mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-24 20:19:44 +00:00
9dd003a998
We are going to drop group file. Define group in tests as a preparatory step. The patch is generated by cd tests/qemu-iotests grep '^[0-9]\{3\} ' group | while read line; do file=$(awk '{print $1}' <<< "$line"); groups=$(sed -e 's/^... //' <<< "$line"); awk "NR==2{print \"# group: $groups\"}1" $file > tmp; cat tmp > $file; done Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> Reviewed-by: Eric Blake <eblake@redhat.com> Message-Id: <20210116134424.82867-7-vsementsov@virtuozzo.com> Signed-off-by: Eric Blake <eblake@redhat.com>
903 lines
32 KiB
Bash
Executable File
903 lines
32 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
# group: rw auto
|
|
#
|
|
# Test qcow2 images with extended L2 entries
|
|
#
|
|
# Copyright (C) 2019-2020 Igalia, S.L.
|
|
# Author: Alberto Garcia <berto@igalia.com>
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 2 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
|
|
# creator
|
|
owner=berto@igalia.com
|
|
|
|
seq="$(basename $0)"
|
|
echo "QA output created by $seq"
|
|
|
|
here="$PWD"
|
|
status=1 # failure is the default!
|
|
|
|
_cleanup()
|
|
{
|
|
_cleanup_test_img
|
|
rm -f "$TEST_IMG.raw"
|
|
}
|
|
trap "_cleanup; exit \$status" 0 1 2 3 15
|
|
|
|
# get standard environment, filters and checks
|
|
. ./common.rc
|
|
. ./common.filter
|
|
|
|
_supported_fmt qcow2
|
|
_supported_proto file nfs
|
|
_supported_os Linux
|
|
_unsupported_imgopts extended_l2 compat=0.10 cluster_size data_file refcount_bits=1[^0-9]
|
|
|
|
l2_offset=$((0x40000))
|
|
|
|
_verify_img()
|
|
{
|
|
$QEMU_IMG compare "$TEST_IMG" "$TEST_IMG.raw" | grep -v 'Images are identical'
|
|
$QEMU_IMG check "$TEST_IMG" | _filter_qemu_img_check | \
|
|
grep -v 'No errors were found on the image'
|
|
}
|
|
|
|
# Compare the bitmap of an extended L2 entry against an expected value
|
|
_verify_l2_bitmap()
|
|
{
|
|
entry_no="$1" # L2 entry number, starting from 0
|
|
expected_alloc="$alloc" # Space-separated list of allocated subcluster indexes
|
|
expected_zero="$zero" # Space-separated list of zero subcluster indexes
|
|
|
|
offset=$(($l2_offset + $entry_no * 16))
|
|
entry=$(peek_file_be "$TEST_IMG" $offset 8)
|
|
offset=$(($offset + 8))
|
|
bitmap=$(peek_file_be "$TEST_IMG" $offset 8)
|
|
|
|
expected_bitmap=0
|
|
for bit in $expected_alloc; do
|
|
expected_bitmap=$(($expected_bitmap | (1 << $bit)))
|
|
done
|
|
for bit in $expected_zero; do
|
|
expected_bitmap=$(($expected_bitmap | (1 << (32 + $bit))))
|
|
done
|
|
printf -v expected_bitmap "%u" $expected_bitmap # Convert to unsigned
|
|
|
|
printf "L2 entry #%d: 0x%016x %016x\n" "$entry_no" "$entry" "$bitmap"
|
|
if [ "$bitmap" != "$expected_bitmap" ]; then
|
|
printf "ERROR: expecting bitmap 0x%016x\n" "$expected_bitmap"
|
|
fi
|
|
}
|
|
|
|
# This should be called as _run_test c=XXX sc=XXX off=XXX len=XXX cmd=XXX
|
|
# c: cluster number (0 if unset)
|
|
# sc: subcluster number inside cluster @c (0 if unset)
|
|
# off: offset inside subcluster @sc, in kilobytes (0 if unset)
|
|
# len: request length, passed directly to qemu-io (e.g: 256, 4k, 1M, ...)
|
|
# cmd: the command to pass to qemu-io, must be one of
|
|
# write -> write
|
|
# zero -> write -z
|
|
# unmap -> write -z -u
|
|
# compress -> write -c
|
|
# discard -> discard
|
|
_run_test()
|
|
{
|
|
unset c sc off len cmd
|
|
for var in "$@"; do eval "$var"; done
|
|
case "${cmd:-write}" in
|
|
zero)
|
|
cmd="write -q -z";;
|
|
unmap)
|
|
cmd="write -q -z -u";;
|
|
compress)
|
|
pat=$((${pat:-0} + 1))
|
|
cmd="write -q -c -P ${pat}";;
|
|
write)
|
|
pat=$((${pat:-0} + 1))
|
|
cmd="write -q -P ${pat}";;
|
|
discard)
|
|
cmd="discard -q";;
|
|
*)
|
|
echo "Unknown option $cmd"
|
|
exit 1;;
|
|
esac
|
|
c="${c:-0}"
|
|
sc="${sc:-0}"
|
|
off="${off:-0}"
|
|
offset="$(($c * 64 + $sc * 2 + $off))"
|
|
[ "$offset" != 0 ] && offset="${offset}k"
|
|
cmd="$cmd ${offset} ${len}"
|
|
raw_cmd=$(echo $cmd | sed s/-c//) # Raw images don't support -c
|
|
echo $cmd | sed 's/-P [0-9][0-9]\?/-P PATTERN/'
|
|
$QEMU_IO -c "$cmd" "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IO -c "$raw_cmd" -f raw "$TEST_IMG.raw" | _filter_qemu_io
|
|
_verify_img
|
|
_verify_l2_bitmap "$c"
|
|
}
|
|
|
|
_reset_img()
|
|
{
|
|
size="$1"
|
|
$QEMU_IMG create -f raw "$TEST_IMG.raw" "$size" | _filter_img_create
|
|
if [ "$use_backing_file" = "yes" ]; then
|
|
$QEMU_IMG create -f raw "$TEST_IMG.base" "$size" | _filter_img_create
|
|
$QEMU_IO -c "write -q -P 0xFF 0 $size" -f raw "$TEST_IMG.base" | _filter_qemu_io
|
|
$QEMU_IO -c "write -q -P 0xFF 0 $size" -f raw "$TEST_IMG.raw" | _filter_qemu_io
|
|
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" "$size"
|
|
else
|
|
_make_test_img -o extended_l2=on "$size"
|
|
fi
|
|
}
|
|
|
|
############################################################
|
|
############################################################
|
|
############################################################
|
|
|
|
# Test that writing to an image with subclusters produces the expected
|
|
# results, in images with and without backing files
|
|
for use_backing_file in yes no; do
|
|
echo
|
|
echo "### Standard write tests (backing file: $use_backing_file) ###"
|
|
echo
|
|
_reset_img 1M
|
|
### Write subcluster #0 (beginning of subcluster) ###
|
|
alloc="0"; zero=""
|
|
_run_test sc=0 len=1k
|
|
|
|
### Write subcluster #1 (middle of subcluster) ###
|
|
alloc="0 1"; zero=""
|
|
_run_test sc=1 off=1 len=512
|
|
|
|
### Write subcluster #2 (end of subcluster) ###
|
|
alloc="0 1 2"; zero=""
|
|
_run_test sc=2 off=1 len=1k
|
|
|
|
### Write subcluster #3 (full subcluster) ###
|
|
alloc="0 1 2 3"; zero=""
|
|
_run_test sc=3 len=2k
|
|
|
|
### Write subclusters #4-6 (full subclusters) ###
|
|
alloc="$(seq 0 6)"; zero=""
|
|
_run_test sc=4 len=6k
|
|
|
|
### Write subclusters #7-9 (partial subclusters) ###
|
|
alloc="$(seq 0 9)"; zero=""
|
|
_run_test sc=7 off=1 len=4k
|
|
|
|
### Write subcluster #16 (partial subcluster) ###
|
|
alloc="$(seq 0 9) 16"; zero=""
|
|
_run_test sc=16 len=1k
|
|
|
|
### Write subcluster #31-#33 (cluster overlap) ###
|
|
alloc="$(seq 0 9) 16 31"; zero=""
|
|
_run_test sc=31 off=1 len=4k
|
|
alloc="0 1" ; zero=""
|
|
_verify_l2_bitmap 1
|
|
|
|
### Zero subcluster #1
|
|
alloc="0 $(seq 2 9) 16 31"; zero="1"
|
|
_run_test sc=1 len=2k cmd=zero
|
|
|
|
### Zero cluster #0
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_run_test sc=0 len=64k cmd=zero
|
|
|
|
### Fill cluster #0 with data
|
|
alloc="$(seq 0 31)"; zero=""
|
|
_run_test sc=0 len=64k
|
|
|
|
### Zero and unmap half of cluster #0 (this won't unmap it)
|
|
alloc="$(seq 16 31)"; zero="$(seq 0 15)"
|
|
_run_test sc=0 len=32k cmd=unmap
|
|
|
|
### Zero and unmap cluster #0
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_run_test sc=0 len=64k cmd=unmap
|
|
|
|
### Write subcluster #1 (middle of subcluster)
|
|
alloc="1"; zero="0 $(seq 2 31)"
|
|
_run_test sc=1 off=1 len=512
|
|
|
|
### Fill cluster #0 with data
|
|
alloc="$(seq 0 31)"; zero=""
|
|
_run_test sc=0 len=64k
|
|
|
|
### Discard cluster #0
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_run_test sc=0 len=64k cmd=discard
|
|
|
|
### Write compressed data to cluster #0
|
|
alloc=""; zero=""
|
|
_run_test sc=0 len=64k cmd=compress
|
|
|
|
### Write subcluster #1 (middle of subcluster)
|
|
alloc="$(seq 0 31)"; zero=""
|
|
_run_test sc=1 off=1 len=512
|
|
done
|
|
|
|
############################################################
|
|
############################################################
|
|
############################################################
|
|
|
|
# calculate_l2_meta() checks if none of the clusters affected by a
|
|
# write operation need COW or changes to their L2 metadata and simply
|
|
# returns when they don't. This is a test for that optimization.
|
|
# Here clusters #0-#3 are overwritten but only #1 and #2 need changes.
|
|
echo
|
|
echo '### Overwriting several clusters without COW ###'
|
|
echo
|
|
use_backing_file="no" _reset_img 1M
|
|
# Write cluster #0, subclusters #12-#31
|
|
alloc="$(seq 12 31)"; zero=""
|
|
_run_test sc=12 len=40k
|
|
|
|
# Write cluster #1, subcluster #13
|
|
alloc="13"; zero=""
|
|
_run_test c=1 sc=13 len=2k
|
|
|
|
# Zeroize cluster #2, subcluster #14
|
|
alloc="14"; zero=""
|
|
_run_test c=2 sc=14 len=2k
|
|
alloc=""; zero="14"
|
|
_run_test c=2 sc=14 len=2k cmd=zero
|
|
|
|
# Write cluster #3, subclusters #0-#16
|
|
alloc="$(seq 0 16)"; zero=""
|
|
_run_test c=3 sc=0 len=34k
|
|
|
|
# Write from cluster #0, subcluster #12 to cluster #3, subcluster #11
|
|
alloc="$(seq 12 31)"; zero=""
|
|
_run_test sc=12 len=192k
|
|
alloc="$(seq 0 31)"; zero=""
|
|
_verify_l2_bitmap 1
|
|
_verify_l2_bitmap 2
|
|
|
|
alloc="$(seq 0 16)"; zero=""
|
|
_verify_l2_bitmap 3
|
|
|
|
############################################################
|
|
############################################################
|
|
############################################################
|
|
|
|
# Test different patterns of writing zeroes
|
|
for use_backing_file in yes no; do
|
|
echo
|
|
echo "### Writing zeroes 1: unallocated clusters (backing file: $use_backing_file) ###"
|
|
echo
|
|
# Note that the image size is not a multiple of the cluster size
|
|
_reset_img 2083k
|
|
|
|
# Cluster-aligned request from clusters #0 to #2
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_run_test c=0 sc=0 len=192k cmd=zero
|
|
_verify_l2_bitmap 1
|
|
_verify_l2_bitmap 2
|
|
|
|
# Subcluster-aligned request from clusters #3 to #5
|
|
alloc=""; zero="$(seq 16 31)"
|
|
_run_test c=3 sc=16 len=128k cmd=zero
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_verify_l2_bitmap 4
|
|
alloc=""; zero="$(seq 0 15)"
|
|
_verify_l2_bitmap 5
|
|
|
|
# Unaligned request from clusters #6 to #8
|
|
if [ "$use_backing_file" = "yes" ]; then
|
|
alloc="15"; zero="$(seq 16 31)" # copy-on-write happening here
|
|
else
|
|
alloc=""; zero="$(seq 15 31)"
|
|
fi
|
|
_run_test c=6 sc=15 off=1 len=128k cmd=zero
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_verify_l2_bitmap 7
|
|
if [ "$use_backing_file" = "yes" ]; then
|
|
alloc="15"; zero="$(seq 0 14)" # copy-on-write happening here
|
|
else
|
|
alloc=""; zero="$(seq 0 15)"
|
|
fi
|
|
_verify_l2_bitmap 8
|
|
|
|
echo
|
|
echo "### Writing zeroes 2: allocated clusters (backing file: $use_backing_file) ###"
|
|
echo
|
|
alloc="$(seq 0 31)"; zero=""
|
|
_run_test c=9 sc=0 len=576k
|
|
_verify_l2_bitmap 10
|
|
_verify_l2_bitmap 11
|
|
_verify_l2_bitmap 12
|
|
_verify_l2_bitmap 13
|
|
_verify_l2_bitmap 14
|
|
_verify_l2_bitmap 15
|
|
_verify_l2_bitmap 16
|
|
_verify_l2_bitmap 17
|
|
|
|
# Cluster-aligned request from clusters #9 to #11
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_run_test c=9 sc=0 len=192k cmd=zero
|
|
_verify_l2_bitmap 10
|
|
_verify_l2_bitmap 11
|
|
|
|
# Subcluster-aligned request from clusters #12 to #14
|
|
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
|
|
_run_test c=12 sc=16 len=128k cmd=zero
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_verify_l2_bitmap 13
|
|
alloc="$(seq 16 31)"; zero="$(seq 0 15)"
|
|
_verify_l2_bitmap 14
|
|
|
|
# Unaligned request from clusters #15 to #17
|
|
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
|
|
_run_test c=15 sc=15 off=1 len=128k cmd=zero
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_verify_l2_bitmap 16
|
|
alloc="$(seq 15 31)"; zero="$(seq 0 14)"
|
|
_verify_l2_bitmap 17
|
|
|
|
echo
|
|
echo "### Writing zeroes 3: compressed clusters (backing file: $use_backing_file) ###"
|
|
echo
|
|
alloc=""; zero=""
|
|
for c in $(seq 18 28); do
|
|
_run_test c=$c sc=0 len=64k cmd=compress
|
|
done
|
|
|
|
# Cluster-aligned request from clusters #18 to #20
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_run_test c=18 sc=0 len=192k cmd=zero
|
|
_verify_l2_bitmap 19
|
|
_verify_l2_bitmap 20
|
|
|
|
# Subcluster-aligned request from clusters #21 to #23.
|
|
# We cannot partially zero a compressed cluster so the code
|
|
# returns -ENOTSUP, which means copy-on-write of the compressed
|
|
# data and fill the rest with actual zeroes on disk.
|
|
# TODO: cluster #22 should use the 'all zeroes' bits.
|
|
alloc="$(seq 0 31)"; zero=""
|
|
_run_test c=21 sc=16 len=128k cmd=zero
|
|
_verify_l2_bitmap 22
|
|
_verify_l2_bitmap 23
|
|
|
|
# Unaligned request from clusters #24 to #26
|
|
# In this case QEMU internally sends a 1k request followed by a
|
|
# subcluster-aligned 128k request. The first request decompresses
|
|
# cluster #24, but that's not enough to perform the second request
|
|
# efficiently because it partially writes to cluster #26 (which is
|
|
# compressed) so we hit the same problem as before.
|
|
alloc="$(seq 0 31)"; zero=""
|
|
_run_test c=24 sc=15 off=1 len=129k cmd=zero
|
|
_verify_l2_bitmap 25
|
|
_verify_l2_bitmap 26
|
|
|
|
# Unaligned request from clusters #27 to #29
|
|
# Similar to the previous case, but this time the tail of the
|
|
# request does not correspond to a compressed cluster, so it can
|
|
# be zeroed efficiently.
|
|
# Note that the very last subcluster is partially written, so if
|
|
# there's a backing file we need to perform cow.
|
|
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
|
|
_run_test c=27 sc=15 off=1 len=128k cmd=zero
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_verify_l2_bitmap 28
|
|
if [ "$use_backing_file" = "yes" ]; then
|
|
alloc="15"; zero="$(seq 0 14)" # copy-on-write happening here
|
|
else
|
|
alloc=""; zero="$(seq 0 15)"
|
|
fi
|
|
_verify_l2_bitmap 29
|
|
|
|
echo
|
|
echo "### Writing zeroes 4: other tests (backing file: $use_backing_file) ###"
|
|
echo
|
|
# Unaligned request in the middle of cluster #30.
|
|
# If there's a backing file we need to allocate and do
|
|
# copy-on-write on the partially zeroed subclusters.
|
|
# If not we can set the 'all zeroes' bit on them.
|
|
if [ "$use_backing_file" = "yes" ]; then
|
|
alloc="15 19"; zero="$(seq 16 18)" # copy-on-write happening here
|
|
else
|
|
alloc=""; zero="$(seq 15 19)"
|
|
fi
|
|
_run_test c=30 sc=15 off=1 len=8k cmd=zero
|
|
|
|
# Fill the last cluster with zeroes, up to the end of the image
|
|
# (the image size is not a multiple of the cluster or subcluster size).
|
|
alloc=""; zero="$(seq 0 17)"
|
|
_run_test c=32 sc=0 len=35k cmd=zero
|
|
done
|
|
|
|
############################################################
|
|
############################################################
|
|
############################################################
|
|
|
|
# Zero + unmap
|
|
for use_backing_file in yes no; do
|
|
echo
|
|
echo "### Zero + unmap 1: allocated clusters (backing file: $use_backing_file) ###"
|
|
echo
|
|
# Note that the image size is not a multiple of the cluster size
|
|
_reset_img 2083k
|
|
alloc="$(seq 0 31)"; zero=""
|
|
_run_test c=9 sc=0 len=576k
|
|
_verify_l2_bitmap 10
|
|
_verify_l2_bitmap 11
|
|
_verify_l2_bitmap 12
|
|
_verify_l2_bitmap 13
|
|
_verify_l2_bitmap 14
|
|
_verify_l2_bitmap 15
|
|
_verify_l2_bitmap 16
|
|
_verify_l2_bitmap 17
|
|
|
|
# Cluster-aligned request from clusters #9 to #11
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_run_test c=9 sc=0 len=192k cmd=unmap
|
|
_verify_l2_bitmap 10
|
|
_verify_l2_bitmap 11
|
|
|
|
# Subcluster-aligned request from clusters #12 to #14
|
|
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
|
|
_run_test c=12 sc=16 len=128k cmd=unmap
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_verify_l2_bitmap 13
|
|
alloc="$(seq 16 31)"; zero="$(seq 0 15)"
|
|
_verify_l2_bitmap 14
|
|
|
|
# Unaligned request from clusters #15 to #17
|
|
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
|
|
_run_test c=15 sc=15 off=1 len=128k cmd=unmap
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_verify_l2_bitmap 16
|
|
alloc="$(seq 15 31)"; zero="$(seq 0 14)"
|
|
_verify_l2_bitmap 17
|
|
|
|
echo
|
|
echo "### Zero + unmap 2: compressed clusters (backing file: $use_backing_file) ###"
|
|
echo
|
|
alloc=""; zero=""
|
|
for c in $(seq 18 28); do
|
|
_run_test c=$c sc=0 len=64k cmd=compress
|
|
done
|
|
|
|
# Cluster-aligned request from clusters #18 to #20
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_run_test c=18 sc=0 len=192k cmd=unmap
|
|
_verify_l2_bitmap 19
|
|
_verify_l2_bitmap 20
|
|
|
|
# Subcluster-aligned request from clusters #21 to #23.
|
|
# We cannot partially zero a compressed cluster so the code
|
|
# returns -ENOTSUP, which means copy-on-write of the compressed
|
|
# data and fill the rest with actual zeroes on disk.
|
|
# TODO: cluster #22 should use the 'all zeroes' bits.
|
|
alloc="$(seq 0 31)"; zero=""
|
|
_run_test c=21 sc=16 len=128k cmd=unmap
|
|
_verify_l2_bitmap 22
|
|
_verify_l2_bitmap 23
|
|
|
|
# Unaligned request from clusters #24 to #26
|
|
# In this case QEMU internally sends a 1k request followed by a
|
|
# subcluster-aligned 128k request. The first request decompresses
|
|
# cluster #24, but that's not enough to perform the second request
|
|
# efficiently because it partially writes to cluster #26 (which is
|
|
# compressed) so we hit the same problem as before.
|
|
alloc="$(seq 0 31)"; zero=""
|
|
_run_test c=24 sc=15 off=1 len=129k cmd=unmap
|
|
_verify_l2_bitmap 25
|
|
_verify_l2_bitmap 26
|
|
|
|
# Unaligned request from clusters #27 to #29
|
|
# Similar to the previous case, but this time the tail of the
|
|
# request does not correspond to a compressed cluster, so it can
|
|
# be zeroed efficiently.
|
|
# Note that the very last subcluster is partially written, so if
|
|
# there's a backing file we need to perform cow.
|
|
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
|
|
_run_test c=27 sc=15 off=1 len=128k cmd=unmap
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_verify_l2_bitmap 28
|
|
if [ "$use_backing_file" = "yes" ]; then
|
|
alloc="15"; zero="$(seq 0 14)" # copy-on-write happening here
|
|
else
|
|
alloc=""; zero="$(seq 0 15)"
|
|
fi
|
|
_verify_l2_bitmap 29
|
|
done
|
|
|
|
############################################################
|
|
############################################################
|
|
############################################################
|
|
|
|
# Test qcow2_cluster_discard() with full and normal discards
|
|
for use_backing_file in yes no; do
|
|
echo
|
|
echo "### Discarding clusters with non-zero bitmaps (backing file: $use_backing_file) ###"
|
|
echo
|
|
if [ "$use_backing_file" = "yes" ]; then
|
|
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 1M
|
|
else
|
|
_make_test_img -o extended_l2=on 1M
|
|
fi
|
|
# Write clusters #0-#2 and then discard them
|
|
$QEMU_IO -c 'write -q 0 128k' "$TEST_IMG"
|
|
$QEMU_IO -c 'discard -q 0 128k' "$TEST_IMG"
|
|
# 'qemu-io discard' doesn't do a full discard, it zeroizes the
|
|
# cluster, so both clusters have all zero bits set now
|
|
alloc=""; zero="$(seq 0 31)"
|
|
_verify_l2_bitmap 0
|
|
_verify_l2_bitmap 1
|
|
# Now mark the 2nd half of the subclusters from cluster #0 as unallocated
|
|
poke_file "$TEST_IMG" $(($l2_offset+8)) "\x00\x00"
|
|
# Discard cluster #0 again to see how the zero bits have changed
|
|
$QEMU_IO -c 'discard -q 0 64k' "$TEST_IMG"
|
|
# And do a full discard of cluster #1 by shrinking and growing the image
|
|
$QEMU_IMG resize --shrink "$TEST_IMG" 64k
|
|
$QEMU_IMG resize "$TEST_IMG" 1M
|
|
# A normal discard sets all 'zero' bits only if the image has a
|
|
# backing file, otherwise it won't touch them.
|
|
if [ "$use_backing_file" = "yes" ]; then
|
|
alloc=""; zero="$(seq 0 31)"
|
|
else
|
|
alloc=""; zero="$(seq 0 15)"
|
|
fi
|
|
_verify_l2_bitmap 0
|
|
# A full discard should clear the L2 entry completely. However
|
|
# when growing an image with a backing file the new clusters are
|
|
# zeroized to hide the stale data from the backing file
|
|
if [ "$use_backing_file" = "yes" ]; then
|
|
alloc=""; zero="$(seq 0 31)"
|
|
else
|
|
alloc=""; zero=""
|
|
fi
|
|
_verify_l2_bitmap 1
|
|
done
|
|
|
|
############################################################
|
|
############################################################
|
|
############################################################
|
|
|
|
# Test that corrupted L2 entries are detected in both read and write
|
|
# operations
|
|
for corruption_test_cmd in read write; do
|
|
echo
|
|
echo "### Corrupted L2 entries - $corruption_test_cmd test (allocated) ###"
|
|
echo
|
|
echo "# 'cluster is zero' bit set on the standard cluster descriptor"
|
|
echo
|
|
# We actually don't consider this a corrupted image.
|
|
# The 'cluster is zero' bit is unused in extended L2 entries so
|
|
# QEMU ignores it.
|
|
# TODO: maybe treat the image as corrupted and make qemu-img check fix it?
|
|
_make_test_img -o extended_l2=on 1M
|
|
$QEMU_IO -c 'write -q -P 0x11 0 2k' "$TEST_IMG"
|
|
poke_file "$TEST_IMG" $(($l2_offset+7)) "\x01"
|
|
alloc="0"; zero=""
|
|
_verify_l2_bitmap 0
|
|
$QEMU_IO -c "$corruption_test_cmd -q -P 0x11 0 1k" "$TEST_IMG"
|
|
if [ "$corruption_test_cmd" = "write" ]; then
|
|
alloc="0"; zero=""
|
|
fi
|
|
_verify_l2_bitmap 0
|
|
|
|
echo
|
|
echo "# Both 'subcluster is zero' and 'subcluster is allocated' bits set"
|
|
echo
|
|
_make_test_img -o extended_l2=on 1M
|
|
# Write from the middle of cluster #0 to the middle of cluster #2
|
|
$QEMU_IO -c 'write -q 32k 128k' "$TEST_IMG"
|
|
# Corrupt the L2 entry from cluster #1
|
|
poke_file_be "$TEST_IMG" $(($l2_offset+24)) 4 1
|
|
alloc="$(seq 0 31)"; zero="0"
|
|
_verify_l2_bitmap 1
|
|
$QEMU_IO -c "$corruption_test_cmd 0 192k" "$TEST_IMG"
|
|
|
|
echo
|
|
echo "### Corrupted L2 entries - $corruption_test_cmd test (unallocated) ###"
|
|
echo
|
|
echo "# 'cluster is zero' bit set on the standard cluster descriptor"
|
|
echo
|
|
# We actually don't consider this a corrupted image.
|
|
# The 'cluster is zero' bit is unused in extended L2 entries so
|
|
# QEMU ignores it.
|
|
# TODO: maybe treat the image as corrupted and make qemu-img check fix it?
|
|
_make_test_img -o extended_l2=on 1M
|
|
# We want to modify the (empty) L2 entry from cluster #0,
|
|
# but we write to #4 in order to initialize the L2 table first
|
|
$QEMU_IO -c 'write -q 256k 1k' "$TEST_IMG"
|
|
poke_file "$TEST_IMG" $(($l2_offset+7)) "\x01"
|
|
alloc=""; zero=""
|
|
_verify_l2_bitmap 0
|
|
$QEMU_IO -c "$corruption_test_cmd -q 0 1k" "$TEST_IMG"
|
|
if [ "$corruption_test_cmd" = "write" ]; then
|
|
alloc="0"; zero=""
|
|
fi
|
|
_verify_l2_bitmap 0
|
|
|
|
echo
|
|
echo "# 'subcluster is allocated' bit set"
|
|
echo
|
|
_make_test_img -o extended_l2=on 1M
|
|
# We want to corrupt the (empty) L2 entry from cluster #0,
|
|
# but we write to #4 in order to initialize the L2 table first
|
|
$QEMU_IO -c 'write -q 256k 1k' "$TEST_IMG"
|
|
poke_file "$TEST_IMG" $(($l2_offset+15)) "\x01"
|
|
alloc="0"; zero=""
|
|
_verify_l2_bitmap 0
|
|
$QEMU_IO -c "$corruption_test_cmd 0 1k" "$TEST_IMG"
|
|
|
|
echo
|
|
echo "# Both 'subcluster is zero' and 'subcluster is allocated' bits set"
|
|
echo
|
|
_make_test_img -o extended_l2=on 1M
|
|
# We want to corrupt the (empty) L2 entry from cluster #1,
|
|
# but we write to #4 in order to initialize the L2 table first
|
|
$QEMU_IO -c 'write -q 256k 1k' "$TEST_IMG"
|
|
# Corrupt the L2 entry from cluster #1
|
|
poke_file_be "$TEST_IMG" $(($l2_offset+24)) 8 $(((1 << 32) | 1))
|
|
alloc="0"; zero="0"
|
|
_verify_l2_bitmap 1
|
|
$QEMU_IO -c "$corruption_test_cmd 0 192k" "$TEST_IMG"
|
|
|
|
echo
|
|
echo "### Compressed cluster with subcluster bitmap != 0 - $corruption_test_cmd test ###"
|
|
echo
|
|
# We actually don't consider this a corrupted image.
|
|
# The bitmap in compressed clusters is unused so QEMU should just ignore it.
|
|
_make_test_img -o extended_l2=on 1M
|
|
$QEMU_IO -c 'write -q -P 11 -c 0 64k' "$TEST_IMG"
|
|
# Change the L2 bitmap to allocate subcluster #31 and zeroize subcluster #0
|
|
poke_file "$TEST_IMG" $(($l2_offset+11)) "\x01\x80"
|
|
alloc="31"; zero="0"
|
|
_verify_l2_bitmap 0
|
|
$QEMU_IO -c "$corruption_test_cmd -P 11 0 64k" "$TEST_IMG" | _filter_qemu_io
|
|
# Writing allocates a new uncompressed cluster so we get a new bitmap
|
|
if [ "$corruption_test_cmd" = "write" ]; then
|
|
alloc="$(seq 0 31)"; zero=""
|
|
fi
|
|
_verify_l2_bitmap 0
|
|
done
|
|
|
|
############################################################
|
|
############################################################
|
|
############################################################
|
|
|
|
echo
|
|
echo "### Detect and repair unaligned clusters ###"
|
|
echo
|
|
# Create a backing file and fill it with data
|
|
$QEMU_IMG create -f raw "$TEST_IMG.base" 128k | _filter_img_create
|
|
$QEMU_IO -c "write -q -P 0xff 0 128k" -f raw "$TEST_IMG.base" | _filter_qemu_io
|
|
|
|
echo "# Corrupted L2 entry, allocated subcluster #"
|
|
# Create a new image, allocate a cluster and write some data to it
|
|
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base"
|
|
$QEMU_IO -c 'write -q -P 1 4k 2k' "$TEST_IMG"
|
|
# Corrupt the L2 entry by making the offset unaligned
|
|
poke_file "$TEST_IMG" "$(($l2_offset+6))" "\x02"
|
|
# This cannot be repaired, qemu-img check will fail to fix it
|
|
_check_test_img -r all
|
|
# Attempting to read the image will still show that it's corrupted
|
|
$QEMU_IO -c 'read -q 0 2k' "$TEST_IMG"
|
|
|
|
echo "# Corrupted L2 entry, no allocated subclusters #"
|
|
# Create a new image, allocate a cluster and zeroize subcluster #2
|
|
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base"
|
|
$QEMU_IO -c 'write -q -P 1 4k 2k' "$TEST_IMG"
|
|
$QEMU_IO -c 'write -q -z 4k 2k' "$TEST_IMG"
|
|
# Corrupt the L2 entry by making the offset unaligned
|
|
poke_file "$TEST_IMG" "$(($l2_offset+6))" "\x02"
|
|
# This time none of the subclusters are allocated so we can repair the image
|
|
_check_test_img -r all
|
|
# And the data can be read normally
|
|
$QEMU_IO -c 'read -q -P 0xff 0 4k' "$TEST_IMG"
|
|
$QEMU_IO -c 'read -q -P 0x00 4k 2k' "$TEST_IMG"
|
|
$QEMU_IO -c 'read -q -P 0xff 6k 122k' "$TEST_IMG"
|
|
|
|
############################################################
|
|
############################################################
|
|
############################################################
|
|
|
|
echo
|
|
echo "### Image creation options ###"
|
|
echo
|
|
echo "# cluster_size < 16k"
|
|
_make_test_img -o extended_l2=on,cluster_size=8k 1M
|
|
|
|
echo "# backing file and preallocation=metadata"
|
|
# For preallocation with backing files, create a backing file first
|
|
$QEMU_IMG create -f raw "$TEST_IMG.base" 1M | _filter_img_create
|
|
$QEMU_IO -c "write -q -P 0xff 0 1M" -f raw "$TEST_IMG.base" | _filter_qemu_io
|
|
|
|
_make_test_img -o extended_l2=on,preallocation=metadata -F raw -b "$TEST_IMG.base" 512k
|
|
$QEMU_IMG resize "$TEST_IMG" 1M
|
|
$QEMU_IO -c 'read -P 0xff 0 512k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IO -c 'read -P 0x00 512k 512k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IMG map "$TEST_IMG" | _filter_testdir
|
|
|
|
echo "# backing file and preallocation=falloc"
|
|
_make_test_img -o extended_l2=on,preallocation=falloc -F raw -b "$TEST_IMG.base" 512k
|
|
$QEMU_IMG resize "$TEST_IMG" 1M
|
|
$QEMU_IO -c 'read -P 0xff 0 512k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IO -c 'read -P 0x00 512k 512k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IMG map "$TEST_IMG" | _filter_testdir
|
|
|
|
echo "# backing file and preallocation=full"
|
|
_make_test_img -o extended_l2=on,preallocation=full -F raw -b "$TEST_IMG.base" 512k
|
|
$QEMU_IMG resize "$TEST_IMG" 1M
|
|
$QEMU_IO -c 'read -P 0xff 0 512k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IO -c 'read -P 0x00 512k 512k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IMG map "$TEST_IMG" | _filter_testdir
|
|
|
|
echo
|
|
echo "### Image resizing with preallocation and backing files ###"
|
|
echo
|
|
# In this case the new subclusters must have the 'all zeroes' bit set
|
|
echo "# resize --preallocation=metadata"
|
|
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 503k
|
|
$QEMU_IMG resize --preallocation=metadata "$TEST_IMG" 1013k
|
|
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
# In this case and the next one the new subclusters must be allocated
|
|
echo "# resize --preallocation=falloc"
|
|
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 503k
|
|
$QEMU_IMG resize --preallocation=falloc "$TEST_IMG" 1013k
|
|
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
echo "# resize --preallocation=full"
|
|
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 503k
|
|
$QEMU_IMG resize --preallocation=full "$TEST_IMG" 1013k
|
|
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
echo
|
|
echo "### Image resizing with preallocation without backing files ###"
|
|
echo
|
|
# In this case the new subclusters must have the 'all zeroes' bit set
|
|
echo "# resize --preallocation=metadata"
|
|
_make_test_img -o extended_l2=on 503k
|
|
$QEMU_IO -c 'write -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IMG resize --preallocation=metadata "$TEST_IMG" 1013k
|
|
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
# In this case and the next one the new subclusters must be allocated
|
|
echo "# resize --preallocation=falloc"
|
|
_make_test_img -o extended_l2=on 503k
|
|
$QEMU_IO -c 'write -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IMG resize --preallocation=falloc "$TEST_IMG" 1013k
|
|
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
echo "# resize --preallocation=full"
|
|
_make_test_img -o extended_l2=on 503k
|
|
$QEMU_IO -c 'write -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IMG resize --preallocation=full "$TEST_IMG" 1013k
|
|
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
|
|
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
|
|
|
|
echo
|
|
echo "### qemu-img measure ###"
|
|
echo
|
|
echo "# 512MB, extended_l2=off" # This needs one L2 table
|
|
$QEMU_IMG measure --size 512M -O qcow2 -o extended_l2=off
|
|
echo "# 512MB, extended_l2=on" # This needs two L2 tables
|
|
$QEMU_IMG measure --size 512M -O qcow2 -o extended_l2=on
|
|
|
|
echo "# 16K clusters, 64GB, extended_l2=off" # This needs one full L1 table cluster
|
|
$QEMU_IMG measure --size 64G -O qcow2 -o cluster_size=16k,extended_l2=off
|
|
echo "# 16K clusters, 64GB, extended_l2=on" # This needs two full L2 table clusters
|
|
$QEMU_IMG measure --size 64G -O qcow2 -o cluster_size=16k,extended_l2=on
|
|
|
|
echo "# 8k clusters" # This should fail
|
|
$QEMU_IMG measure --size 1M -O qcow2 -o cluster_size=8k,extended_l2=on
|
|
|
|
echo "# 1024 TB" # Maximum allowed size with extended_l2=on and 64K clusters
|
|
$QEMU_IMG measure --size 1024T -O qcow2 -o extended_l2=on
|
|
echo "# 1025 TB" # This should fail
|
|
$QEMU_IMG measure --size 1025T -O qcow2 -o extended_l2=on
|
|
|
|
echo
|
|
echo "### qemu-img amend ###"
|
|
echo
|
|
_make_test_img -o extended_l2=on 1M
|
|
$QEMU_IMG amend -o extended_l2=off "$TEST_IMG" && echo "Unexpected pass"
|
|
|
|
_make_test_img -o extended_l2=off 1M
|
|
$QEMU_IMG amend -o extended_l2=on "$TEST_IMG" && echo "Unexpected pass"
|
|
|
|
echo
|
|
echo "### Test copy-on-write on an image with snapshots ###"
|
|
echo
|
|
_make_test_img -o extended_l2=on 1M
|
|
|
|
# For each cluster from #0 to #9 this loop zeroes subcluster #7
|
|
# and allocates subclusters #13 and #18.
|
|
alloc="13 18"; zero="7"
|
|
for c in $(seq 0 9); do
|
|
$QEMU_IO -c "write -q -z $((64*$c+14))k 2k" \
|
|
-c "write -q -P $((0xd0+$c)) $((64*$c+26))k 2k" \
|
|
-c "write -q -P $((0xe0+$c)) $((64*$c+36))k 2k" "$TEST_IMG"
|
|
_verify_l2_bitmap "$c"
|
|
done
|
|
|
|
# Create a snapshot and set l2_offset to the new L2 table
|
|
$QEMU_IMG snapshot -c snap1 "$TEST_IMG"
|
|
l2_offset=$((0x110000))
|
|
|
|
# Write different patterns to each one of the clusters
|
|
# in order to see how copy-on-write behaves in each case.
|
|
$QEMU_IO -c "write -q -P 0xf0 $((64*0+30))k 1k" \
|
|
-c "write -q -P 0xf1 $((64*1+20))k 1k" \
|
|
-c "write -q -P 0xf2 $((64*2+40))k 1k" \
|
|
-c "write -q -P 0xf3 $((64*3+26))k 1k" \
|
|
-c "write -q -P 0xf4 $((64*4+14))k 1k" \
|
|
-c "write -q -P 0xf5 $((64*5+1))k 1k" \
|
|
-c "write -q -z $((64*6+30))k 3k" \
|
|
-c "write -q -z $((64*7+26))k 2k" \
|
|
-c "write -q -z $((64*8+26))k 1k" \
|
|
-c "write -q -z $((64*9+12))k 1k" \
|
|
"$TEST_IMG"
|
|
alloc="$(seq 13 18)"; zero="7" _verify_l2_bitmap 0
|
|
alloc="$(seq 10 18)"; zero="7" _verify_l2_bitmap 1
|
|
alloc="$(seq 13 20)"; zero="7" _verify_l2_bitmap 2
|
|
alloc="$(seq 13 18)"; zero="7" _verify_l2_bitmap 3
|
|
alloc="$(seq 7 18)"; zero="" _verify_l2_bitmap 4
|
|
alloc="$(seq 0 18)"; zero="" _verify_l2_bitmap 5
|
|
alloc="13 18"; zero="7 15 16" _verify_l2_bitmap 6
|
|
alloc="18"; zero="7 13" _verify_l2_bitmap 7
|
|
alloc="$(seq 13 18)"; zero="7" _verify_l2_bitmap 8
|
|
alloc="13 18"; zero="6 7" _verify_l2_bitmap 9
|
|
|
|
echo
|
|
echo "### Test concurrent requests ###"
|
|
echo
|
|
|
|
_concurrent_io()
|
|
{
|
|
# Allocate three subclusters in the same cluster.
|
|
# This works because handle_dependencies() checks whether the requests
|
|
# allocate the same cluster, even if the COW regions don't overlap (in
|
|
# this case they don't).
|
|
cat <<EOF
|
|
open -o driver=$IMGFMT blkdebug::$TEST_IMG
|
|
break write_aio A
|
|
aio_write -P 10 30k 2k
|
|
wait_break A
|
|
aio_write -P 11 20k 2k
|
|
aio_write -P 12 40k 2k
|
|
resume A
|
|
aio_flush
|
|
EOF
|
|
}
|
|
|
|
_concurrent_verify()
|
|
{
|
|
cat <<EOF
|
|
open -o driver=$IMGFMT $TEST_IMG
|
|
read -q -P 10 30k 2k
|
|
read -q -P 11 20k 2k
|
|
read -q -P 12 40k 2k
|
|
EOF
|
|
}
|
|
|
|
_make_test_img -o extended_l2=on 1M
|
|
_concurrent_io | $QEMU_IO | _filter_qemu_io
|
|
_concurrent_verify | $QEMU_IO | _filter_qemu_io
|
|
|
|
# success, all done
|
|
echo "*** done"
|
|
rm -f $seq.full
|
|
status=0
|