPI flag changes. */
if (flags & (P_FLAG | S_FLAG)) {
tcg_gen_movi_tl(env_pc, dc->pc + 2);
dc->is_jmp = DISAS_UPDATE;
dc->cpustate_changed = 1;
}
/* For the I flag, only act on posedge. */
if ((flags & I_FLAG)) {
tcg_gen_movi_tl(env_pc, dc->pc + 2);
dc->is_jmp = DISAS_UPDATE;
dc->cpustate_changed = 1;
}
/* Simply decode the flags. */
cris_evaluate_flags(dc);
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
cris_update_cc_x(dc);
tcg_gen_movi_tl(cc_op, dc->cc_op);
if (set) {
if (!(dc->tb_flags & U_FLAG) && (flags & U_FLAG)) {
/* Enter user mode. */
t_gen_mov_env_TN(ksp, cpu_R[R_SP]);
tcg_gen_mov_tl(cpu_R[R_SP], cpu_PR[PR_USP]);
dc->cpustate_changed = 1;
}
tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], flags);
} else {
tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~flags);
}
dc->flags_uptodate = 1;
dc->clear_x = 0;
return 2;
}
static int dec_move_rs(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("move $r%u, $s%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, 0);
gen_helper_movl_sreg_reg(cpu_env, tcg_const_tl(dc->op2),
tcg_const_tl(dc->op1));
return 2;
}
static int dec_move_sr(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("move $s%u, $r%u\n", dc->op2, dc->op1);
cris_cc_mask(dc, 0);
gen_helper_movl_reg_sreg(cpu_env, tcg_const_tl(dc->op1),
tcg_const_tl(dc->op2));
return 2;
}
static int dec_move_rp(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
LOG_DIS("move $r%u, $p%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, 0);
t[0] = tcg_temp_new();
if (dc->op2 == PR_CCS) {
cris_evaluate_flags(dc);
tcg_gen_mov_tl(t[0], cpu_R[dc->op1]);
if (dc->tb_flags & U_FLAG) {
t[1] = tcg_temp_new();
/* User space is not allowed to touch all flags. */
tcg_gen_andi_tl(t[0], t[0], 0x39f);
tcg_gen_andi_tl(t[1], cpu_PR[PR_CCS], ~0x39f);
tcg_gen_or_tl(t[0], t[1], t[0]);
tcg_temp_free(t[1]);
}
} else {
tcg_gen_mov_tl(t[0], cpu_R[dc->op1]);
}
t_gen_mov_preg_TN(dc, dc->op2, t[0]);
if (dc->op2 == PR_CCS) {
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
dc->flags_uptodate = 1;
}
tcg_temp_free(t[0]);
return 2;
}
static int dec_move_pr(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
LOG_DIS("move $p%u, $r%u\n", dc->op2, dc->op1);
cris_cc_mask(dc, 0);
if (dc->op2 == PR_CCS) {
cris_evaluate_flags(dc);
}
if (dc->op2 == PR_DZ) {
tcg_gen_movi_tl(cpu_R[dc->op1], 0);
} else {
t0 = tcg_temp_new();
t_gen_mov_TN_preg(t0, dc->op2);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op1], cpu_R[dc->op1], t0,
preg_sizes[dc->op2]);
tcg_temp_free(t0);
}
return 2;
}
static int dec_move_mr(CPUCRISState *env, DisasContext *dc)
{
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("move.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
if (memsize == 4) {
insn_len = dec_prep_move_m(env, dc, 0, 4, cpu_R[dc->op2]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_update_cc_op(dc, CC_OP_MOVE, 4);
cris_update_cc_x(dc);
cris_update_result(dc, cpu_R[dc->op2]);
} else {
TCGv t0;
t0 = tcg_temp_new();
insn_len = dec_prep_move_m(env, dc, 0, memsize, t0);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2], cpu_R[dc->op2], t0, memsize);
tcg_temp_free(t0);
}
do_postinc(dc, memsize);
return insn_len;
}
static inline void cris_alu_m_alloc_temps(TCGv *t)
{
t[0] = tcg_temp_new();
t[1] = tcg_temp_new();
}
static inline void cris_alu_m_free_temps(TCGv *t)
{
tcg_temp_free(t[0]);
tcg_temp_free(t[1]);
}
static int dec_movs_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("movs.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
/* sign extend. */
insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_addu_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("addu.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
/* sign extend. */
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADD,
cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_adds_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("adds.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
/* sign extend. */
insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_subu_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("subu.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
/* sign extend. */
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_subs_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("subs.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
/* sign extend. */
insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_movu_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("movu.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_cmpu_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("cmpu.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_cmps_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("cmps.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_CMP,
cpu_R[dc->op2], cpu_R[dc->op2], t[1],
memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_cmp_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("cmp.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_CMP,
cpu_R[dc->op2], cpu_R[dc->op2], t[1],
memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_test_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("test.%c [$r%u%s] op2=%x\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_evaluate_flags(dc);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZ);
tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~3);
cris_alu(dc, CC_OP_CMP,
cpu_R[dc->op2], t[1], tcg_const_tl(0), memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_and_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("and.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_AND, cpu_R[dc->op2], t[0], t[1], memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_add_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("add.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADD,
cpu_R[dc->op2], t[0], t[1], memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_addo_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("add.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]);
cris_cc_mask(dc, 0);
cris_alu(dc, CC_OP_ADD, cpu_R[R_ACR], t[0], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_bound_m(CPUCRISState *env, DisasContext *dc)
{
TCGv l[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("bound.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
l[0] = tcg_temp_local_new();
l[1] = tcg_temp_local_new();
insn_len = dec_prep_alu_m(env, dc, 0, memsize, l[0], l[1]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_BOUND, cpu_R[dc->op2], l[0], l[1], 4);
do_postinc(dc, memsize);
tcg_temp_free(l[0]);
tcg_temp_free(l[1]);
return insn_len;
}
static int dec_addc_mr(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int insn_len = 2;
LOG_DIS("addc [$r%u%s, $r%u\n",
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_evaluate_flags(dc);
/* Set for this insn. */
dc->flagx_known = 1;
dc->flags_x = X_FLAG;
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, 4, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADDC, cpu_R[dc->op2], t[0], t[1], 4);
do_postinc(dc, 4);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_sub_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("sub.%c [$r%u%s, $r%u ir=%x zz=%x\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2, dc->ir, dc->zzsize);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], t[0], t[1], memsize);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_or_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("or.%c [$r%u%s, $r%u pc=%x\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2, dc->pc);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_OR,
cpu_R[dc->op2], t[0], t[1], memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_move_mp(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len = 2;
LOG_DIS("move.%c [$r%u%s, $p%u\n",
memsize_char(memsize),
dc->op1,
dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, 0);
if (dc->op2 == PR_CCS) {
cris_evaluate_flags(dc);
if (dc->tb_flags & U_FLAG) {
/* User space is not allowed to touch all flags. */
tcg_gen_andi_tl(t[1], t[1], 0x39f);
tcg_gen_andi_tl(t[0], cpu_PR[PR_CCS], ~0x39f);
tcg_gen_or_tl(t[1], t[0], t[1]);
}
}
t_gen_mov_preg_TN(dc, dc->op2, t[1]);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_move_pm(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int memsize;
memsize = preg_sizes[dc->op2];
LOG_DIS("move.%c $p%u, [$r%u%s\n",
memsize_char(memsize),
dc->op2, dc->op1, dc->postinc ? "+]" : "]");
/* prepare store. Address in T0, value in T1. */
if (dc->op2 == PR_CCS) {
cris_evaluate_flags(dc);
}
t0 = tcg_temp_new();
t_gen_mov_TN_preg(t0, dc->op2);
cris_flush_cc_state(dc);
gen_store(dc, cpu_R[dc->op1], t0, memsize);
tcg_temp_free(t0);
cris_cc_mask(dc, 0);
if (dc->postinc) {
tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], memsize);
}
return 2;
}
static int dec_movem_mr(CPUCRISState *env, DisasContext *dc)
{
TCGv_i64 tmp[16];
TCGv tmp32;
TCGv addr;
int i;
int nr = dc->op2 + 1;
LOG_DIS("movem [$r%u%s, $r%u\n", dc->op1,
dc->postinc ? "+]" : "]", dc->op2);
addr = tcg_temp_new();
/* There are probably better ways of doing this. */
cris_flush_cc_state(dc);
for (i = 0; i < (nr >> 1); i++) {
tmp[i] = tcg_temp_new_i64();
tcg_gen_addi_tl(addr, cpu_R[dc->op1], i * 8);
gen_load64(dc, tmp[i], addr);
}
if (nr & 1) {
tmp32 = tcg_temp_new_i32();
tcg_gen_addi_tl(addr, cpu_R[dc->op1], i * 8);
gen_load(dc, tmp32, addr, 4, 0);
} else {
tmp32 = NULL;
}
tcg_temp_free(addr);
for (i = 0; i < (nr >> 1); i++) {
tcg_gen_extrl_i64_i32(cpu_R[i * 2], tmp[i]);
tcg_gen_shri_i64(tmp[i], tmp[i], 32);
tcg_gen_extrl_i64_i32(cpu_R[i * 2 + 1], tmp[i]);
tcg_temp_free_i64(tmp[i]);
}
if (nr & 1) {
tcg_gen_mov_tl(cpu_R[dc->op2], tmp32);
tcg_temp_free(tmp32);
}
/* writeback the updated pointer value. */
if (dc->postinc) {
tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], nr * 4);
}
/* gen_load might want to evaluate the previous insns flags. */
cris_cc_mask(dc, 0);
return 2;
}
static int dec_movem_rm(CPUCRISState *env, DisasContext *dc)
{
TCGv tmp;
TCGv addr;
int i;
LOG_DIS("movem $r%u, [$r%u%s\n", dc->op2, dc->op1,
dc->postinc ? "+]" : "]");
cris_flush_cc_state(dc);
tmp = tcg_temp_new();
addr = tcg_temp_new();
tcg_gen_movi_tl(tmp, 4);
tcg_gen_mov_tl(addr, cpu_R[dc->op1]);
for (i = 0; i <= dc->op2; i++) {
/* Displace addr. */
/* Perform the store. */
gen_store(dc, addr, cpu_R[i], 4);
tcg_gen_add_tl(addr, addr, tmp);
}
if (dc->postinc) {
tcg_gen_mov_tl(cpu_R[dc->op1], addr);
}
cris_cc_mask(dc, 0);
tcg_temp_free(tmp);
tcg_temp_free(addr);
return 2;
}
static int dec_move_rm(CPUCRISState *env, DisasContext *dc)
{
int memsize;
memsize = memsize_zz(dc);
LOG_DIS("move.%c $r%u, [$r%u]\n",
memsize_char(memsize), dc->op2, dc->op1);
/* prepare store. */
cris_flush_cc_state(dc);
gen_store(dc, cpu_R[dc->op1], cpu_R[dc->op2], memsize);
if (dc->postinc) {
tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], memsize);
}
cris_cc_mask(dc, 0);
return 2;
}
static int dec_lapcq(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("lapcq %x, $r%u\n",
dc->pc + dc->op1*2, dc->op2);
cris_cc_mask(dc, 0);
tcg_gen_movi_tl(cpu_R[dc->op2], dc->pc + dc->op1 * 2);
return 2;
}
static int dec_lapc_im(CPUCRISState *env, DisasContext *dc)
{
unsigned int rd;
int32_t imm;
int32_t pc;
rd = dc->op2;
cris_cc_mask(dc, 0);
imm = cris_fetch(env, dc, dc->pc + 2, 4, 0);
LOG_DIS("lapc 0x%x, $r%u\n", imm + dc->pc, dc->op2);
pc = dc->pc;
pc += imm;
tcg_gen_movi_tl(cpu_R[rd], pc);
return 6;
}
/* Jump to special reg. */
static int dec_jump_p(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("jump $p%u\n", dc->op2);
if (dc->op2 == PR_CCS) {
cris_evaluate_flags(dc);
}
t_gen_mov_TN_preg(env_btarget, dc->op2);
/* rete will often have low bit set to indicate delayslot. */
tcg_gen_andi_tl(env_btarget, env_btarget, ~1);
cris_cc_mask(dc, 0);
cris_prepare_jmp(dc, JMP_INDIRECT);
return 2;
}
/* Jump and save. */
static int dec_jas_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("jas $r%u, $p%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
tcg_gen_mov_tl(env_btarget, cpu_R[dc->op1]);
if (dc->op2 > 15) {
abort();
}
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 4));
cris_prepare_jmp(dc, JMP_INDIRECT);
return 2;
}
static int dec_jas_im(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
imm = cris_fetch(env, dc, dc->pc + 2, 4, 0);
LOG_DIS("jas 0x%x\n", imm);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 8));
dc->jmp_pc = imm;
cris_prepare_jmp(dc, JMP_DIRECT);
return 6;
}
static int dec_jasc_im(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
imm = cris_fetch(env, dc, dc->pc + 2, 4, 0);
LOG_DIS("jasc 0x%x\n", imm);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 8 + 4));
dc->jmp_pc = imm;
cris_prepare_jmp(dc, JMP_DIRECT);
return 6;
}
static int dec_jasc_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("jasc_r $r%u, $p%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
tcg_gen_mov_tl(env_btarget, cpu_R[dc->op1]);
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 4 + 4));
cris_prepare_jmp(dc, JMP_INDIRECT);
return 2;
}
static int dec_bcc_im(CPUCRISState *env, DisasContext *dc)
{
int32_t offset;
uint32_t cond = dc->op2;
offset = cris_fetch(env, dc, dc->pc + 2, 2, 1);
LOG_DIS("b%s %d pc=%x dst=%x\n",
cc_name(cond), offset,
dc->pc, dc->pc + offset);
cris_cc_mask(dc, 0);
/* op2 holds the condition-code. */
cris_prepare_cc_branch(dc, offset, cond);
return 4;
}
static int dec_bas_im(CPUCRISState *env, DisasContext *dc)
{
int32_t simm;
simm = cris_fetch(env, dc, dc->pc + 2, 4, 0);
LOG_DIS("bas 0x%x, $p%u\n", dc->pc + simm, dc->op2);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 8));
dc->jmp_pc = dc->pc + simm;
cris_prepare_jmp(dc, JMP_DIRECT);
return 6;
}
static int dec_basc_im(CPUCRISState *env, DisasContext *dc)
{
int32_t simm;
simm = cris_fetch(env, dc, dc->pc + 2, 4, 0);
LOG_DIS("basc 0x%x, $p%u\n", dc->pc + simm, dc->op2);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 12));
dc->jmp_pc = dc->pc + simm;
cris_prepare_jmp(dc, JMP_DIRECT);
return 6;
}
static int dec_rfe_etc(CPUCRISState *env, DisasContext *dc)
{
cris_cc_mask(dc, 0);
if (dc->op2 == 15) {
tcg_gen_st_i32(tcg_const_i32(1), cpu_env,
-offsetof(CRISCPU, env) + offsetof(CPUState, halted));
tcg_gen_movi_tl(env_pc, dc->pc + 2);
t_gen_raise_exception(EXCP_HLT);
return 2;
}
switch (dc->op2 & 7) {
case 2:
/* rfe. */
LOG_DIS("rfe\n");
cris_evaluate_flags(dc);
gen_helper_rfe(cpu_env);
dc->is_jmp = DISAS_UPDATE;
break;
case 5:
/* rfn. */
LOG_DIS("rfn\n");
cris_evaluate_flags(dc);
gen_helper_rfn(cpu_env);
dc->is_jmp = DISAS_UPDATE;
break;
case 6:
LOG_DIS("break %d\n", dc->op1);
cris_evaluate_flags(dc);
/* break. */
tcg_gen_movi_tl(env_pc, dc->pc + 2);
/* Breaks start at 16 in the exception vector. */
t_gen_mov_env_TN(trap_vector,
tcg_const_tl(dc->op1 + 16));
t_gen_raise_exception(EXCP_BREAK);
dc->is_jmp = DISAS_UPDATE;
break;
default:
printf("op2=%x\n", dc->op2);
BUG();
break;
}
return 2;
}
static int dec_ftag_fidx_d_m(CPUCRISState *env, DisasContext *dc)
{
return 2;
}
static int dec_ftag_fidx_i_m(CPUCRISState *env, DisasContext *dc)
{
return 2;
}
static int dec_null(CPUCRISState *env, DisasContext *dc)
{
printf("unknown insn pc=%x opc=%x op1=%x op2=%x\n",
dc->pc, dc->opcode, dc->op1, dc->op2);
fflush(NULL);
BUG();
return 2;
}
static struct decoder_info {
struct {
uint32_t bits;
uint32_t mask;
};
int (*dec)(CPUCRISState *env, DisasContext *dc);
} decinfo[] = {
/* Order matters here. */
{DEC_MOVEQ, dec_moveq},
{DEC_BTSTQ, dec_btstq},
{DEC_CMPQ, dec_cmpq},
{DEC_ADDOQ, dec_addoq},
{DEC_ADDQ, dec_addq},
{DEC_SUBQ, dec_subq},
{DEC_ANDQ, dec_andq},
{DEC_ORQ, dec_orq},
{DEC_ASRQ, dec_asrq},
{DEC_LSLQ, dec_lslq},
{DEC_LSRQ, dec_lsrq},
{DEC_BCCQ, dec_bccq},
{DEC_BCC_IM, dec_bcc_im},
{DEC_JAS_IM, dec_jas_im},
{DEC_JAS_R, dec_jas_r},
{DEC_JASC_IM, dec_jasc_im},
{DEC_JASC_R, dec_jasc_r},
{DEC_BAS_IM, dec_bas_im},
{DEC_BASC_IM, dec_basc_im},
{DEC_JUMP_P, dec_jump_p},
{DEC_LAPC_IM, dec_lapc_im},
{DEC_LAPCQ, dec_lapcq},
{DEC_RFE_ETC, dec_rfe_etc},
{DEC_ADDC_MR, dec_addc_mr},
{DEC_MOVE_MP, dec_move_mp},
{DEC_MOVE_PM, dec_move_pm},
{DEC_MOVEM_MR, dec_movem_mr},
{DEC_MOVEM_RM, dec_movem_rm},
{DEC_MOVE_PR, dec_move_pr},
{DEC_SCC_R, dec_scc_r},
{DEC_SETF, dec_setclrf},
{DEC_CLEARF, dec_setclrf},
{DEC_MOVE_SR, dec_move_sr},
{DEC_MOVE_RP, dec_move_rp},
{DEC_SWAP_R, dec_swap_r},
{DEC_ABS_R, dec_abs_r},
{DEC_LZ_R, dec_lz_r},
{DEC_MOVE_RS, dec_move_rs},
{DEC_BTST_R, dec_btst_r},
{DEC_ADDC_R, dec_addc_r},
{DEC_DSTEP_R, dec_dstep_r},
{DEC_XOR_R, dec_xor_r},
{DEC_MCP_R, dec_mcp_r},
{DEC_CMP_R, dec_cmp_r},
{DEC_ADDI_R, dec_addi_r},
{DEC_ADDI_ACR, dec_addi_acr},
{DEC_ADD_R, dec_add_r},
{DEC_SUB_R, dec_sub_r},
{DEC_ADDU_R, dec_addu_r},
{DEC_ADDS_R, dec_adds_r},
{DEC_SUBU_R, dec_subu_r},
{DEC_SUBS_R, dec_subs_r},
{DEC_LSL_R, dec_lsl_r},
{DEC_AND_R, dec_and_r},
{DEC_OR_R, dec_or_r},
{DEC_BOUND_R, dec_bound_r},
{DEC_ASR_R, dec_asr_r},
{DEC_LSR_R, dec_lsr_r},
{DEC_MOVU_R, dec_movu_r},
{DEC_MOVS_R, dec_movs_r},
{DEC_NEG_R, dec_neg_r},
{DEC_MOVE_R, dec_move_r},
{DEC_FTAG_FIDX_I_M, dec_ftag_fidx_i_m},
{DEC_FTAG_FIDX_D_M, dec_ftag_fidx_d_m},
{DEC_MULS_R, dec_muls_r},
{DEC_MULU_R, dec_mulu_r},
{DEC_ADDU_M, dec_addu_m},
{DEC_ADDS_M, dec_adds_m},
{DEC_SUBU_M, dec_subu_m},
{DEC_SUBS_M, dec_subs_m},
{DEC_CMPU_M, dec_cmpu_m},
{DEC_CMPS_M, dec_cmps_m},
{DEC_MOVU_M, dec_movu_m},
{DEC_MOVS_M, dec_movs_m},
{DEC_CMP_M, dec_cmp_m},
{DEC_ADDO_M, dec_addo_m},
{DEC_BOUND_M, dec_bound_m},
{DEC_ADD_M, dec_add_m},
{DEC_SUB_M, dec_sub_m},
{DEC_AND_M, dec_and_m},
{DEC_OR_M, dec_or_m},
{DEC_MOVE_RM, dec_move_rm},
{DEC_TEST_M, dec_test_m},
{DEC_MOVE_MR, dec_move_mr},
{{0, 0}, dec_null}
};
static unsigned int crisv32_decoder(CPUCRISState *env, DisasContext *dc)
{
int insn_len = 2;
int i;
/* Load a halfword onto the instruction register. */
dc->ir = cris_fetch(env, dc, dc->pc, 2, 0);
/* Now decode it. */
dc->opcode = EXTRACT_FIELD(dc->ir, 4, 11);
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 3);
dc->op2 = EXTRACT_FIELD(dc->ir, 12, 15);
dc->zsize = EXTRACT_FIELD(dc->ir, 4, 4);
dc->zzsize = EXTRACT_FIELD(dc->ir, 4, 5);
dc->postinc = EXTRACT_FIELD(dc->ir, 10, 10);
/* Large switch for all insns. */
for (i = 0; i < ARRAY_SIZE(decinfo); i++) {
if ((dc->opcode & decinfo[i].mask) == decinfo[i].bits) {
insn_len = decinfo[i].dec(env, dc);
break;
}
}
#if !defined(CONFIG_USER_ONLY)
/* Single-stepping ? */
if (dc->tb_flags & S_FLAG) {
TCGLabel *l1 = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_NE, cpu_PR[PR_SPC], dc->pc, l1);
/* We treat SPC as a break with an odd trap vector. */
cris_evaluate_flags(dc);
t_gen_mov_env_TN(trap_vector, tcg_const_tl(3));
tcg_gen_movi_tl(env_pc, dc->pc + insn_len);
tcg_gen_movi_tl(cpu_PR[PR_SPC], dc->pc + insn_len);
t_gen_raise_exception(EXCP_BREAK);
gen_set_label(l1);
}
#endif
return insn_len;
}
#include "translate_v10.c.inc"
/*
* Delay slots on QEMU/CRIS.
*
* If an exception hits on a delayslot, the core will let ERP (the Exception
* Return Pointer) point to the branch (the previous) insn and set the lsb to
* to give SW a hint that the exception actually hit on the dslot.
*
* CRIS expects all PC addresses to be 16-bit aligned. The lsb is ignored by
* the core and any jmp to an odd addresses will mask off that lsb. It is
* simply there to let sw know there was an exception on a dslot.
*
* When the software returns from an exception, the branch will re-execute.
* On QEMU care needs to be taken when a branch+delayslot sequence is broken
* and the branch and delayslot don't share pages.
*
* The TB contaning the branch insn will set up env->btarget and evaluate
* env->btaken. When the translation loop exits we will note that the branch
* sequence is broken and let env->dslot be the size of the branch insn (those
* vary in length).
*
* The TB contaning the delayslot will have the PC of its real insn (i.e no lsb
* set). It will also expect to have env->dslot setup with the size of the
* delay slot so that env->pc - env->dslot point to the branch insn. This TB
* will execute the dslot and take the branch, either to btarget or just one
* insn ahead.
*
* When exceptions occur, we check for env->dslot in do_interrupt to detect
* broken branch sequences and setup $erp accordingly (i.e let it point to the
* branch and set lsb). Then env->dslot gets cleared so that the exception
* handler can enter. When returning from exceptions (jump $erp) the lsb gets
* masked off and we will reexecute the branch insn.
*
*/
/* generate intermediate code for basic block 'tb'. */
void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns)
{
CPUCRISState *env = cs->env_ptr;
uint32_t pc_start;
unsigned int insn_len;
struct DisasContext ctx;
struct DisasContext *dc = &ctx;
uint32_t page_start;
target_ulong npc;
int num_insns;
if (env->pregs[PR_VR] == 32) {
dc->decoder = crisv32_decoder;
dc->clear_locked_irq = 0;
} else {
dc->decoder = crisv10_decoder;
dc->clear_locked_irq = 1;
}
/* Odd PC indicates that branch is rexecuting due to exception in the
* delayslot, like in real hw.
*/
pc_start = tb->pc & ~1;
dc->cpu = env_archcpu(env);
dc->tb = tb;
dc->is_jmp = DISAS_NEXT;
dc->ppc = pc_start;
dc->pc = pc_start;
dc->singlestep_enabled = cs->singlestep_enabled;
dc->flags_uptodate = 1;
dc->flagx_known = 1;
dc->flags_x = tb->flags & X_FLAG;
dc->cc_x_uptodate = 0;
dc->cc_mask = 0;
dc->update_cc = 0;
dc->clear_prefix = 0;
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
dc->cc_size_uptodate = -1;
/* Decode TB flags. */
dc->tb_flags = tb->flags & (S_FLAG | P_FLAG | U_FLAG \
| X_FLAG | PFIX_FLAG);
dc->delayed_branch = !!(tb->flags & 7);
if (dc->delayed_branch) {
dc->jmp = JMP_INDIRECT;
} else {
dc->jmp = JMP_NOJMP;
}
dc->cpustate_changed = 0;
page_start = pc_start & TARGET_PAGE_MASK;
num_insns = 0;
gen_tb_start(tb);
do {
tcg_gen_insn_start(dc->delayed_branch == 1
? dc->ppc | 1 : dc->pc);
num_insns++;
if (unlikely(cpu_breakpoint_test(cs, dc->pc, BP_ANY))) {
cris_evaluate_flags(dc);
tcg_gen_movi_tl(env_pc, dc->pc);
t_gen_raise_exception(EXCP_DEBUG);
dc->is_jmp = DISAS_UPDATE;
/* The address covered by the breakpoint must be included in
[tb->pc, tb->pc + tb->size) in order to for it to be
properly cleared -- thus we increment the PC here so that
the logic setting tb->size below does the right thing. */
dc->pc += 2;
break;
}
/* Pretty disas. */
LOG_DIS("%8.8x:\t", dc->pc);
if (num_insns == max_insns && (tb_cflags(tb) & CF_LAST_IO)) {
gen_io_start();
}
dc->clear_x = 1;
insn_len = dc->decoder(env, dc);
dc->ppc = dc->pc;
dc->pc += insn_len;
if (dc->clear_x) {
cris_clear_x_flag(dc);
}
/* Check for delayed branches here. If we do it before
actually generating any host code, the simulator will just
loop doing nothing for on this program location. */
if (dc->delayed_branch) {
dc->delayed_branch--;
if (dc->delayed_branch == 0) {
if (tb->flags & 7) {
t_gen_mov_env_TN(dslot, tcg_const_tl(0));
}
if (dc->cpustate_changed || !dc->flagx_known
|| (dc->flags_x != (tb->flags & X_FLAG))) {
cris_store_direct_jmp(dc);
}
if (dc->clear_locked_irq) {
dc->clear_locked_irq = 0;
t_gen_mov_env_TN(locked_irq, tcg_const_tl(0));
}
if (dc->jmp == JMP_DIRECT_CC) {
TCGLabel *l1 = gen_new_label();
cris_evaluate_flags(dc);
/* Conditional jmp. */
tcg_gen_brcondi_tl(TCG_COND_EQ,
env_btaken, 0, l1);
gen_goto_tb(dc, 1, dc->jmp_pc);
gen_set_label(l1);
gen_goto_tb(dc, 0, dc->pc);
dc->is_jmp = DISAS_TB_JUMP;
dc->jmp = JMP_NOJMP;
} else if (dc->jmp == JMP_DIRECT) {
cris_evaluate_flags(dc);
gen_goto_tb(dc, 0, dc->jmp_pc);
dc->is_jmp = DISAS_TB_JUMP;
dc->jmp = JMP_NOJMP;
} else {
t_gen_cc_jmp(env_btarget, tcg_const_tl(dc->pc));
dc->is_jmp = DISAS_JUMP;
}
break;
}
}
/* If we are rexecuting a branch due to exceptions on
delay slots don't break. */
if (!(tb->pc & 1) && cs->singlestep_enabled) {
break;
}
} while (!dc->is_jmp && !dc->cpustate_changed
&& !tcg_op_buf_full()
&& !singlestep
&& (dc->pc - page_start < TARGET_PAGE_SIZE)
&& num_insns < max_insns);
if (dc->clear_locked_irq) {
t_gen_mov_env_TN(locked_irq, tcg_const_tl(0));
}
npc = dc->pc;
/* Force an update if the per-tb cpu state has changed. */
if (dc->is_jmp == DISAS_NEXT
&& (dc->cpustate_changed || !dc->flagx_known
|| (dc->flags_x != (tb->flags & X_FLAG)))) {
dc->is_jmp = DISAS_UPDATE;
tcg_gen_movi_tl(env_pc, npc);
}
/* Broken branch+delayslot sequence. */
if (dc->delayed_branch == 1) {
/* Set env->dslot to the size of the branch insn. */
t_gen_mov_env_TN(dslot, tcg_const_tl(dc->pc - dc->ppc));
cris_store_direct_jmp(dc);
}
cris_evaluate_flags(dc);
if (unlikely(cs->singlestep_enabled)) {
if (dc->is_jmp == DISAS_NEXT) {
tcg_gen_movi_tl(env_pc, npc);
}
t_gen_raise_exception(EXCP_DEBUG);
} else {
switch (dc->is_jmp) {
case DISAS_NEXT:
gen_goto_tb(dc, 1, npc);
break;
default:
case DISAS_JUMP:
case DISAS_UPDATE:
/* indicate that the hash table must be used
to find the next TB */
tcg_gen_exit_tb(NULL, 0);
break;
case DISAS_SWI:
case DISAS_TB_JUMP:
/* nothing more to generate */
break;
}
}
gen_tb_end(tb, num_insns);
tb->size = dc->pc - pc_start;
tb->icount = num_insns;
#ifdef DEBUG_DISAS
#if !DISAS_CRIS
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)
&& qemu_log_in_addr_range(pc_start)) {
FILE *logfile = qemu_log_lock();
qemu_log("--------------\n");
qemu_log("IN: %s\n", lookup_symbol(pc_start));
log_target_disas(cs, pc_start, dc->pc - pc_start);
qemu_log_unlock(logfile);
}
#endif
#endif
}
void cris_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
CRISCPU *cpu = CRIS_CPU(cs);
CPUCRISState *env = &cpu->env;
const char **regnames;
const char **pregnames;
int i;
if (!env) {
return;
}
if (env->pregs[PR_VR] < 32) {
pregnames = pregnames_v10;
regnames = regnames_v10;
} else {
pregnames = pregnames_v32;
regnames = regnames_v32;
}
qemu_fprintf(f, "PC=%x CCS=%x btaken=%d btarget=%x\n"
"cc_op=%d cc_src=%d cc_dest=%d cc_result=%x cc_mask=%x\n",
env->pc, env->pregs[PR_CCS], env->btaken, env->btarget,
env->cc_op,
env->cc_src, env->cc_dest, env->cc_result, env->cc_mask);
for (i = 0; i < 16; i++) {
qemu_fprintf(f, "%s=%8.8x ", regnames[i], env->regs[i]);
if ((i + 1) % 4 == 0) {
qemu_fprintf(f, "\n");
}
}
qemu_fprintf(f, "\nspecial regs:\n");
for (i = 0; i < 16; i++) {
qemu_fprintf(f, "%s=%8.8x ", pregnames[i], env->pregs[i]);
if ((i + 1) % 4 == 0) {
qemu_fprintf(f, "\n");
}
}
if (env->pregs[PR_VR] >= 32) {
uint32_t srs = env->pregs[PR_SRS];
qemu_fprintf(f, "\nsupport function regs bank %x:\n", srs);
if (srs < ARRAY_SIZE(env->sregs)) {
for (i = 0; i < 16; i++) {
qemu_fprintf(f, "s%2.2d=%8.8x ",
i, env->sregs[srs][i]);
if ((i + 1) % 4 == 0) {
qemu_fprintf(f, "\n");
}
}
}
}
qemu_fprintf(f, "\n\n");
}
void cris_initialize_tcg(void)
{
int i;
cc_x = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, cc_x), "cc_x");
cc_src = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, cc_src), "cc_src");
cc_dest = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, cc_dest),
"cc_dest");
cc_result = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, cc_result),
"cc_result");
cc_op = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, cc_op), "cc_op");
cc_size = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, cc_size),
"cc_size");
cc_mask = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, cc_mask),
"cc_mask");
env_pc = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, pc),
"pc");
env_btarget = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, btarget),
"btarget");
env_btaken = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, btaken),
"btaken");
for (i = 0; i < 16; i++) {
cpu_R[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, regs[i]),
regnames_v32[i]);
}
for (i = 0; i < 16; i++) {
cpu_PR[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUCRISState, pregs[i]),
pregnames_v32[i]);
}
}
void restore_state_to_opc(CPUCRISState *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc = data[0];
}