xemu/target-arm/translate-a64.c
Peter Maydell 4063452eca target-arm/translate-a64.c: Fix dead ?: in handle_simd_shift_fpint_conv()
In handle_simd_shift_fpint_conv(), the combination of is_double == true,
is_scalar == false and is_q == false is an unallocated encoding; the
'both parts false' case of the nested ?: expression for calculating
maxpass is therefore unreachable and can be removed.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Message-id: 1402171881-14343-4-git-send-email-peter.maydell@linaro.org
2014-06-19 18:06:25 +01:00

11006 lines
338 KiB
C

/*
* AArch64 translation
*
* Copyright (c) 2013 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "cpu.h"
#include "tcg-op.h"
#include "qemu/log.h"
#include "arm_ldst.h"
#include "translate.h"
#include "internals.h"
#include "qemu/host-utils.h"
#include "exec/gen-icount.h"
#include "exec/helper-proto.h"
#include "exec/helper-gen.h"
static TCGv_i64 cpu_X[32];
static TCGv_i64 cpu_pc;
static TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
/* Load/store exclusive handling */
static TCGv_i64 cpu_exclusive_addr;
static TCGv_i64 cpu_exclusive_val;
static TCGv_i64 cpu_exclusive_high;
#ifdef CONFIG_USER_ONLY
static TCGv_i64 cpu_exclusive_test;
static TCGv_i32 cpu_exclusive_info;
#endif
static const char *regnames[] = {
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
};
enum a64_shift_type {
A64_SHIFT_TYPE_LSL = 0,
A64_SHIFT_TYPE_LSR = 1,
A64_SHIFT_TYPE_ASR = 2,
A64_SHIFT_TYPE_ROR = 3
};
/* Table based decoder typedefs - used when the relevant bits for decode
* are too awkwardly scattered across the instruction (eg SIMD).
*/
typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
typedef struct AArch64DecodeTable {
uint32_t pattern;
uint32_t mask;
AArch64DecodeFn *disas_fn;
} AArch64DecodeTable;
/* Function prototype for gen_ functions for calling Neon helpers */
typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
/* initialize TCG globals. */
void a64_translate_init(void)
{
int i;
cpu_pc = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, pc),
"pc");
for (i = 0; i < 32; i++) {
cpu_X[i] = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, xregs[i]),
regnames[i]);
}
cpu_NF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, NF), "NF");
cpu_ZF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, ZF), "ZF");
cpu_CF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, CF), "CF");
cpu_VF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, VF), "VF");
cpu_exclusive_addr = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, exclusive_addr), "exclusive_addr");
cpu_exclusive_val = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, exclusive_val), "exclusive_val");
cpu_exclusive_high = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, exclusive_high), "exclusive_high");
#ifdef CONFIG_USER_ONLY
cpu_exclusive_test = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, exclusive_test), "exclusive_test");
cpu_exclusive_info = tcg_global_mem_new_i32(TCG_AREG0,
offsetof(CPUARMState, exclusive_info), "exclusive_info");
#endif
}
void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
fprintf_function cpu_fprintf, int flags)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t psr = pstate_read(env);
int i;
cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
env->pc, env->xregs[31]);
for (i = 0; i < 31; i++) {
cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
if ((i % 4) == 3) {
cpu_fprintf(f, "\n");
} else {
cpu_fprintf(f, " ");
}
}
cpu_fprintf(f, "PSTATE=%08x (flags %c%c%c%c)\n",
psr,
psr & PSTATE_N ? 'N' : '-',
psr & PSTATE_Z ? 'Z' : '-',
psr & PSTATE_C ? 'C' : '-',
psr & PSTATE_V ? 'V' : '-');
cpu_fprintf(f, "\n");
if (flags & CPU_DUMP_FPU) {
int numvfpregs = 32;
for (i = 0; i < numvfpregs; i += 2) {
uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
i, vhi, vlo);
vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
i + 1, vhi, vlo);
}
cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
vfp_get_fpcr(env), vfp_get_fpsr(env));
}
}
void gen_a64_set_pc_im(uint64_t val)
{
tcg_gen_movi_i64(cpu_pc, val);
}
static void gen_exception_internal(int excp)
{
TCGv_i32 tcg_excp = tcg_const_i32(excp);
assert(excp_is_internal(excp));
gen_helper_exception_internal(cpu_env, tcg_excp);
tcg_temp_free_i32(tcg_excp);
}
static void gen_exception(int excp, uint32_t syndrome)
{
TCGv_i32 tcg_excp = tcg_const_i32(excp);
TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
gen_helper_exception_with_syndrome(cpu_env, tcg_excp, tcg_syn);
tcg_temp_free_i32(tcg_syn);
tcg_temp_free_i32(tcg_excp);
}
static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
{
gen_a64_set_pc_im(s->pc - offset);
gen_exception_internal(excp);
s->is_jmp = DISAS_EXC;
}
static void gen_exception_insn(DisasContext *s, int offset, int excp,
uint32_t syndrome)
{
gen_a64_set_pc_im(s->pc - offset);
gen_exception(excp, syndrome);
s->is_jmp = DISAS_EXC;
}
static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
{
/* No direct tb linking with singlestep or deterministic io */
if (s->singlestep_enabled || (s->tb->cflags & CF_LAST_IO)) {
return false;
}
/* Only link tbs from inside the same guest page */
if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
return false;
}
return true;
}
static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
{
TranslationBlock *tb;
tb = s->tb;
if (use_goto_tb(s, n, dest)) {
tcg_gen_goto_tb(n);
gen_a64_set_pc_im(dest);
tcg_gen_exit_tb((intptr_t)tb + n);
s->is_jmp = DISAS_TB_JUMP;
} else {
gen_a64_set_pc_im(dest);
if (s->singlestep_enabled) {
gen_exception_internal(EXCP_DEBUG);
}
tcg_gen_exit_tb(0);
s->is_jmp = DISAS_JUMP;
}
}
static void unallocated_encoding(DisasContext *s)
{
/* Unallocated and reserved encodings are uncategorized */
gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized());
}
#define unsupported_encoding(s, insn) \
do { \
qemu_log_mask(LOG_UNIMP, \
"%s:%d: unsupported instruction encoding 0x%08x " \
"at pc=%016" PRIx64 "\n", \
__FILE__, __LINE__, insn, s->pc - 4); \
unallocated_encoding(s); \
} while (0);
static void init_tmp_a64_array(DisasContext *s)
{
#ifdef CONFIG_DEBUG_TCG
int i;
for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
TCGV_UNUSED_I64(s->tmp_a64[i]);
}
#endif
s->tmp_a64_count = 0;
}
static void free_tmp_a64(DisasContext *s)
{
int i;
for (i = 0; i < s->tmp_a64_count; i++) {
tcg_temp_free_i64(s->tmp_a64[i]);
}
init_tmp_a64_array(s);
}
static TCGv_i64 new_tmp_a64(DisasContext *s)
{
assert(s->tmp_a64_count < TMP_A64_MAX);
return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
}
static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
{
TCGv_i64 t = new_tmp_a64(s);
tcg_gen_movi_i64(t, 0);
return t;
}
/*
* Register access functions
*
* These functions are used for directly accessing a register in where
* changes to the final register value are likely to be made. If you
* need to use a register for temporary calculation (e.g. index type
* operations) use the read_* form.
*
* B1.2.1 Register mappings
*
* In instruction register encoding 31 can refer to ZR (zero register) or
* the SP (stack pointer) depending on context. In QEMU's case we map SP
* to cpu_X[31] and ZR accesses to a temporary which can be discarded.
* This is the point of the _sp forms.
*/
static TCGv_i64 cpu_reg(DisasContext *s, int reg)
{
if (reg == 31) {
return new_tmp_a64_zero(s);
} else {
return cpu_X[reg];
}
}
/* register access for when 31 == SP */
static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
{
return cpu_X[reg];
}
/* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
* representing the register contents. This TCGv is an auto-freed
* temporary so it need not be explicitly freed, and may be modified.
*/
static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
{
TCGv_i64 v = new_tmp_a64(s);
if (reg != 31) {
if (sf) {
tcg_gen_mov_i64(v, cpu_X[reg]);
} else {
tcg_gen_ext32u_i64(v, cpu_X[reg]);
}
} else {
tcg_gen_movi_i64(v, 0);
}
return v;
}
static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
{
TCGv_i64 v = new_tmp_a64(s);
if (sf) {
tcg_gen_mov_i64(v, cpu_X[reg]);
} else {
tcg_gen_ext32u_i64(v, cpu_X[reg]);
}
return v;
}
/* We should have at some point before trying to access an FP register
* done the necessary access check, so assert that
* (a) we did the check and
* (b) we didn't then just plough ahead anyway if it failed.
* Print the instruction pattern in the abort message so we can figure
* out what we need to fix if a user encounters this problem in the wild.
*/
static inline void assert_fp_access_checked(DisasContext *s)
{
#ifdef CONFIG_DEBUG_TCG
if (unlikely(!s->fp_access_checked || !s->cpacr_fpen)) {
fprintf(stderr, "target-arm: FP access check missing for "
"instruction 0x%08x\n", s->insn);
abort();
}
#endif
}
/* Return the offset into CPUARMState of an element of specified
* size, 'element' places in from the least significant end of
* the FP/vector register Qn.
*/
static inline int vec_reg_offset(DisasContext *s, int regno,
int element, TCGMemOp size)
{
int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
#ifdef HOST_WORDS_BIGENDIAN
/* This is complicated slightly because vfp.regs[2n] is
* still the low half and vfp.regs[2n+1] the high half
* of the 128 bit vector, even on big endian systems.
* Calculate the offset assuming a fully bigendian 128 bits,
* then XOR to account for the order of the two 64 bit halves.
*/
offs += (16 - ((element + 1) * (1 << size)));
offs ^= 8;
#else
offs += element * (1 << size);
#endif
assert_fp_access_checked(s);
return offs;
}
/* Return the offset into CPUARMState of a slice (from
* the least significant end) of FP register Qn (ie
* Dn, Sn, Hn or Bn).
* (Note that this is not the same mapping as for A32; see cpu.h)
*/
static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
{
int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
#ifdef HOST_WORDS_BIGENDIAN
offs += (8 - (1 << size));
#endif
assert_fp_access_checked(s);
return offs;
}
/* Offset of the high half of the 128 bit vector Qn */
static inline int fp_reg_hi_offset(DisasContext *s, int regno)
{
assert_fp_access_checked(s);
return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
}
/* Convenience accessors for reading and writing single and double
* FP registers. Writing clears the upper parts of the associated
* 128 bit vector register, as required by the architecture.
* Note that unlike the GP register accessors, the values returned
* by the read functions must be manually freed.
*/
static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
{
TCGv_i64 v = tcg_temp_new_i64();
tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
return v;
}
static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
{
TCGv_i32 v = tcg_temp_new_i32();
tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
return v;
}
static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
{
TCGv_i64 tcg_zero = tcg_const_i64(0);
tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
tcg_temp_free_i64(tcg_zero);
}
static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
{
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(tmp, v);
write_fp_dreg(s, reg, tmp);
tcg_temp_free_i64(tmp);
}
static TCGv_ptr get_fpstatus_ptr(void)
{
TCGv_ptr statusptr = tcg_temp_new_ptr();
int offset;
/* In A64 all instructions (both FP and Neon) use the FPCR;
* there is no equivalent of the A32 Neon "standard FPSCR value"
* and all operations use vfp.fp_status.
*/
offset = offsetof(CPUARMState, vfp.fp_status);
tcg_gen_addi_ptr(statusptr, cpu_env, offset);
return statusptr;
}
/* Set ZF and NF based on a 64 bit result. This is alas fiddlier
* than the 32 bit equivalent.
*/
static inline void gen_set_NZ64(TCGv_i64 result)
{
TCGv_i64 flag = tcg_temp_new_i64();
tcg_gen_setcondi_i64(TCG_COND_NE, flag, result, 0);
tcg_gen_trunc_i64_i32(cpu_ZF, flag);
tcg_gen_shri_i64(flag, result, 32);
tcg_gen_trunc_i64_i32(cpu_NF, flag);
tcg_temp_free_i64(flag);
}
/* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
static inline void gen_logic_CC(int sf, TCGv_i64 result)
{
if (sf) {
gen_set_NZ64(result);
} else {
tcg_gen_trunc_i64_i32(cpu_ZF, result);
tcg_gen_trunc_i64_i32(cpu_NF, result);
}
tcg_gen_movi_i32(cpu_CF, 0);
tcg_gen_movi_i32(cpu_VF, 0);
}
/* dest = T0 + T1; compute C, N, V and Z flags */
static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
if (sf) {
TCGv_i64 result, flag, tmp;
result = tcg_temp_new_i64();
flag = tcg_temp_new_i64();
tmp = tcg_temp_new_i64();
tcg_gen_movi_i64(tmp, 0);
tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
tcg_gen_trunc_i64_i32(cpu_CF, flag);
gen_set_NZ64(result);
tcg_gen_xor_i64(flag, result, t0);
tcg_gen_xor_i64(tmp, t0, t1);
tcg_gen_andc_i64(flag, flag, tmp);
tcg_temp_free_i64(tmp);
tcg_gen_shri_i64(flag, flag, 32);
tcg_gen_trunc_i64_i32(cpu_VF, flag);
tcg_gen_mov_i64(dest, result);
tcg_temp_free_i64(result);
tcg_temp_free_i64(flag);
} else {
/* 32 bit arithmetic */
TCGv_i32 t0_32 = tcg_temp_new_i32();
TCGv_i32 t1_32 = tcg_temp_new_i32();
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
tcg_gen_trunc_i64_i32(t0_32, t0);
tcg_gen_trunc_i64_i32(t1_32, t1);
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
tcg_gen_xor_i32(tmp, t0_32, t1_32);
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
tcg_gen_extu_i32_i64(dest, cpu_NF);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(t0_32);
tcg_temp_free_i32(t1_32);
}
}
/* dest = T0 - T1; compute C, N, V and Z flags */
static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
if (sf) {
/* 64 bit arithmetic */
TCGv_i64 result, flag, tmp;
result = tcg_temp_new_i64();
flag = tcg_temp_new_i64();
tcg_gen_sub_i64(result, t0, t1);
gen_set_NZ64(result);
tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
tcg_gen_trunc_i64_i32(cpu_CF, flag);
tcg_gen_xor_i64(flag, result, t0);
tmp = tcg_temp_new_i64();
tcg_gen_xor_i64(tmp, t0, t1);
tcg_gen_and_i64(flag, flag, tmp);
tcg_temp_free_i64(tmp);
tcg_gen_shri_i64(flag, flag, 32);
tcg_gen_trunc_i64_i32(cpu_VF, flag);
tcg_gen_mov_i64(dest, result);
tcg_temp_free_i64(flag);
tcg_temp_free_i64(result);
} else {
/* 32 bit arithmetic */
TCGv_i32 t0_32 = tcg_temp_new_i32();
TCGv_i32 t1_32 = tcg_temp_new_i32();
TCGv_i32 tmp;
tcg_gen_trunc_i64_i32(t0_32, t0);
tcg_gen_trunc_i64_i32(t1_32, t1);
tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
tmp = tcg_temp_new_i32();
tcg_gen_xor_i32(tmp, t0_32, t1_32);
tcg_temp_free_i32(t0_32);
tcg_temp_free_i32(t1_32);
tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
tcg_temp_free_i32(tmp);
tcg_gen_extu_i32_i64(dest, cpu_NF);
}
}
/* dest = T0 + T1 + CF; do not compute flags. */
static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
TCGv_i64 flag = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(flag, cpu_CF);
tcg_gen_add_i64(dest, t0, t1);
tcg_gen_add_i64(dest, dest, flag);
tcg_temp_free_i64(flag);
if (!sf) {
tcg_gen_ext32u_i64(dest, dest);
}
}
/* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
if (sf) {
TCGv_i64 result, cf_64, vf_64, tmp;
result = tcg_temp_new_i64();
cf_64 = tcg_temp_new_i64();
vf_64 = tcg_temp_new_i64();
tmp = tcg_const_i64(0);
tcg_gen_extu_i32_i64(cf_64, cpu_CF);
tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
tcg_gen_trunc_i64_i32(cpu_CF, cf_64);
gen_set_NZ64(result);
tcg_gen_xor_i64(vf_64, result, t0);
tcg_gen_xor_i64(tmp, t0, t1);
tcg_gen_andc_i64(vf_64, vf_64, tmp);
tcg_gen_shri_i64(vf_64, vf_64, 32);
tcg_gen_trunc_i64_i32(cpu_VF, vf_64);
tcg_gen_mov_i64(dest, result);
tcg_temp_free_i64(tmp);
tcg_temp_free_i64(vf_64);
tcg_temp_free_i64(cf_64);
tcg_temp_free_i64(result);
} else {
TCGv_i32 t0_32, t1_32, tmp;
t0_32 = tcg_temp_new_i32();
t1_32 = tcg_temp_new_i32();
tmp = tcg_const_i32(0);
tcg_gen_trunc_i64_i32(t0_32, t0);
tcg_gen_trunc_i64_i32(t1_32, t1);
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
tcg_gen_xor_i32(tmp, t0_32, t1_32);
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
tcg_gen_extu_i32_i64(dest, cpu_NF);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(t1_32);
tcg_temp_free_i32(t0_32);
}
}
/*
* Load/Store generators
*/
/*
* Store from GPR register to memory.
*/
static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
TCGv_i64 tcg_addr, int size, int memidx)
{
g_assert(size <= 3);
tcg_gen_qemu_st_i64(source, tcg_addr, memidx, MO_TE + size);
}
static void do_gpr_st(DisasContext *s, TCGv_i64 source,
TCGv_i64 tcg_addr, int size)
{
do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s));
}
/*
* Load from memory to GPR register
*/
static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
int size, bool is_signed, bool extend, int memidx)
{
TCGMemOp memop = MO_TE + size;
g_assert(size <= 3);
if (is_signed) {
memop += MO_SIGN;
}
tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
if (extend && is_signed) {
g_assert(size < 3);
tcg_gen_ext32u_i64(dest, dest);
}
}
static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
int size, bool is_signed, bool extend)
{
do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
get_mem_index(s));
}
/*
* Store from FP register to memory
*/
static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
{
/* This writes the bottom N bits of a 128 bit wide vector to memory */
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
if (size < 4) {
tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TE + size);
} else {
TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TEQ);
tcg_gen_qemu_st64(tmp, tcg_addr, get_mem_index(s));
tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
tcg_gen_qemu_st_i64(tmp, tcg_hiaddr, get_mem_index(s), MO_TEQ);
tcg_temp_free_i64(tcg_hiaddr);
}
tcg_temp_free_i64(tmp);
}
/*
* Load from memory to FP register
*/
static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
{
/* This always zero-extends and writes to a full 128 bit wide vector */
TCGv_i64 tmplo = tcg_temp_new_i64();
TCGv_i64 tmphi;
if (size < 4) {
TCGMemOp memop = MO_TE + size;
tmphi = tcg_const_i64(0);
tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
} else {
TCGv_i64 tcg_hiaddr;
tmphi = tcg_temp_new_i64();
tcg_hiaddr = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), MO_TEQ);
tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
tcg_gen_qemu_ld_i64(tmphi, tcg_hiaddr, get_mem_index(s), MO_TEQ);
tcg_temp_free_i64(tcg_hiaddr);
}
tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
tcg_temp_free_i64(tmplo);
tcg_temp_free_i64(tmphi);
}
/*
* Vector load/store helpers.
*
* The principal difference between this and a FP load is that we don't
* zero extend as we are filling a partial chunk of the vector register.
* These functions don't support 128 bit loads/stores, which would be
* normal load/store operations.
*
* The _i32 versions are useful when operating on 32 bit quantities
* (eg for floating point single or using Neon helper functions).
*/
/* Get value of an element within a vector register */
static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
int element, TCGMemOp memop)
{
int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_16:
tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_32:
tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_8|MO_SIGN:
tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_16|MO_SIGN:
tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_32|MO_SIGN:
tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_64:
case MO_64|MO_SIGN:
tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
int element, TCGMemOp memop)
{
int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
break;
case MO_16:
tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
break;
case MO_8|MO_SIGN:
tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
break;
case MO_16|MO_SIGN:
tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
break;
case MO_32:
case MO_32|MO_SIGN:
tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
/* Set value of an element within a vector register */
static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
int element, TCGMemOp memop)
{
int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
break;
case MO_16:
tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
break;
case MO_32:
tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
break;
case MO_64:
tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
int destidx, int element, TCGMemOp memop)
{
int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
break;
case MO_16:
tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
break;
case MO_32:
tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
/* Clear the high 64 bits of a 128 bit vector (in general non-quad
* vector ops all need to do this).
*/
static void clear_vec_high(DisasContext *s, int rd)
{
TCGv_i64 tcg_zero = tcg_const_i64(0);
write_vec_element(s, tcg_zero, rd, 1, MO_64);
tcg_temp_free_i64(tcg_zero);
}
/* Store from vector register to memory */
static void do_vec_st(DisasContext *s, int srcidx, int element,
TCGv_i64 tcg_addr, int size)
{
TCGMemOp memop = MO_TE + size;
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
read_vec_element(s, tcg_tmp, srcidx, element, size);
tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
tcg_temp_free_i64(tcg_tmp);
}
/* Load from memory to vector register */
static void do_vec_ld(DisasContext *s, int destidx, int element,
TCGv_i64 tcg_addr, int size)
{
TCGMemOp memop = MO_TE + size;
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
write_vec_element(s, tcg_tmp, destidx, element, size);
tcg_temp_free_i64(tcg_tmp);
}
/* Check that FP/Neon access is enabled. If it is, return
* true. If not, emit code to generate an appropriate exception,
* and return false; the caller should not emit any code for
* the instruction. Note that this check must happen after all
* unallocated-encoding checks (otherwise the syndrome information
* for the resulting exception will be incorrect).
*/
static inline bool fp_access_check(DisasContext *s)
{
assert(!s->fp_access_checked);
s->fp_access_checked = true;
if (s->cpacr_fpen) {
return true;
}
gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false));
return false;
}
/*
* This utility function is for doing register extension with an
* optional shift. You will likely want to pass a temporary for the
* destination register. See DecodeRegExtend() in the ARM ARM.
*/
static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
int option, unsigned int shift)
{
int extsize = extract32(option, 0, 2);
bool is_signed = extract32(option, 2, 1);
if (is_signed) {
switch (extsize) {
case 0:
tcg_gen_ext8s_i64(tcg_out, tcg_in);
break;
case 1:
tcg_gen_ext16s_i64(tcg_out, tcg_in);
break;
case 2:
tcg_gen_ext32s_i64(tcg_out, tcg_in);
break;
case 3:
tcg_gen_mov_i64(tcg_out, tcg_in);
break;
}
} else {
switch (extsize) {
case 0:
tcg_gen_ext8u_i64(tcg_out, tcg_in);
break;
case 1:
tcg_gen_ext16u_i64(tcg_out, tcg_in);
break;
case 2:
tcg_gen_ext32u_i64(tcg_out, tcg_in);
break;
case 3:
tcg_gen_mov_i64(tcg_out, tcg_in);
break;
}
}
if (shift) {
tcg_gen_shli_i64(tcg_out, tcg_out, shift);
}
}
static inline void gen_check_sp_alignment(DisasContext *s)
{
/* The AArch64 architecture mandates that (if enabled via PSTATE
* or SCTLR bits) there is a check that SP is 16-aligned on every
* SP-relative load or store (with an exception generated if it is not).
* In line with general QEMU practice regarding misaligned accesses,
* we omit these checks for the sake of guest program performance.
* This function is provided as a hook so we can more easily add these
* checks in future (possibly as a "favour catching guest program bugs
* over speed" user selectable option).
*/
}
/*
* This provides a simple table based table lookup decoder. It is
* intended to be used when the relevant bits for decode are too
* awkwardly placed and switch/if based logic would be confusing and
* deeply nested. Since it's a linear search through the table, tables
* should be kept small.
*
* It returns the first handler where insn & mask == pattern, or
* NULL if there is no match.
* The table is terminated by an empty mask (i.e. 0)
*/
static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
uint32_t insn)
{
const AArch64DecodeTable *tptr = table;
while (tptr->mask) {
if ((insn & tptr->mask) == tptr->pattern) {
return tptr->disas_fn;
}
tptr++;
}
return NULL;
}
/*
* the instruction disassembly implemented here matches
* the instruction encoding classifications in chapter 3 (C3)
* of the ARM Architecture Reference Manual (DDI0487A_a)
*/
/* C3.2.7 Unconditional branch (immediate)
* 31 30 26 25 0
* +----+-----------+-------------------------------------+
* | op | 0 0 1 0 1 | imm26 |
* +----+-----------+-------------------------------------+
*/
static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
{
uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
if (insn & (1 << 31)) {
/* C5.6.26 BL Branch with link */
tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
}
/* C5.6.20 B Branch / C5.6.26 BL Branch with link */
gen_goto_tb(s, 0, addr);
}
/* C3.2.1 Compare & branch (immediate)
* 31 30 25 24 23 5 4 0
* +----+-------------+----+---------------------+--------+
* | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
* +----+-------------+----+---------------------+--------+
*/
static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
{
unsigned int sf, op, rt;
uint64_t addr;
int label_match;
TCGv_i64 tcg_cmp;
sf = extract32(insn, 31, 1);
op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
rt = extract32(insn, 0, 5);
addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
tcg_cmp = read_cpu_reg(s, rt, sf);
label_match = gen_new_label();
tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
tcg_cmp, 0, label_match);
gen_goto_tb(s, 0, s->pc);
gen_set_label(label_match);
gen_goto_tb(s, 1, addr);
}
/* C3.2.5 Test & branch (immediate)
* 31 30 25 24 23 19 18 5 4 0
* +----+-------------+----+-------+-------------+------+
* | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
* +----+-------------+----+-------+-------------+------+
*/
static void disas_test_b_imm(DisasContext *s, uint32_t insn)
{
unsigned int bit_pos, op, rt;
uint64_t addr;
int label_match;
TCGv_i64 tcg_cmp;
bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
rt = extract32(insn, 0, 5);
tcg_cmp = tcg_temp_new_i64();
tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
label_match = gen_new_label();
tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
tcg_cmp, 0, label_match);
tcg_temp_free_i64(tcg_cmp);
gen_goto_tb(s, 0, s->pc);
gen_set_label(label_match);
gen_goto_tb(s, 1, addr);
}
/* C3.2.2 / C5.6.19 Conditional branch (immediate)
* 31 25 24 23 5 4 3 0
* +---------------+----+---------------------+----+------+
* | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
* +---------------+----+---------------------+----+------+
*/
static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
{
unsigned int cond;
uint64_t addr;
if ((insn & (1 << 4)) || (insn & (1 << 24))) {
unallocated_encoding(s);
return;
}
addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
cond = extract32(insn, 0, 4);
if (cond < 0x0e) {
/* genuinely conditional branches */
int label_match = gen_new_label();
arm_gen_test_cc(cond, label_match);
gen_goto_tb(s, 0, s->pc);
gen_set_label(label_match);
gen_goto_tb(s, 1, addr);
} else {
/* 0xe and 0xf are both "always" conditions */
gen_goto_tb(s, 0, addr);
}
}
/* C5.6.68 HINT */
static void handle_hint(DisasContext *s, uint32_t insn,
unsigned int op1, unsigned int op2, unsigned int crm)
{
unsigned int selector = crm << 3 | op2;
if (op1 != 3) {
unallocated_encoding(s);
return;
}
switch (selector) {
case 0: /* NOP */
return;
case 3: /* WFI */
s->is_jmp = DISAS_WFI;
return;
case 1: /* YIELD */
case 2: /* WFE */
s->is_jmp = DISAS_WFE;
return;
case 4: /* SEV */
case 5: /* SEVL */
/* we treat all as NOP at least for now */
return;
default:
/* default specified as NOP equivalent */
return;
}
}
static void gen_clrex(DisasContext *s, uint32_t insn)
{
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
}
/* CLREX, DSB, DMB, ISB */
static void handle_sync(DisasContext *s, uint32_t insn,
unsigned int op1, unsigned int op2, unsigned int crm)
{
if (op1 != 3) {
unallocated_encoding(s);
return;
}
switch (op2) {
case 2: /* CLREX */
gen_clrex(s, insn);
return;
case 4: /* DSB */
case 5: /* DMB */
case 6: /* ISB */
/* We don't emulate caches so barriers are no-ops */
return;
default:
unallocated_encoding(s);
return;
}
}
/* C5.6.130 MSR (immediate) - move immediate to processor state field */
static void handle_msr_i(DisasContext *s, uint32_t insn,
unsigned int op1, unsigned int op2, unsigned int crm)
{
int op = op1 << 3 | op2;
switch (op) {
case 0x05: /* SPSel */
if (s->current_pl == 0) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x1e: /* DAIFSet */
case 0x1f: /* DAIFClear */
{
TCGv_i32 tcg_imm = tcg_const_i32(crm);
TCGv_i32 tcg_op = tcg_const_i32(op);
gen_a64_set_pc_im(s->pc - 4);
gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
tcg_temp_free_i32(tcg_imm);
tcg_temp_free_i32(tcg_op);
s->is_jmp = DISAS_UPDATE;
break;
}
default:
unallocated_encoding(s);
return;
}
}
static void gen_get_nzcv(TCGv_i64 tcg_rt)
{
TCGv_i32 tmp = tcg_temp_new_i32();
TCGv_i32 nzcv = tcg_temp_new_i32();
/* build bit 31, N */
tcg_gen_andi_i32(nzcv, cpu_NF, (1 << 31));
/* build bit 30, Z */
tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
/* build bit 29, C */
tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
/* build bit 28, V */
tcg_gen_shri_i32(tmp, cpu_VF, 31);
tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
/* generate result */
tcg_gen_extu_i32_i64(tcg_rt, nzcv);
tcg_temp_free_i32(nzcv);
tcg_temp_free_i32(tmp);
}
static void gen_set_nzcv(TCGv_i64 tcg_rt)
{
TCGv_i32 nzcv = tcg_temp_new_i32();
/* take NZCV from R[t] */
tcg_gen_trunc_i64_i32(nzcv, tcg_rt);
/* bit 31, N */
tcg_gen_andi_i32(cpu_NF, nzcv, (1 << 31));
/* bit 30, Z */
tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
/* bit 29, C */
tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
/* bit 28, V */
tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
tcg_temp_free_i32(nzcv);
}
/* C5.6.129 MRS - move from system register
* C5.6.131 MSR (register) - move to system register
* C5.6.204 SYS
* C5.6.205 SYSL
* These are all essentially the same insn in 'read' and 'write'
* versions, with varying op0 fields.
*/
static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
unsigned int op0, unsigned int op1, unsigned int op2,
unsigned int crn, unsigned int crm, unsigned int rt)
{
const ARMCPRegInfo *ri;
TCGv_i64 tcg_rt;
ri = get_arm_cp_reginfo(s->cp_regs,
ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
crn, crm, op0, op1, op2));
if (!ri) {
/* Unknown register; this might be a guest error or a QEMU
* unimplemented feature.
*/
qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
"system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
isread ? "read" : "write", op0, op1, crn, crm, op2);
unallocated_encoding(s);
return;
}
/* Check access permissions */
if (!cp_access_ok(s->current_pl, ri, isread)) {
unallocated_encoding(s);
return;
}
if (ri->accessfn) {
/* Emit code to perform further access permissions checks at
* runtime; this may result in an exception.
*/
TCGv_ptr tmpptr;
TCGv_i32 tcg_syn;
uint32_t syndrome;
gen_a64_set_pc_im(s->pc - 4);
tmpptr = tcg_const_ptr(ri);
syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
tcg_syn = tcg_const_i32(syndrome);
gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn);
tcg_temp_free_ptr(tmpptr);
tcg_temp_free_i32(tcg_syn);
}
/* Handle special cases first */
switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
case ARM_CP_NOP:
return;
case ARM_CP_NZCV:
tcg_rt = cpu_reg(s, rt);
if (isread) {
gen_get_nzcv(tcg_rt);
} else {
gen_set_nzcv(tcg_rt);
}
return;
case ARM_CP_CURRENTEL:
/* Reads as current EL value from pstate, which is
* guaranteed to be constant by the tb flags.
*/
tcg_rt = cpu_reg(s, rt);
tcg_gen_movi_i64(tcg_rt, s->current_pl << 2);
return;
case ARM_CP_DC_ZVA:
/* Writes clear the aligned block of memory which rt points into. */
tcg_rt = cpu_reg(s, rt);
gen_helper_dc_zva(cpu_env, tcg_rt);
return;
default:
break;
}
if (use_icount && (ri->type & ARM_CP_IO)) {
gen_io_start();
}
tcg_rt = cpu_reg(s, rt);
if (isread) {
if (ri->type & ARM_CP_CONST) {
tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
} else if (ri->readfn) {
TCGv_ptr tmpptr;
tmpptr = tcg_const_ptr(ri);
gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
tcg_temp_free_ptr(tmpptr);
} else {
tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
}
} else {
if (ri->type & ARM_CP_CONST) {
/* If not forbidden by access permissions, treat as WI */
return;
} else if (ri->writefn) {
TCGv_ptr tmpptr;
tmpptr = tcg_const_ptr(ri);
gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
tcg_temp_free_ptr(tmpptr);
} else {
tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
}
}
if (use_icount && (ri->type & ARM_CP_IO)) {
/* I/O operations must end the TB here (whether read or write) */
gen_io_end();
s->is_jmp = DISAS_UPDATE;
} else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
/* We default to ending the TB on a coprocessor register write,
* but allow this to be suppressed by the register definition
* (usually only necessary to work around guest bugs).
*/
s->is_jmp = DISAS_UPDATE;
}
}
/* C3.2.4 System
* 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
* +---------------------+---+-----+-----+-------+-------+-----+------+
* | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
* +---------------------+---+-----+-----+-------+-------+-----+------+
*/
static void disas_system(DisasContext *s, uint32_t insn)
{
unsigned int l, op0, op1, crn, crm, op2, rt;
l = extract32(insn, 21, 1);
op0 = extract32(insn, 19, 2);
op1 = extract32(insn, 16, 3);
crn = extract32(insn, 12, 4);
crm = extract32(insn, 8, 4);
op2 = extract32(insn, 5, 3);
rt = extract32(insn, 0, 5);
if (op0 == 0) {
if (l || rt != 31) {
unallocated_encoding(s);
return;
}
switch (crn) {
case 2: /* C5.6.68 HINT */
handle_hint(s, insn, op1, op2, crm);
break;
case 3: /* CLREX, DSB, DMB, ISB */
handle_sync(s, insn, op1, op2, crm);
break;
case 4: /* C5.6.130 MSR (immediate) */
handle_msr_i(s, insn, op1, op2, crm);
break;
default:
unallocated_encoding(s);
break;
}
return;
}
handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
}
/* C3.2.3 Exception generation
*
* 31 24 23 21 20 5 4 2 1 0
* +-----------------+-----+------------------------+-----+----+
* | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
* +-----------------------+------------------------+----------+
*/
static void disas_exc(DisasContext *s, uint32_t insn)
{
int opc = extract32(insn, 21, 3);
int op2_ll = extract32(insn, 0, 5);
int imm16 = extract32(insn, 5, 16);
switch (opc) {
case 0:
/* SVC, HVC, SMC; since we don't support the Virtualization
* or TrustZone extensions these all UNDEF except SVC.
*/
if (op2_ll != 1) {
unallocated_encoding(s);
break;
}
gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16));
break;
case 1:
if (op2_ll != 0) {
unallocated_encoding(s);
break;
}
/* BRK */
gen_exception_insn(s, 0, EXCP_BKPT, syn_aa64_bkpt(imm16));
break;
case 2:
if (op2_ll != 0) {
unallocated_encoding(s);
break;
}
/* HLT */
unsupported_encoding(s, insn);
break;
case 5:
if (op2_ll < 1 || op2_ll > 3) {
unallocated_encoding(s);
break;
}
/* DCPS1, DCPS2, DCPS3 */
unsupported_encoding(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/* C3.2.7 Unconditional branch (register)
* 31 25 24 21 20 16 15 10 9 5 4 0
* +---------------+-------+-------+-------+------+-------+
* | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
* +---------------+-------+-------+-------+------+-------+
*/
static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
{
unsigned int opc, op2, op3, rn, op4;
opc = extract32(insn, 21, 4);
op2 = extract32(insn, 16, 5);
op3 = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
op4 = extract32(insn, 0, 5);
if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
unallocated_encoding(s);
return;
}
switch (opc) {
case 0: /* BR */
case 2: /* RET */
tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
break;
case 1: /* BLR */
tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
break;
case 4: /* ERET */
if (s->current_pl == 0) {
unallocated_encoding(s);
return;
}
gen_helper_exception_return(cpu_env);
s->is_jmp = DISAS_JUMP;
return;
case 5: /* DRPS */
if (rn != 0x1f) {
unallocated_encoding(s);
} else {
unsupported_encoding(s, insn);
}
return;
default:
unallocated_encoding(s);
return;
}
s->is_jmp = DISAS_JUMP;
}
/* C3.2 Branches, exception generating and system instructions */
static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 25, 7)) {
case 0x0a: case 0x0b:
case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
disas_uncond_b_imm(s, insn);
break;
case 0x1a: case 0x5a: /* Compare & branch (immediate) */
disas_comp_b_imm(s, insn);
break;
case 0x1b: case 0x5b: /* Test & branch (immediate) */
disas_test_b_imm(s, insn);
break;
case 0x2a: /* Conditional branch (immediate) */
disas_cond_b_imm(s, insn);
break;
case 0x6a: /* Exception generation / System */
if (insn & (1 << 24)) {
disas_system(s, insn);
} else {
disas_exc(s, insn);
}
break;
case 0x6b: /* Unconditional branch (register) */
disas_uncond_b_reg(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/*
* Load/Store exclusive instructions are implemented by remembering
* the value/address loaded, and seeing if these are the same
* when the store is performed. This is not actually the architecturally
* mandated semantics, but it works for typical guest code sequences
* and avoids having to monitor regular stores.
*
* In system emulation mode only one CPU will be running at once, so
* this sequence is effectively atomic. In user emulation mode we
* throw an exception and handle the atomic operation elsewhere.
*/
static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
TCGv_i64 addr, int size, bool is_pair)
{
TCGv_i64 tmp = tcg_temp_new_i64();
TCGMemOp memop = MO_TE + size;
g_assert(size <= 3);
tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
if (is_pair) {
TCGv_i64 addr2 = tcg_temp_new_i64();
TCGv_i64 hitmp = tcg_temp_new_i64();
g_assert(size >= 2);
tcg_gen_addi_i64(addr2, addr, 1 << size);
tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
tcg_temp_free_i64(addr2);
tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
tcg_temp_free_i64(hitmp);
}
tcg_gen_mov_i64(cpu_exclusive_val, tmp);
tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
tcg_temp_free_i64(tmp);
tcg_gen_mov_i64(cpu_exclusive_addr, addr);
}
#ifdef CONFIG_USER_ONLY
static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
TCGv_i64 addr, int size, int is_pair)
{
tcg_gen_mov_i64(cpu_exclusive_test, addr);
tcg_gen_movi_i32(cpu_exclusive_info,
size | is_pair << 2 | (rd << 4) | (rt << 9) | (rt2 << 14));
gen_exception_internal_insn(s, 4, EXCP_STREX);
}
#else
static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
TCGv_i64 inaddr, int size, int is_pair)
{
/* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
* && (!is_pair || env->exclusive_high == [addr + datasize])) {
* [addr] = {Rt};
* if (is_pair) {
* [addr + datasize] = {Rt2};
* }
* {Rd} = 0;
* } else {
* {Rd} = 1;
* }
* env->exclusive_addr = -1;
*/
int fail_label = gen_new_label();
int done_label = gen_new_label();
TCGv_i64 addr = tcg_temp_local_new_i64();
TCGv_i64 tmp;
/* Copy input into a local temp so it is not trashed when the
* basic block ends at the branch insn.
*/
tcg_gen_mov_i64(addr, inaddr);
tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), MO_TE + size);
tcg_gen_brcond_i64(TCG_COND_NE, tmp, cpu_exclusive_val, fail_label);
tcg_temp_free_i64(tmp);
if (is_pair) {
TCGv_i64 addrhi = tcg_temp_new_i64();
TCGv_i64 tmphi = tcg_temp_new_i64();
tcg_gen_addi_i64(addrhi, addr, 1 << size);
tcg_gen_qemu_ld_i64(tmphi, addrhi, get_mem_index(s), MO_TE + size);
tcg_gen_brcond_i64(TCG_COND_NE, tmphi, cpu_exclusive_high, fail_label);
tcg_temp_free_i64(tmphi);
tcg_temp_free_i64(addrhi);
}
/* We seem to still have the exclusive monitor, so do the store */
tcg_gen_qemu_st_i64(cpu_reg(s, rt), addr, get_mem_index(s), MO_TE + size);
if (is_pair) {
TCGv_i64 addrhi = tcg_temp_new_i64();
tcg_gen_addi_i64(addrhi, addr, 1 << size);
tcg_gen_qemu_st_i64(cpu_reg(s, rt2), addrhi,
get_mem_index(s), MO_TE + size);
tcg_temp_free_i64(addrhi);
}
tcg_temp_free_i64(addr);
tcg_gen_movi_i64(cpu_reg(s, rd), 0);
tcg_gen_br(done_label);
gen_set_label(fail_label);
tcg_gen_movi_i64(cpu_reg(s, rd), 1);
gen_set_label(done_label);
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
}
#endif
/* C3.3.6 Load/store exclusive
*
* 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
* +-----+-------------+----+---+----+------+----+-------+------+------+
* | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
* +-----+-------------+----+---+----+------+----+-------+------+------+
*
* sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
* L: 0 -> store, 1 -> load
* o2: 0 -> exclusive, 1 -> not
* o1: 0 -> single register, 1 -> register pair
* o0: 1 -> load-acquire/store-release, 0 -> not
*
* o0 == 0 AND o2 == 1 is un-allocated
* o1 == 1 is un-allocated except for 32 and 64 bit sizes
*/
static void disas_ldst_excl(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rt2 = extract32(insn, 10, 5);
int is_lasr = extract32(insn, 15, 1);
int rs = extract32(insn, 16, 5);
int is_pair = extract32(insn, 21, 1);
int is_store = !extract32(insn, 22, 1);
int is_excl = !extract32(insn, 23, 1);
int size = extract32(insn, 30, 2);
TCGv_i64 tcg_addr;
if ((!is_excl && !is_lasr) ||
(is_pair && size < 2)) {
unallocated_encoding(s);
return;
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
/* Note that since TCG is single threaded load-acquire/store-release
* semantics require no extra if (is_lasr) { ... } handling.
*/
if (is_excl) {
if (!is_store) {
gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
} else {
gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
if (is_store) {
do_gpr_st(s, tcg_rt, tcg_addr, size);
} else {
do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false);
}
if (is_pair) {
TCGv_i64 tcg_rt2 = cpu_reg(s, rt);
tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
if (is_store) {
do_gpr_st(s, tcg_rt2, tcg_addr, size);
} else {
do_gpr_ld(s, tcg_rt2, tcg_addr, size, false, false);
}
}
}
}
/*
* C3.3.5 Load register (literal)
*
* 31 30 29 27 26 25 24 23 5 4 0
* +-----+-------+---+-----+-------------------+-------+
* | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
* +-----+-------+---+-----+-------------------+-------+
*
* V: 1 -> vector (simd/fp)
* opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
* 10-> 32 bit signed, 11 -> prefetch
* opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
*/
static void disas_ld_lit(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int64_t imm = sextract32(insn, 5, 19) << 2;
bool is_vector = extract32(insn, 26, 1);
int opc = extract32(insn, 30, 2);
bool is_signed = false;
int size = 2;
TCGv_i64 tcg_rt, tcg_addr;
if (is_vector) {
if (opc == 3) {
unallocated_encoding(s);
return;
}
size = 2 + opc;
if (!fp_access_check(s)) {
return;
}
} else {
if (opc == 3) {
/* PRFM (literal) : prefetch */
return;
}
size = 2 + extract32(opc, 0, 1);
is_signed = extract32(opc, 1, 1);
}
tcg_rt = cpu_reg(s, rt);
tcg_addr = tcg_const_i64((s->pc - 4) + imm);
if (is_vector) {
do_fp_ld(s, rt, tcg_addr, size);
} else {
do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
}
tcg_temp_free_i64(tcg_addr);
}
/*
* C5.6.80 LDNP (Load Pair - non-temporal hint)
* C5.6.81 LDP (Load Pair - non vector)
* C5.6.82 LDPSW (Load Pair Signed Word - non vector)
* C5.6.176 STNP (Store Pair - non-temporal hint)
* C5.6.177 STP (Store Pair - non vector)
* C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
* C6.3.165 LDP (Load Pair of SIMD&FP)
* C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
* C6.3.284 STP (Store Pair of SIMD&FP)
*
* 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
* +-----+-------+---+---+-------+---+-----------------------------+
* | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
* +-----+-------+---+---+-------+---+-------+-------+------+------+
*
* opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
* LDPSW 01
* LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
* V: 0 -> GPR, 1 -> Vector
* idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
* 10 -> signed offset, 11 -> pre-index
* L: 0 -> Store 1 -> Load
*
* Rt, Rt2 = GPR or SIMD registers to be stored
* Rn = general purpose register containing address
* imm7 = signed offset (multiple of 4 or 8 depending on size)
*/
static void disas_ldst_pair(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rt2 = extract32(insn, 10, 5);
int64_t offset = sextract32(insn, 15, 7);
int index = extract32(insn, 23, 2);
bool is_vector = extract32(insn, 26, 1);
bool is_load = extract32(insn, 22, 1);
int opc = extract32(insn, 30, 2);
bool is_signed = false;
bool postindex = false;
bool wback = false;
TCGv_i64 tcg_addr; /* calculated address */
int size;
if (opc == 3) {
unallocated_encoding(s);
return;
}
if (is_vector) {
size = 2 + opc;
} else {
size = 2 + extract32(opc, 1, 1);
is_signed = extract32(opc, 0, 1);
if (!is_load && is_signed) {
unallocated_encoding(s);
return;
}
}
switch (index) {
case 1: /* post-index */
postindex = true;
wback = true;
break;
case 0:
/* signed offset with "non-temporal" hint. Since we don't emulate
* caches we don't care about hints to the cache system about
* data access patterns, and handle this identically to plain
* signed offset.
*/
if (is_signed) {
/* There is no non-temporal-hint version of LDPSW */
unallocated_encoding(s);
return;
}
postindex = false;
break;
case 2: /* signed offset, rn not updated */
postindex = false;
break;
case 3: /* pre-index */
postindex = false;
wback = true;
break;
}
if (is_vector && !fp_access_check(s)) {
return;
}
offset <<= size;
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
if (!postindex) {
tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
}
if (is_vector) {
if (is_load) {
do_fp_ld(s, rt, tcg_addr, size);
} else {
do_fp_st(s, rt, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
if (is_load) {
do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
} else {
do_gpr_st(s, tcg_rt, tcg_addr, size);
}
}
tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
if (is_vector) {
if (is_load) {
do_fp_ld(s, rt2, tcg_addr, size);
} else {
do_fp_st(s, rt2, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
if (is_load) {
do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false);
} else {
do_gpr_st(s, tcg_rt2, tcg_addr, size);
}
}
if (wback) {
if (postindex) {
tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
} else {
tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
}
tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
}
}
/*
* C3.3.8 Load/store (immediate post-indexed)
* C3.3.9 Load/store (immediate pre-indexed)
* C3.3.12 Load/store (unscaled immediate)
*
* 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
* +----+-------+---+-----+-----+---+--------+-----+------+------+
* |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
* +----+-------+---+-----+-----+---+--------+-----+------+------+
*
* idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
10 -> unprivileged
* V = 0 -> non-vector
* size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
* opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
*/
static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm9 = sextract32(insn, 12, 9);
int opc = extract32(insn, 22, 2);
int size = extract32(insn, 30, 2);
int idx = extract32(insn, 10, 2);
bool is_signed = false;
bool is_store = false;
bool is_extended = false;
bool is_unpriv = (idx == 2);
bool is_vector = extract32(insn, 26, 1);
bool post_index;
bool writeback;
TCGv_i64 tcg_addr;
if (is_vector) {
size |= (opc & 2) << 1;
if (size > 4 || is_unpriv) {
unallocated_encoding(s);
return;
}
is_store = ((opc & 1) == 0);
if (!fp_access_check(s)) {
return;
}
} else {
if (size == 3 && opc == 2) {
/* PRFM - prefetch */
if (is_unpriv) {
unallocated_encoding(s);
return;
}
return;
}
if (opc == 3 && size > 1) {
unallocated_encoding(s);
return;
}
is_store = (opc == 0);
is_signed = opc & (1<<1);
is_extended = (size < 3) && (opc & 1);
}
switch (idx) {
case 0:
case 2:
post_index = false;
writeback = false;
break;
case 1:
post_index = true;
writeback = true;
break;
case 3:
post_index = false;
writeback = true;
break;
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
if (!post_index) {
tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
}
if (is_vector) {
if (is_store) {
do_fp_st(s, rt, tcg_addr, size);
} else {
do_fp_ld(s, rt, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
int memidx = is_unpriv ? 1 : get_mem_index(s);
if (is_store) {
do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx);
} else {
do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
is_signed, is_extended, memidx);
}
}
if (writeback) {
TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
if (post_index) {
tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
}
tcg_gen_mov_i64(tcg_rn, tcg_addr);
}
}
/*
* C3.3.10 Load/store (register offset)
*
* 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
* +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
* |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
* +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
*
* For non-vector:
* size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
* opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
* For vector:
* size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
* opc<0>: 0 -> store, 1 -> load
* V: 1 -> vector/simd
* opt: extend encoding (see DecodeRegExtend)
* S: if S=1 then scale (essentially index by sizeof(size))
* Rt: register to transfer into/out of
* Rn: address register or SP for base
* Rm: offset register or ZR for offset
*/
static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int shift = extract32(insn, 12, 1);
int rm = extract32(insn, 16, 5);
int opc = extract32(insn, 22, 2);
int opt = extract32(insn, 13, 3);
int size = extract32(insn, 30, 2);
bool is_signed = false;
bool is_store = false;
bool is_extended = false;
bool is_vector = extract32(insn, 26, 1);
TCGv_i64 tcg_rm;
TCGv_i64 tcg_addr;
if (extract32(opt, 1, 1) == 0) {
unallocated_encoding(s);
return;
}
if (is_vector) {
size |= (opc & 2) << 1;
if (size > 4) {
unallocated_encoding(s);
return;
}
is_store = !extract32(opc, 0, 1);
if (!fp_access_check(s)) {
return;
}
} else {
if (size == 3 && opc == 2) {
/* PRFM - prefetch */
return;
}
if (opc == 3 && size > 1) {
unallocated_encoding(s);
return;
}
is_store = (opc == 0);
is_signed = extract32(opc, 1, 1);
is_extended = (size < 3) && extract32(opc, 0, 1);
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
tcg_rm = read_cpu_reg(s, rm, 1);
ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
if (is_vector) {
if (is_store) {
do_fp_st(s, rt, tcg_addr, size);
} else {
do_fp_ld(s, rt, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
if (is_store) {
do_gpr_st(s, tcg_rt, tcg_addr, size);
} else {
do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
}
}
}
/*
* C3.3.13 Load/store (unsigned immediate)
*
* 31 30 29 27 26 25 24 23 22 21 10 9 5
* +----+-------+---+-----+-----+------------+-------+------+
* |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
* +----+-------+---+-----+-----+------------+-------+------+
*
* For non-vector:
* size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
* opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
* For vector:
* size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
* opc<0>: 0 -> store, 1 -> load
* Rn: base address register (inc SP)
* Rt: target register
*/
static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
unsigned int imm12 = extract32(insn, 10, 12);
bool is_vector = extract32(insn, 26, 1);
int size = extract32(insn, 30, 2);
int opc = extract32(insn, 22, 2);
unsigned int offset;
TCGv_i64 tcg_addr;
bool is_store;
bool is_signed = false;
bool is_extended = false;
if (is_vector) {
size |= (opc & 2) << 1;
if (size > 4) {
unallocated_encoding(s);
return;
}
is_store = !extract32(opc, 0, 1);
if (!fp_access_check(s)) {
return;
}
} else {
if (size == 3 && opc == 2) {
/* PRFM - prefetch */
return;
}
if (opc == 3 && size > 1) {
unallocated_encoding(s);
return;
}
is_store = (opc == 0);
is_signed = extract32(opc, 1, 1);
is_extended = (size < 3) && extract32(opc, 0, 1);
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
offset = imm12 << size;
tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
if (is_vector) {
if (is_store) {
do_fp_st(s, rt, tcg_addr, size);
} else {
do_fp_ld(s, rt, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
if (is_store) {
do_gpr_st(s, tcg_rt, tcg_addr, size);
} else {
do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
}
}
}
/* Load/store register (all forms) */
static void disas_ldst_reg(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 24, 2)) {
case 0:
if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
disas_ldst_reg_roffset(s, insn);
} else {
/* Load/store register (unscaled immediate)
* Load/store immediate pre/post-indexed
* Load/store register unprivileged
*/
disas_ldst_reg_imm9(s, insn);
}
break;
case 1:
disas_ldst_reg_unsigned_imm(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/* C3.3.1 AdvSIMD load/store multiple structures
*
* 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
* +---+---+---------------+---+-------------+--------+------+------+------+
* | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
* +---+---+---------------+---+-------------+--------+------+------+------+
*
* C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
*
* 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
* +---+---+---------------+---+---+---------+--------+------+------+------+
* | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
* +---+---+---------------+---+---+---------+--------+------+------+------+
*
* Rt: first (or only) SIMD&FP register to be transferred
* Rn: base address or SP
* Rm (post-index only): post-index register (when !31) or size dependent #imm
*/
static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int size = extract32(insn, 10, 2);
int opcode = extract32(insn, 12, 4);
bool is_store = !extract32(insn, 22, 1);
bool is_postidx = extract32(insn, 23, 1);
bool is_q = extract32(insn, 30, 1);
TCGv_i64 tcg_addr, tcg_rn;
int ebytes = 1 << size;
int elements = (is_q ? 128 : 64) / (8 << size);
int rpt; /* num iterations */
int selem; /* structure elements */
int r;
if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
unallocated_encoding(s);
return;
}
/* From the shared decode logic */
switch (opcode) {
case 0x0:
rpt = 1;
selem = 4;
break;
case 0x2:
rpt = 4;
selem = 1;
break;
case 0x4:
rpt = 1;
selem = 3;
break;
case 0x6:
rpt = 3;
selem = 1;
break;
case 0x7:
rpt = 1;
selem = 1;
break;
case 0x8:
rpt = 1;
selem = 2;
break;
case 0xa:
rpt = 2;
selem = 1;
break;
default:
unallocated_encoding(s);
return;
}
if (size == 3 && !is_q && selem != 1) {
/* reserved */
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_rn = cpu_reg_sp(s, rn);
tcg_addr = tcg_temp_new_i64();
tcg_gen_mov_i64(tcg_addr, tcg_rn);
for (r = 0; r < rpt; r++) {
int e;
for (e = 0; e < elements; e++) {
int tt = (rt + r) % 32;
int xs;
for (xs = 0; xs < selem; xs++) {
if (is_store) {
do_vec_st(s, tt, e, tcg_addr, size);
} else {
do_vec_ld(s, tt, e, tcg_addr, size);
/* For non-quad operations, setting a slice of the low
* 64 bits of the register clears the high 64 bits (in
* the ARM ARM pseudocode this is implicit in the fact
* that 'rval' is a 64 bit wide variable). We optimize
* by noticing that we only need to do this the first
* time we touch a register.
*/
if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
clear_vec_high(s, tt);
}
}
tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
tt = (tt + 1) % 32;
}
}
}
if (is_postidx) {
int rm = extract32(insn, 16, 5);
if (rm == 31) {
tcg_gen_mov_i64(tcg_rn, tcg_addr);
} else {
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
}
}
tcg_temp_free_i64(tcg_addr);
}
/* C3.3.3 AdvSIMD load/store single structure
*
* 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
* | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
*
* C3.3.4 AdvSIMD load/store single structure (post-indexed)
*
* 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
* | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
*
* Rt: first (or only) SIMD&FP register to be transferred
* Rn: base address or SP
* Rm (post-index only): post-index register (when !31) or size dependent #imm
* index = encoded in Q:S:size dependent on size
*
* lane_size = encoded in R, opc
* transfer width = encoded in opc, S, size
*/
static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int size = extract32(insn, 10, 2);
int S = extract32(insn, 12, 1);
int opc = extract32(insn, 13, 3);
int R = extract32(insn, 21, 1);
int is_load = extract32(insn, 22, 1);
int is_postidx = extract32(insn, 23, 1);
int is_q = extract32(insn, 30, 1);
int scale = extract32(opc, 1, 2);
int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
bool replicate = false;
int index = is_q << 3 | S << 2 | size;
int ebytes, xs;
TCGv_i64 tcg_addr, tcg_rn;
switch (scale) {
case 3:
if (!is_load || S) {
unallocated_encoding(s);
return;
}
scale = size;
replicate = true;
break;
case 0:
break;
case 1:
if (extract32(size, 0, 1)) {
unallocated_encoding(s);
return;
}
index >>= 1;
break;
case 2:
if (extract32(size, 1, 1)) {
unallocated_encoding(s);
return;
}
if (!extract32(size, 0, 1)) {
index >>= 2;
} else {
if (S) {
unallocated_encoding(s);
return;
}
index >>= 3;
scale = 3;
}
break;
default:
g_assert_not_reached();
}
if (!fp_access_check(s)) {
return;
}
ebytes = 1 << scale;
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_rn = cpu_reg_sp(s, rn);
tcg_addr = tcg_temp_new_i64();
tcg_gen_mov_i64(tcg_addr, tcg_rn);
for (xs = 0; xs < selem; xs++) {
if (replicate) {
/* Load and replicate to all elements */
uint64_t mulconst;
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
get_mem_index(s), MO_TE + scale);
switch (scale) {
case 0:
mulconst = 0x0101010101010101ULL;
break;
case 1:
mulconst = 0x0001000100010001ULL;
break;
case 2:
mulconst = 0x0000000100000001ULL;
break;
case 3:
mulconst = 0;
break;
default:
g_assert_not_reached();
}
if (mulconst) {
tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
}
write_vec_element(s, tcg_tmp, rt, 0, MO_64);
if (is_q) {
write_vec_element(s, tcg_tmp, rt, 1, MO_64);
} else {
clear_vec_high(s, rt);
}
tcg_temp_free_i64(tcg_tmp);
} else {
/* Load/store one element per register */
if (is_load) {
do_vec_ld(s, rt, index, tcg_addr, MO_TE + scale);
} else {
do_vec_st(s, rt, index, tcg_addr, MO_TE + scale);
}
}
tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
rt = (rt + 1) % 32;
}
if (is_postidx) {
int rm = extract32(insn, 16, 5);
if (rm == 31) {
tcg_gen_mov_i64(tcg_rn, tcg_addr);
} else {
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
}
}
tcg_temp_free_i64(tcg_addr);
}
/* C3.3 Loads and stores */
static void disas_ldst(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 24, 6)) {
case 0x08: /* Load/store exclusive */
disas_ldst_excl(s, insn);
break;
case 0x18: case 0x1c: /* Load register (literal) */
disas_ld_lit(s, insn);
break;
case 0x28: case 0x29:
case 0x2c: case 0x2d: /* Load/store pair (all forms) */
disas_ldst_pair(s, insn);
break;
case 0x38: case 0x39:
case 0x3c: case 0x3d: /* Load/store register (all forms) */
disas_ldst_reg(s, insn);
break;
case 0x0c: /* AdvSIMD load/store multiple structures */
disas_ldst_multiple_struct(s, insn);
break;
case 0x0d: /* AdvSIMD load/store single structure */
disas_ldst_single_struct(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/* C3.4.6 PC-rel. addressing
* 31 30 29 28 24 23 5 4 0
* +----+-------+-----------+-------------------+------+
* | op | immlo | 1 0 0 0 0 | immhi | Rd |
* +----+-------+-----------+-------------------+------+
*/
static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
{
unsigned int page, rd;
uint64_t base;
int64_t offset;
page = extract32(insn, 31, 1);
/* SignExtend(immhi:immlo) -> offset */
offset = ((int64_t)sextract32(insn, 5, 19) << 2) | extract32(insn, 29, 2);
rd = extract32(insn, 0, 5);
base = s->pc - 4;
if (page) {
/* ADRP (page based) */
base &= ~0xfff;
offset <<= 12;
}
tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
}
/*
* C3.4.1 Add/subtract (immediate)
*
* 31 30 29 28 24 23 22 21 10 9 5 4 0
* +--+--+--+-----------+-----+-------------+-----+-----+
* |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
* +--+--+--+-----------+-----+-------------+-----+-----+
*
* sf: 0 -> 32bit, 1 -> 64bit
* op: 0 -> add , 1 -> sub
* S: 1 -> set flags
* shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
*/
static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
uint64_t imm = extract32(insn, 10, 12);
int shift = extract32(insn, 22, 2);
bool setflags = extract32(insn, 29, 1);
bool sub_op = extract32(insn, 30, 1);
bool is_64bit = extract32(insn, 31, 1);
TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
TCGv_i64 tcg_result;
switch (shift) {
case 0x0:
break;
case 0x1:
imm <<= 12;
break;
default:
unallocated_encoding(s);
return;
}
tcg_result = tcg_temp_new_i64();
if (!setflags) {
if (sub_op) {
tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
} else {
tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
}
} else {
TCGv_i64 tcg_imm = tcg_const_i64(imm);
if (sub_op) {
gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
} else {
gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
}
tcg_temp_free_i64(tcg_imm);
}
if (is_64bit) {
tcg_gen_mov_i64(tcg_rd, tcg_result);
} else {
tcg_gen_ext32u_i64(tcg_rd, tcg_result);
}
tcg_temp_free_i64(tcg_result);
}
/* The input should be a value in the bottom e bits (with higher
* bits zero); returns that value replicated into every element
* of size e in a 64 bit integer.
*/
static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
{
assert(e != 0);
while (e < 64) {
mask |= mask << e;
e *= 2;
}
return mask;
}
/* Return a value with the bottom len bits set (where 0 < len <= 64) */
static inline uint64_t bitmask64(unsigned int length)
{
assert(length > 0 && length <= 64);
return ~0ULL >> (64 - length);
}
/* Simplified variant of pseudocode DecodeBitMasks() for the case where we
* only require the wmask. Returns false if the imms/immr/immn are a reserved
* value (ie should cause a guest UNDEF exception), and true if they are
* valid, in which case the decoded bit pattern is written to result.
*/
static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
unsigned int imms, unsigned int immr)
{
uint64_t mask;
unsigned e, levels, s, r;
int len;
assert(immn < 2 && imms < 64 && immr < 64);
/* The bit patterns we create here are 64 bit patterns which
* are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
* 64 bits each. Each element contains the same value: a run
* of between 1 and e-1 non-zero bits, rotated within the
* element by between 0 and e-1 bits.
*
* The element size and run length are encoded into immn (1 bit)
* and imms (6 bits) as follows:
* 64 bit elements: immn = 1, imms = <length of run - 1>
* 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
* 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
* 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
* 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
* 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
* Notice that immn = 0, imms = 11111x is the only combination
* not covered by one of the above options; this is reserved.
* Further, <length of run - 1> all-ones is a reserved pattern.
*
* In all cases the rotation is by immr % e (and immr is 6 bits).
*/
/* First determine the element size */
len = 31 - clz32((immn << 6) | (~imms & 0x3f));
if (len < 1) {
/* This is the immn == 0, imms == 0x11111x case */
return false;
}
e = 1 << len;
levels = e - 1;
s = imms & levels;
r = immr & levels;
if (s == levels) {
/* <length of run - 1> mustn't be all-ones. */
return false;
}
/* Create the value of one element: s+1 set bits rotated
* by r within the element (which is e bits wide)...
*/
mask = bitmask64(s + 1);
mask = (mask >> r) | (mask << (e - r));
/* ...then replicate the element over the whole 64 bit value */
mask = bitfield_replicate(mask, e);
*result = mask;
return true;
}
/* C3.4.4 Logical (immediate)
* 31 30 29 28 23 22 21 16 15 10 9 5 4 0
* +----+-----+-------------+---+------+------+------+------+
* | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
* +----+-----+-------------+---+------+------+------+------+
*/
static void disas_logic_imm(DisasContext *s, uint32_t insn)
{
unsigned int sf, opc, is_n, immr, imms, rn, rd;
TCGv_i64 tcg_rd, tcg_rn;
uint64_t wmask;
bool is_and = false;
sf = extract32(insn, 31, 1);
opc = extract32(insn, 29, 2);
is_n = extract32(insn, 22, 1);
immr = extract32(insn, 16, 6);
imms = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (!sf && is_n) {
unallocated_encoding(s);
return;
}
if (opc == 0x3) { /* ANDS */
tcg_rd = cpu_reg(s, rd);
} else {
tcg_rd = cpu_reg_sp(s, rd);
}
tcg_rn = cpu_reg(s, rn);
if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
/* some immediate field values are reserved */
unallocated_encoding(s);
return;
}
if (!sf) {
wmask &= 0xffffffff;
}
switch (opc) {
case 0x3: /* ANDS */
case 0x0: /* AND */
tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
is_and = true;
break;
case 0x1: /* ORR */
tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
break;
case 0x2: /* EOR */
tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
break;
default:
assert(FALSE); /* must handle all above */
break;
}
if (!sf && !is_and) {
/* zero extend final result; we know we can skip this for AND
* since the immediate had the high 32 bits clear.
*/
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
if (opc == 3) { /* ANDS */
gen_logic_CC(sf, tcg_rd);
}
}
/*
* C3.4.5 Move wide (immediate)
*
* 31 30 29 28 23 22 21 20 5 4 0
* +--+-----+-------------+-----+----------------+------+
* |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
* +--+-----+-------------+-----+----------------+------+
*
* sf: 0 -> 32 bit, 1 -> 64 bit
* opc: 00 -> N, 10 -> Z, 11 -> K
* hw: shift/16 (0,16, and sf only 32, 48)
*/
static void disas_movw_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
uint64_t imm = extract32(insn, 5, 16);
int sf = extract32(insn, 31, 1);
int opc = extract32(insn, 29, 2);
int pos = extract32(insn, 21, 2) << 4;
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_imm;
if (!sf && (pos >= 32)) {
unallocated_encoding(s);
return;
}
switch (opc) {
case 0: /* MOVN */
case 2: /* MOVZ */
imm <<= pos;
if (opc == 0) {
imm = ~imm;
}
if (!sf) {
imm &= 0xffffffffu;
}
tcg_gen_movi_i64(tcg_rd, imm);
break;
case 3: /* MOVK */
tcg_imm = tcg_const_i64(imm);
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
tcg_temp_free_i64(tcg_imm);
if (!sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
break;
default:
unallocated_encoding(s);
break;
}
}
/* C3.4.2 Bitfield
* 31 30 29 28 23 22 21 16 15 10 9 5 4 0
* +----+-----+-------------+---+------+------+------+------+
* | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
* +----+-----+-------------+---+------+------+------+------+
*/
static void disas_bitfield(DisasContext *s, uint32_t insn)
{
unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
TCGv_i64 tcg_rd, tcg_tmp;
sf = extract32(insn, 31, 1);
opc = extract32(insn, 29, 2);
n = extract32(insn, 22, 1);
ri = extract32(insn, 16, 6);
si = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
bitsize = sf ? 64 : 32;
if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
unallocated_encoding(s);
return;
}
tcg_rd = cpu_reg(s, rd);
tcg_tmp = read_cpu_reg(s, rn, sf);
/* OPTME: probably worth recognizing common cases of ext{8,16,32}{u,s} */
if (opc != 1) { /* SBFM or UBFM */
tcg_gen_movi_i64(tcg_rd, 0);
}
/* do the bit move operation */
if (si >= ri) {
/* Wd<s-r:0> = Wn<s:r> */
tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
pos = 0;
len = (si - ri) + 1;
} else {
/* Wd<32+s-r,32-r> = Wn<s:0> */
pos = bitsize - ri;
len = si + 1;
}
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
if (opc == 0) { /* SBFM - sign extend the destination field */
tcg_gen_shli_i64(tcg_rd, tcg_rd, 64 - (pos + len));
tcg_gen_sari_i64(tcg_rd, tcg_rd, 64 - (pos + len));
}
if (!sf) { /* zero extend final result */
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
}
/* C3.4.3 Extract
* 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
* +----+------+-------------+---+----+------+--------+------+------+
* | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
* +----+------+-------------+---+----+------+--------+------+------+
*/
static void disas_extract(DisasContext *s, uint32_t insn)
{
unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
sf = extract32(insn, 31, 1);
n = extract32(insn, 22, 1);
rm = extract32(insn, 16, 5);
imm = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
op21 = extract32(insn, 29, 2);
op0 = extract32(insn, 21, 1);
bitsize = sf ? 64 : 32;
if (sf != n || op21 || op0 || imm >= bitsize) {
unallocated_encoding(s);
} else {
TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
tcg_rd = cpu_reg(s, rd);
if (imm) {
/* OPTME: we can special case rm==rn as a rotate */
tcg_rm = read_cpu_reg(s, rm, sf);
tcg_rn = read_cpu_reg(s, rn, sf);
tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
if (!sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
} else {
/* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
* so an extract from bit 0 is a special case.
*/
if (sf) {
tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
} else {
tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
}
}
}
}
/* C3.4 Data processing - immediate */
static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 23, 6)) {
case 0x20: case 0x21: /* PC-rel. addressing */
disas_pc_rel_adr(s, insn);
break;
case 0x22: case 0x23: /* Add/subtract (immediate) */
disas_add_sub_imm(s, insn);
break;
case 0x24: /* Logical (immediate) */
disas_logic_imm(s, insn);
break;
case 0x25: /* Move wide (immediate) */
disas_movw_imm(s, insn);
break;
case 0x26: /* Bitfield */
disas_bitfield(s, insn);
break;
case 0x27: /* Extract */
disas_extract(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/* Shift a TCGv src by TCGv shift_amount, put result in dst.
* Note that it is the caller's responsibility to ensure that the
* shift amount is in range (ie 0..31 or 0..63) and provide the ARM
* mandated semantics for out of range shifts.
*/
static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
enum a64_shift_type shift_type, TCGv_i64 shift_amount)
{
switch (shift_type) {
case A64_SHIFT_TYPE_LSL:
tcg_gen_shl_i64(dst, src, shift_amount);
break;
case A64_SHIFT_TYPE_LSR:
tcg_gen_shr_i64(dst, src, shift_amount);
break;
case A64_SHIFT_TYPE_ASR:
if (!sf) {
tcg_gen_ext32s_i64(dst, src);
}
tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
break;
case A64_SHIFT_TYPE_ROR:
if (sf) {
tcg_gen_rotr_i64(dst, src, shift_amount);
} else {
TCGv_i32 t0, t1;
t0 = tcg_temp_new_i32();
t1 = tcg_temp_new_i32();
tcg_gen_trunc_i64_i32(t0, src);
tcg_gen_trunc_i64_i32(t1, shift_amount);
tcg_gen_rotr_i32(t0, t0, t1);
tcg_gen_extu_i32_i64(dst, t0);
tcg_temp_free_i32(t0);
tcg_temp_free_i32(t1);
}
break;
default:
assert(FALSE); /* all shift types should be handled */
break;
}
if (!sf) { /* zero extend final result */
tcg_gen_ext32u_i64(dst, dst);
}
}
/* Shift a TCGv src by immediate, put result in dst.
* The shift amount must be in range (this should always be true as the
* relevant instructions will UNDEF on bad shift immediates).
*/
static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
enum a64_shift_type shift_type, unsigned int shift_i)
{
assert(shift_i < (sf ? 64 : 32));
if (shift_i == 0) {
tcg_gen_mov_i64(dst, src);
} else {
TCGv_i64 shift_const;
shift_const = tcg_const_i64(shift_i);
shift_reg(dst, src, sf, shift_type, shift_const);
tcg_temp_free_i64(shift_const);
}
}
/* C3.5.10 Logical (shifted register)
* 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
* +----+-----+-----------+-------+---+------+--------+------+------+
* | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
* +----+-----+-----------+-------+---+------+--------+------+------+
*/
static void disas_logic_reg(DisasContext *s, uint32_t insn)
{
TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
sf = extract32(insn, 31, 1);
opc = extract32(insn, 29, 2);
shift_type = extract32(insn, 22, 2);
invert = extract32(insn, 21, 1);
rm = extract32(insn, 16, 5);
shift_amount = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (!sf && (shift_amount & (1 << 5))) {
unallocated_encoding(s);
return;
}
tcg_rd = cpu_reg(s, rd);
if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
/* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
* register-register MOV and MVN, so it is worth special casing.
*/
tcg_rm = cpu_reg(s, rm);
if (invert) {
tcg_gen_not_i64(tcg_rd, tcg_rm);
if (!sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
} else {
if (sf) {
tcg_gen_mov_i64(tcg_rd, tcg_rm);
} else {
tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
}
}
return;
}
tcg_rm = read_cpu_reg(s, rm, sf);
if (shift_amount) {
shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
}
tcg_rn = cpu_reg(s, rn);
switch (opc | (invert << 2)) {
case 0: /* AND */
case 3: /* ANDS */
tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
break;
case 1: /* ORR */
tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
break;
case 2: /* EOR */
tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
break;
case 4: /* BIC */
case 7: /* BICS */
tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
break;
case 5: /* ORN */
tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
break;
case 6: /* EON */
tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
break;
default:
assert(FALSE);
break;
}
if (!sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
if (opc == 3) {
gen_logic_CC(sf, tcg_rd);
}
}
/*
* C3.5.1 Add/subtract (extended register)
*
* 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
* +--+--+--+-----------+-----+--+-------+------+------+----+----+
* |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
* +--+--+--+-----------+-----+--+-------+------+------+----+----+
*
* sf: 0 -> 32bit, 1 -> 64bit
* op: 0 -> add , 1 -> sub
* S: 1 -> set flags
* opt: 00
* option: extension type (see DecodeRegExtend)
* imm3: optional shift to Rm
*
* Rd = Rn + LSL(extend(Rm), amount)
*/
static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm3 = extract32(insn, 10, 3);
int option = extract32(insn, 13, 3);
int rm = extract32(insn, 16, 5);
bool setflags = extract32(insn, 29, 1);
bool sub_op = extract32(insn, 30, 1);
bool sf = extract32(insn, 31, 1);
TCGv_i64 tcg_rm, tcg_rn; /* temps */
TCGv_i64 tcg_rd;
TCGv_i64 tcg_result;
if (imm3 > 4) {
unallocated_encoding(s);
return;
}
/* non-flag setting ops may use SP */
if (!setflags) {
tcg_rd = cpu_reg_sp(s, rd);
} else {
tcg_rd = cpu_reg(s, rd);
}
tcg_rn = read_cpu_reg_sp(s, rn, sf);
tcg_rm = read_cpu_reg(s, rm, sf);
ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
tcg_result = tcg_temp_new_i64();
if (!setflags) {
if (sub_op) {
tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
} else {
tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
}
} else {
if (sub_op) {
gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
} else {
gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
}
}
if (sf) {
tcg_gen_mov_i64(tcg_rd, tcg_result);
} else {
tcg_gen_ext32u_i64(tcg_rd, tcg_result);
}
tcg_temp_free_i64(tcg_result);
}
/*
* C3.5.2 Add/subtract (shifted register)
*
* 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
* +--+--+--+-----------+-----+--+-------+---------+------+------+
* |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
* +--+--+--+-----------+-----+--+-------+---------+------+------+
*
* sf: 0 -> 32bit, 1 -> 64bit
* op: 0 -> add , 1 -> sub
* S: 1 -> set flags
* shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
* imm6: Shift amount to apply to Rm before the add/sub
*/
static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm6 = extract32(insn, 10, 6);
int rm = extract32(insn, 16, 5);
int shift_type = extract32(insn, 22, 2);
bool setflags = extract32(insn, 29, 1);
bool sub_op = extract32(insn, 30, 1);
bool sf = extract32(insn, 31, 1);
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_rn, tcg_rm;
TCGv_i64 tcg_result;
if ((shift_type == 3) || (!sf && (imm6 > 31))) {
unallocated_encoding(s);
return;
}
tcg_rn = read_cpu_reg(s, rn, sf);
tcg_rm = read_cpu_reg(s, rm, sf);
shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
tcg_result = tcg_temp_new_i64();
if (!setflags) {
if (sub_op) {
tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
} else {
tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
}
} else {
if (sub_op) {
gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
} else {
gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
}
}
if (sf) {
tcg_gen_mov_i64(tcg_rd, tcg_result);
} else {
tcg_gen_ext32u_i64(tcg_rd, tcg_result);
}
tcg_temp_free_i64(tcg_result);
}
/* C3.5.9 Data-processing (3 source)
31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
+--+------+-----------+------+------+----+------+------+------+
|sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
+--+------+-----------+------+------+----+------+------+------+
*/
static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int ra = extract32(insn, 10, 5);
int rm = extract32(insn, 16, 5);
int op_id = (extract32(insn, 29, 3) << 4) |
(extract32(insn, 21, 3) << 1) |
extract32(insn, 15, 1);
bool sf = extract32(insn, 31, 1);
bool is_sub = extract32(op_id, 0, 1);
bool is_high = extract32(op_id, 2, 1);
bool is_signed = false;
TCGv_i64 tcg_op1;
TCGv_i64 tcg_op2;
TCGv_i64 tcg_tmp;
/* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
switch (op_id) {
case 0x42: /* SMADDL */
case 0x43: /* SMSUBL */
case 0x44: /* SMULH */
is_signed = true;
break;
case 0x0: /* MADD (32bit) */
case 0x1: /* MSUB (32bit) */
case 0x40: /* MADD (64bit) */
case 0x41: /* MSUB (64bit) */
case 0x4a: /* UMADDL */
case 0x4b: /* UMSUBL */
case 0x4c: /* UMULH */
break;
default:
unallocated_encoding(s);
return;
}
if (is_high) {
TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_rn = cpu_reg(s, rn);
TCGv_i64 tcg_rm = cpu_reg(s, rm);
if (is_signed) {
tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
} else {
tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
}
tcg_temp_free_i64(low_bits);
return;
}
tcg_op1 = tcg_temp_new_i64();
tcg_op2 = tcg_temp_new_i64();
tcg_tmp = tcg_temp_new_i64();
if (op_id < 0x42) {
tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
} else {
if (is_signed) {
tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
} else {
tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
}
}
if (ra == 31 && !is_sub) {
/* Special-case MADD with rA == XZR; it is the standard MUL alias */
tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
} else {
tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
if (is_sub) {
tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
} else {
tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
}
}
if (!sf) {
tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
}
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
tcg_temp_free_i64(tcg_tmp);
}
/* C3.5.3 - Add/subtract (with carry)
* 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
* +--+--+--+------------------------+------+---------+------+-----+
* |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
* +--+--+--+------------------------+------+---------+------+-----+
* [000000]
*/
static void disas_adc_sbc(DisasContext *s, uint32_t insn)
{
unsigned int sf, op, setflags, rm, rn, rd;
TCGv_i64 tcg_y, tcg_rn, tcg_rd;
if (extract32(insn, 10, 6) != 0) {
unallocated_encoding(s);
return;
}
sf = extract32(insn, 31, 1);
op = extract32(insn, 30, 1);
setflags = extract32(insn, 29, 1);
rm = extract32(insn, 16, 5);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (op) {
tcg_y = new_tmp_a64(s);
tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
} else {
tcg_y = cpu_reg(s, rm);
}
if (setflags) {
gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
} else {
gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
}
}
/* C3.5.4 - C3.5.5 Conditional compare (immediate / register)
* 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
* +--+--+--+------------------------+--------+------+----+--+------+--+-----+
* |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
* +--+--+--+------------------------+--------+------+----+--+------+--+-----+
* [1] y [0] [0]
*/
static void disas_cc(DisasContext *s, uint32_t insn)
{
unsigned int sf, op, y, cond, rn, nzcv, is_imm;
int label_continue = -1;
TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
if (!extract32(insn, 29, 1)) {
unallocated_encoding(s);
return;
}
if (insn & (1 << 10 | 1 << 4)) {
unallocated_encoding(s);
return;
}
sf = extract32(insn, 31, 1);
op = extract32(insn, 30, 1);
is_imm = extract32(insn, 11, 1);
y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
cond = extract32(insn, 12, 4);
rn = extract32(insn, 5, 5);
nzcv = extract32(insn, 0, 4);
if (cond < 0x0e) { /* not always */
int label_match = gen_new_label();
label_continue = gen_new_label();
arm_gen_test_cc(cond, label_match);
/* nomatch: */
tcg_tmp = tcg_temp_new_i64();
tcg_gen_movi_i64(tcg_tmp, nzcv << 28);
gen_set_nzcv(tcg_tmp);
tcg_temp_free_i64(tcg_tmp);
tcg_gen_br(label_continue);
gen_set_label(label_match);
}
/* match, or condition is always */
if (is_imm) {
tcg_y = new_tmp_a64(s);
tcg_gen_movi_i64(tcg_y, y);
} else {
tcg_y = cpu_reg(s, y);
}
tcg_rn = cpu_reg(s, rn);
tcg_tmp = tcg_temp_new_i64();
if (op) {
gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
} else {
gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
}
tcg_temp_free_i64(tcg_tmp);
if (cond < 0x0e) { /* continue */
gen_set_label(label_continue);
}
}
/* C3.5.6 Conditional select
* 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
* +----+----+---+-----------------+------+------+-----+------+------+
* | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
* +----+----+---+-----------------+------+------+-----+------+------+
*/
static void disas_cond_select(DisasContext *s, uint32_t insn)
{
unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
TCGv_i64 tcg_rd, tcg_src;
if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
/* S == 1 or op2<1> == 1 */
unallocated_encoding(s);
return;
}
sf = extract32(insn, 31, 1);
else_inv = extract32(insn, 30, 1);
rm = extract32(insn, 16, 5);
cond = extract32(insn, 12, 4);
else_inc = extract32(insn, 10, 1);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (rd == 31) {
/* silly no-op write; until we use movcond we must special-case
* this to avoid a dead temporary across basic blocks.
*/
return;
}
tcg_rd = cpu_reg(s, rd);
if (cond >= 0x0e) { /* condition "always" */
tcg_src = read_cpu_reg(s, rn, sf);
tcg_gen_mov_i64(tcg_rd, tcg_src);
} else {
/* OPTME: we could use movcond here, at the cost of duplicating
* a lot of the arm_gen_test_cc() logic.
*/
int label_match = gen_new_label();
int label_continue = gen_new_label();
arm_gen_test_cc(cond, label_match);
/* nomatch: */
tcg_src = cpu_reg(s, rm);
if (else_inv && else_inc) {
tcg_gen_neg_i64(tcg_rd, tcg_src);
} else if (else_inv) {
tcg_gen_not_i64(tcg_rd, tcg_src);
} else if (else_inc) {
tcg_gen_addi_i64(tcg_rd, tcg_src, 1);
} else {
tcg_gen_mov_i64(tcg_rd, tcg_src);
}
if (!sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
tcg_gen_br(label_continue);
/* match: */
gen_set_label(label_match);
tcg_src = read_cpu_reg(s, rn, sf);
tcg_gen_mov_i64(tcg_rd, tcg_src);
/* continue: */
gen_set_label(label_continue);
}
}
static void handle_clz(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_rd, tcg_rn;
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (sf) {
gen_helper_clz64(tcg_rd, tcg_rn);
} else {
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
tcg_gen_trunc_i64_i32(tcg_tmp32, tcg_rn);
gen_helper_clz(tcg_tmp32, tcg_tmp32);
tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
tcg_temp_free_i32(tcg_tmp32);
}
}
static void handle_cls(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_rd, tcg_rn;
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (sf) {
gen_helper_cls64(tcg_rd, tcg_rn);
} else {
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
tcg_gen_trunc_i64_i32(tcg_tmp32, tcg_rn);
gen_helper_cls32(tcg_tmp32, tcg_tmp32);
tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
tcg_temp_free_i32(tcg_tmp32);
}
}
static void handle_rbit(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_rd, tcg_rn;
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (sf) {
gen_helper_rbit64(tcg_rd, tcg_rn);
} else {
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
tcg_gen_trunc_i64_i32(tcg_tmp32, tcg_rn);
gen_helper_rbit(tcg_tmp32, tcg_tmp32);
tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
tcg_temp_free_i32(tcg_tmp32);
}
}
/* C5.6.149 REV with sf==1, opcode==3 ("REV64") */
static void handle_rev64(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
if (!sf) {
unallocated_encoding(s);
return;
}
tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
}
/* C5.6.149 REV with sf==0, opcode==2
* C5.6.151 REV32 (sf==1, opcode==2)
*/
static void handle_rev32(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_rd = cpu_reg(s, rd);
if (sf) {
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
/* bswap32_i64 requires zero high word */
tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
tcg_temp_free_i64(tcg_tmp);
} else {
tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
}
}
/* C5.6.150 REV16 (opcode==1) */
static void handle_rev16(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
tcg_gen_andi_i64(tcg_tmp, tcg_rn, 0xffff);
tcg_gen_bswap16_i64(tcg_rd, tcg_tmp);
tcg_gen_shri_i64(tcg_tmp, tcg_rn, 16);
tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 16, 16);
if (sf) {
tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 32, 16);
tcg_gen_shri_i64(tcg_tmp, tcg_rn, 48);
tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 48, 16);
}
tcg_temp_free_i64(tcg_tmp);
}
/* C3.5.7 Data-processing (1 source)
* 31 30 29 28 21 20 16 15 10 9 5 4 0
* +----+---+---+-----------------+---------+--------+------+------+
* | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
* +----+---+---+-----------------+---------+--------+------+------+
*/
static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
{
unsigned int sf, opcode, rn, rd;
if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
unallocated_encoding(s);
return;
}
sf = extract32(insn, 31, 1);
opcode = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
switch (opcode) {
case 0: /* RBIT */
handle_rbit(s, sf, rn, rd);
break;
case 1: /* REV16 */
handle_rev16(s, sf, rn, rd);
break;
case 2: /* REV32 */
handle_rev32(s, sf, rn, rd);
break;
case 3: /* REV64 */
handle_rev64(s, sf, rn, rd);
break;
case 4: /* CLZ */
handle_clz(s, sf, rn, rd);
break;
case 5: /* CLS */
handle_cls(s, sf, rn, rd);
break;
}
}
static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
unsigned int rm, unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_n, tcg_m, tcg_rd;
tcg_rd = cpu_reg(s, rd);
if (!sf && is_signed) {
tcg_n = new_tmp_a64(s);
tcg_m = new_tmp_a64(s);
tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
} else {
tcg_n = read_cpu_reg(s, rn, sf);
tcg_m = read_cpu_reg(s, rm, sf);
}
if (is_signed) {
gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
} else {
gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
}
if (!sf) { /* zero extend final result */
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
}
/* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */
static void handle_shift_reg(DisasContext *s,
enum a64_shift_type shift_type, unsigned int sf,
unsigned int rm, unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_shift = tcg_temp_new_i64();
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
tcg_temp_free_i64(tcg_shift);
}
/* CRC32[BHWX], CRC32C[BHWX] */
static void handle_crc32(DisasContext *s,
unsigned int sf, unsigned int sz, bool crc32c,
unsigned int rm, unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_acc, tcg_val;
TCGv_i32 tcg_bytes;
if (!arm_dc_feature(s, ARM_FEATURE_CRC)
|| (sf == 1 && sz != 3)
|| (sf == 0 && sz == 3)) {
unallocated_encoding(s);
return;
}
if (sz == 3) {
tcg_val = cpu_reg(s, rm);
} else {
uint64_t mask;
switch (sz) {
case 0:
mask = 0xFF;
break;
case 1:
mask = 0xFFFF;
break;
case 2:
mask = 0xFFFFFFFF;
break;
default:
g_assert_not_reached();
}
tcg_val = new_tmp_a64(s);
tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
}
tcg_acc = cpu_reg(s, rn);
tcg_bytes = tcg_const_i32(1 << sz);
if (crc32c) {
gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
} else {
gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
}
tcg_temp_free_i32(tcg_bytes);
}
/* C3.5.8 Data-processing (2 source)
* 31 30 29 28 21 20 16 15 10 9 5 4 0
* +----+---+---+-----------------+------+--------+------+------+
* | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
* +----+---+---+-----------------+------+--------+------+------+
*/
static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
{
unsigned int sf, rm, opcode, rn, rd;
sf = extract32(insn, 31, 1);
rm = extract32(insn, 16, 5);
opcode = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (extract32(insn, 29, 1)) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 2: /* UDIV */
handle_div(s, false, sf, rm, rn, rd);
break;
case 3: /* SDIV */
handle_div(s, true, sf, rm, rn, rd);
break;
case 8: /* LSLV */
handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
break;
case 9: /* LSRV */
handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
break;
case 10: /* ASRV */
handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
break;
case 11: /* RORV */
handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
break;
case 16:
case 17:
case 18:
case 19:
case 20:
case 21:
case 22:
case 23: /* CRC32 */
{
int sz = extract32(opcode, 0, 2);
bool crc32c = extract32(opcode, 2, 1);
handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
break;
}
default:
unallocated_encoding(s);
break;
}
}
/* C3.5 Data processing - register */
static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 24, 5)) {
case 0x0a: /* Logical (shifted register) */
disas_logic_reg(s, insn);
break;
case 0x0b: /* Add/subtract */
if (insn & (1 << 21)) { /* (extended register) */
disas_add_sub_ext_reg(s, insn);
} else {
disas_add_sub_reg(s, insn);
}
break;
case 0x1b: /* Data-processing (3 source) */
disas_data_proc_3src(s, insn);
break;
case 0x1a:
switch (extract32(insn, 21, 3)) {
case 0x0: /* Add/subtract (with carry) */
disas_adc_sbc(s, insn);
break;
case 0x2: /* Conditional compare */
disas_cc(s, insn); /* both imm and reg forms */
break;
case 0x4: /* Conditional select */
disas_cond_select(s, insn);
break;
case 0x6: /* Data-processing */
if (insn & (1 << 30)) { /* (1 source) */
disas_data_proc_1src(s, insn);
} else { /* (2 source) */
disas_data_proc_2src(s, insn);
}
break;
default:
unallocated_encoding(s);
break;
}
break;
default:
unallocated_encoding(s);
break;
}
}
static void handle_fp_compare(DisasContext *s, bool is_double,
unsigned int rn, unsigned int rm,
bool cmp_with_zero, bool signal_all_nans)
{
TCGv_i64 tcg_flags = tcg_temp_new_i64();
TCGv_ptr fpst = get_fpstatus_ptr();
if (is_double) {
TCGv_i64 tcg_vn, tcg_vm;
tcg_vn = read_fp_dreg(s, rn);
if (cmp_with_zero) {
tcg_vm = tcg_const_i64(0);
} else {
tcg_vm = read_fp_dreg(s, rm);
}
if (signal_all_nans) {
gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
} else {
gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
}
tcg_temp_free_i64(tcg_vn);
tcg_temp_free_i64(tcg_vm);
} else {
TCGv_i32 tcg_vn, tcg_vm;
tcg_vn = read_fp_sreg(s, rn);
if (cmp_with_zero) {
tcg_vm = tcg_const_i32(0);
} else {
tcg_vm = read_fp_sreg(s, rm);
}
if (signal_all_nans) {
gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
} else {
gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
}
tcg_temp_free_i32(tcg_vn);
tcg_temp_free_i32(tcg_vm);
}
tcg_temp_free_ptr(fpst);
gen_set_nzcv(tcg_flags);
tcg_temp_free_i64(tcg_flags);
}
/* C3.6.22 Floating point compare
* 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
* +---+---+---+-----------+------+---+------+-----+---------+------+-------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
* +---+---+---+-----------+------+---+------+-----+---------+------+-------+
*/
static void disas_fp_compare(DisasContext *s, uint32_t insn)
{
unsigned int mos, type, rm, op, rn, opc, op2r;
mos = extract32(insn, 29, 3);
type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
rm = extract32(insn, 16, 5);
op = extract32(insn, 14, 2);
rn = extract32(insn, 5, 5);
opc = extract32(insn, 3, 2);
op2r = extract32(insn, 0, 3);
if (mos || op || op2r || type > 1) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
}
/* C3.6.23 Floating point conditional compare
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
* +---+---+---+-----------+------+---+------+------+-----+------+----+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
* +---+---+---+-----------+------+---+------+------+-----+------+----+------+
*/
static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
{
unsigned int mos, type, rm, cond, rn, op, nzcv;
TCGv_i64 tcg_flags;
int label_continue = -1;
mos = extract32(insn, 29, 3);
type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
rm = extract32(insn, 16, 5);
cond = extract32(insn, 12, 4);
rn = extract32(insn, 5, 5);
op = extract32(insn, 4, 1);
nzcv = extract32(insn, 0, 4);
if (mos || type > 1) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (cond < 0x0e) { /* not always */
int label_match = gen_new_label();
label_continue = gen_new_label();
arm_gen_test_cc(cond, label_match);
/* nomatch: */
tcg_flags = tcg_const_i64(nzcv << 28);
gen_set_nzcv(tcg_flags);
tcg_temp_free_i64(tcg_flags);
tcg_gen_br(label_continue);
gen_set_label(label_match);
}
handle_fp_compare(s, type, rn, rm, false, op);
if (cond < 0x0e) {
gen_set_label(label_continue);
}
}
/* copy src FP register to dst FP register; type specifies single or double */
static void gen_mov_fp2fp(DisasContext *s, int type, int dst, int src)
{
if (type) {
TCGv_i64 v = read_fp_dreg(s, src);
write_fp_dreg(s, dst, v);
tcg_temp_free_i64(v);
} else {
TCGv_i32 v = read_fp_sreg(s, src);
write_fp_sreg(s, dst, v);
tcg_temp_free_i32(v);
}
}
/* C3.6.24 Floating point conditional select
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
* +---+---+---+-----------+------+---+------+------+-----+------+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
* +---+---+---+-----------+------+---+------+------+-----+------+------+
*/
static void disas_fp_csel(DisasContext *s, uint32_t insn)
{
unsigned int mos, type, rm, cond, rn, rd;
int label_continue = -1;
mos = extract32(insn, 29, 3);
type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
rm = extract32(insn, 16, 5);
cond = extract32(insn, 12, 4);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (mos || type > 1) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (cond < 0x0e) { /* not always */
int label_match = gen_new_label();
label_continue = gen_new_label();
arm_gen_test_cc(cond, label_match);
/* nomatch: */
gen_mov_fp2fp(s, type, rd, rm);
tcg_gen_br(label_continue);
gen_set_label(label_match);
}
gen_mov_fp2fp(s, type, rd, rn);
if (cond < 0x0e) { /* continue */
gen_set_label(label_continue);
}
}
/* C3.6.25 Floating-point data-processing (1 source) - single precision */
static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
{
TCGv_ptr fpst;
TCGv_i32 tcg_op;
TCGv_i32 tcg_res;
fpst = get_fpstatus_ptr();
tcg_op = read_fp_sreg(s, rn);
tcg_res = tcg_temp_new_i32();
switch (opcode) {
case 0x0: /* FMOV */
tcg_gen_mov_i32(tcg_res, tcg_op);
break;
case 0x1: /* FABS */
gen_helper_vfp_abss(tcg_res, tcg_op);
break;
case 0x2: /* FNEG */
gen_helper_vfp_negs(tcg_res, tcg_op);
break;
case 0x3: /* FSQRT */
gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
break;
case 0x8: /* FRINTN */
case 0x9: /* FRINTP */
case 0xa: /* FRINTM */
case 0xb: /* FRINTZ */
case 0xc: /* FRINTA */
{
TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
gen_helper_rints(tcg_res, tcg_op, fpst);
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
tcg_temp_free_i32(tcg_rmode);
break;
}
case 0xe: /* FRINTX */
gen_helper_rints_exact(tcg_res, tcg_op, fpst);
break;
case 0xf: /* FRINTI */
gen_helper_rints(tcg_res, tcg_op, fpst);
break;
default:
abort();
}
write_fp_sreg(s, rd, tcg_res);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tcg_op);
tcg_temp_free_i32(tcg_res);
}
/* C3.6.25 Floating-point data-processing (1 source) - double precision */
static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
{
TCGv_ptr fpst;
TCGv_i64 tcg_op;
TCGv_i64 tcg_res;
fpst = get_fpstatus_ptr();
tcg_op = read_fp_dreg(s, rn);
tcg_res = tcg_temp_new_i64();
switch (opcode) {
case 0x0: /* FMOV */
tcg_gen_mov_i64(tcg_res, tcg_op);
break;
case 0x1: /* FABS */
gen_helper_vfp_absd(tcg_res, tcg_op);
break;
case 0x2: /* FNEG */
gen_helper_vfp_negd(tcg_res, tcg_op);
break;
case 0x3: /* FSQRT */
gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
break;
case 0x8: /* FRINTN */
case 0x9: /* FRINTP */
case 0xa: /* FRINTM */
case 0xb: /* FRINTZ */
case 0xc: /* FRINTA */
{
TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
gen_helper_rintd(tcg_res, tcg_op, fpst);
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
tcg_temp_free_i32(tcg_rmode);
break;
}
case 0xe: /* FRINTX */
gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
break;
case 0xf: /* FRINTI */
gen_helper_rintd(tcg_res, tcg_op, fpst);
break;
default:
abort();
}
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i64(tcg_op);
tcg_temp_free_i64(tcg_res);
}
static void handle_fp_fcvt(DisasContext *s, int opcode,
int rd, int rn, int dtype, int ntype)
{
switch (ntype) {
case 0x0:
{
TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
if (dtype == 1) {
/* Single to double */
TCGv_i64 tcg_rd = tcg_temp_new_i64();
gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_rd);
} else {
/* Single to half */
TCGv_i32 tcg_rd = tcg_temp_new_i32();
gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
/* write_fp_sreg is OK here because top half of tcg_rd is zero */
write_fp_sreg(s, rd, tcg_rd);
tcg_temp_free_i32(tcg_rd);
}
tcg_temp_free_i32(tcg_rn);
break;
}
case 0x1:
{
TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
TCGv_i32 tcg_rd = tcg_temp_new_i32();
if (dtype == 0) {
/* Double to single */
gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
} else {
/* Double to half */
gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
/* write_fp_sreg is OK here because top half of tcg_rd is zero */
}
write_fp_sreg(s, rd, tcg_rd);
tcg_temp_free_i32(tcg_rd);
tcg_temp_free_i64(tcg_rn);
break;
}
case 0x3:
{
TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
if (dtype == 0) {
/* Half to single */
TCGv_i32 tcg_rd = tcg_temp_new_i32();
gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
write_fp_sreg(s, rd, tcg_rd);
tcg_temp_free_i32(tcg_rd);
} else {
/* Half to double */
TCGv_i64 tcg_rd = tcg_temp_new_i64();
gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_rd);
}
tcg_temp_free_i32(tcg_rn);
break;
}
default:
abort();
}
}
/* C3.6.25 Floating point data-processing (1 source)
* 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
* +---+---+---+-----------+------+---+--------+-----------+------+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
* +---+---+---+-----------+------+---+--------+-----------+------+------+
*/
static void disas_fp_1src(DisasContext *s, uint32_t insn)
{
int type = extract32(insn, 22, 2);
int opcode = extract32(insn, 15, 6);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
switch (opcode) {
case 0x4: case 0x5: case 0x7:
{
/* FCVT between half, single and double precision */
int dtype = extract32(opcode, 0, 2);
if (type == 2 || dtype == type) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
break;
}
case 0x0 ... 0x3:
case 0x8 ... 0xc:
case 0xe ... 0xf:
/* 32-to-32 and 64-to-64 ops */
switch (type) {
case 0:
if (!fp_access_check(s)) {
return;
}
handle_fp_1src_single(s, opcode, rd, rn);
break;
case 1:
if (!fp_access_check(s)) {
return;
}
handle_fp_1src_double(s, opcode, rd, rn);
break;
default:
unallocated_encoding(s);
}
break;
default:
unallocated_encoding(s);
break;
}
}
/* C3.6.26 Floating-point data-processing (2 source) - single precision */
static void handle_fp_2src_single(DisasContext *s, int opcode,
int rd, int rn, int rm)
{
TCGv_i32 tcg_op1;
TCGv_i32 tcg_op2;
TCGv_i32 tcg_res;
TCGv_ptr fpst;
tcg_res = tcg_temp_new_i32();
fpst = get_fpstatus_ptr();
tcg_op1 = read_fp_sreg(s, rn);
tcg_op2 = read_fp_sreg(s, rm);
switch (opcode) {
case 0x0: /* FMUL */
gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1: /* FDIV */
gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2: /* FADD */
gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3: /* FSUB */
gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x4: /* FMAX */
gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5: /* FMIN */
gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x6: /* FMAXNM */
gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7: /* FMINNM */
gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x8: /* FNMUL */
gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
gen_helper_vfp_negs(tcg_res, tcg_res);
break;
}
write_fp_sreg(s, rd, tcg_res);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tcg_op1);
tcg_temp_free_i32(tcg_op2);
tcg_temp_free_i32(tcg_res);
}
/* C3.6.26 Floating-point data-processing (2 source) - double precision */
static void handle_fp_2src_double(DisasContext *s, int opcode,
int rd, int rn, int rm)
{
TCGv_i64 tcg_op1;
TCGv_i64 tcg_op2;
TCGv_i64 tcg_res;
TCGv_ptr fpst;
tcg_res = tcg_temp_new_i64();
fpst = get_fpstatus_ptr();
tcg_op1 = read_fp_dreg(s, rn);
tcg_op2 = read_fp_dreg(s, rm);
switch (opcode) {
case 0x0: /* FMUL */
gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1: /* FDIV */
gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2: /* FADD */
gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3: /* FSUB */
gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x4: /* FMAX */
gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5: /* FMIN */
gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x6: /* FMAXNM */
gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7: /* FMINNM */
gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x8: /* FNMUL */
gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
gen_helper_vfp_negd(tcg_res, tcg_res);
break;
}
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
tcg_temp_free_i64(tcg_res);
}
/* C3.6.26 Floating point data-processing (2 source)
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
*/
static void disas_fp_2src(DisasContext *s, uint32_t insn)
{
int type = extract32(insn, 22, 2);
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rm = extract32(insn, 16, 5);
int opcode = extract32(insn, 12, 4);
if (opcode > 8) {
unallocated_encoding(s);
return;
}
switch (type) {
case 0:
if (!fp_access_check(s)) {
return;
}
handle_fp_2src_single(s, opcode, rd, rn, rm);
break;
case 1:
if (!fp_access_check(s)) {
return;
}
handle_fp_2src_double(s, opcode, rd, rn, rm);
break;
default:
unallocated_encoding(s);
}
}
/* C3.6.27 Floating-point data-processing (3 source) - single precision */
static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
int rd, int rn, int rm, int ra)
{
TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
TCGv_i32 tcg_res = tcg_temp_new_i32();
TCGv_ptr fpst = get_fpstatus_ptr();
tcg_op1 = read_fp_sreg(s, rn);
tcg_op2 = read_fp_sreg(s, rm);
tcg_op3 = read_fp_sreg(s, ra);
/* These are fused multiply-add, and must be done as one
* floating point operation with no rounding between the
* multiplication and addition steps.
* NB that doing the negations here as separate steps is
* correct : an input NaN should come out with its sign bit
* flipped if it is a negated-input.
*/
if (o1 == true) {
gen_helper_vfp_negs(tcg_op3, tcg_op3);
}
if (o0 != o1) {
gen_helper_vfp_negs(tcg_op1, tcg_op1);
}
gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
write_fp_sreg(s, rd, tcg_res);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tcg_op1);
tcg_temp_free_i32(tcg_op2);
tcg_temp_free_i32(tcg_op3);
tcg_temp_free_i32(tcg_res);
}
/* C3.6.27 Floating-point data-processing (3 source) - double precision */
static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
int rd, int rn, int rm, int ra)
{
TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
TCGv_i64 tcg_res = tcg_temp_new_i64();
TCGv_ptr fpst = get_fpstatus_ptr();
tcg_op1 = read_fp_dreg(s, rn);
tcg_op2 = read_fp_dreg(s, rm);
tcg_op3 = read_fp_dreg(s, ra);
/* These are fused multiply-add, and must be done as one
* floating point operation with no rounding between the
* multiplication and addition steps.
* NB that doing the negations here as separate steps is
* correct : an input NaN should come out with its sign bit
* flipped if it is a negated-input.
*/
if (o1 == true) {
gen_helper_vfp_negd(tcg_op3, tcg_op3);
}
if (o0 != o1) {
gen_helper_vfp_negd(tcg_op1, tcg_op1);
}
gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
tcg_temp_free_i64(tcg_op3);
tcg_temp_free_i64(tcg_res);
}
/* C3.6.27 Floating point data-processing (3 source)
* 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
* +---+---+---+-----------+------+----+------+----+------+------+------+
* | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
* +---+---+---+-----------+------+----+------+----+------+------+------+
*/
static void disas_fp_3src(DisasContext *s, uint32_t insn)
{
int type = extract32(insn, 22, 2);
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int ra = extract32(insn, 10, 5);
int rm = extract32(insn, 16, 5);
bool o0 = extract32(insn, 15, 1);
bool o1 = extract32(insn, 21, 1);
switch (type) {
case 0:
if (!fp_access_check(s)) {
return;
}
handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
break;
case 1:
if (!fp_access_check(s)) {
return;
}
handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
break;
default:
unallocated_encoding(s);
}
}
/* C3.6.28 Floating point immediate
* 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
* +---+---+---+-----------+------+---+------------+-------+------+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
* +---+---+---+-----------+------+---+------------+-------+------+------+
*/
static void disas_fp_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int imm8 = extract32(insn, 13, 8);
int is_double = extract32(insn, 22, 2);
uint64_t imm;
TCGv_i64 tcg_res;
if (is_double > 1) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* The imm8 encodes the sign bit, enough bits to represent
* an exponent in the range 01....1xx to 10....0xx,
* and the most significant 4 bits of the mantissa; see
* VFPExpandImm() in the v8 ARM ARM.
*/
if (is_double) {
imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
(extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
extract32(imm8, 0, 6);
imm <<= 48;
} else {
imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
(extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
(extract32(imm8, 0, 6) << 3);
imm <<= 16;
}
tcg_res = tcg_const_i64(imm);
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_i64(tcg_res);
}
/* Handle floating point <=> fixed point conversions. Note that we can
* also deal with fp <=> integer conversions as a special case (scale == 64)
* OPTME: consider handling that special case specially or at least skipping
* the call to scalbn in the helpers for zero shifts.
*/
static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
bool itof, int rmode, int scale, int sf, int type)
{
bool is_signed = !(opcode & 1);
bool is_double = type;
TCGv_ptr tcg_fpstatus;
TCGv_i32 tcg_shift;
tcg_fpstatus = get_fpstatus_ptr();
tcg_shift = tcg_const_i32(64 - scale);
if (itof) {
TCGv_i64 tcg_int = cpu_reg(s, rn);
if (!sf) {
TCGv_i64 tcg_extend = new_tmp_a64(s);
if (is_signed) {
tcg_gen_ext32s_i64(tcg_extend, tcg_int);
} else {
tcg_gen_ext32u_i64(tcg_extend, tcg_int);
}
tcg_int = tcg_extend;
}
if (is_double) {
TCGv_i64 tcg_double = tcg_temp_new_i64();
if (is_signed) {
gen_helper_vfp_sqtod(tcg_double, tcg_int,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_uqtod(tcg_double, tcg_int,
tcg_shift, tcg_fpstatus);
}
write_fp_dreg(s, rd, tcg_double);
tcg_temp_free_i64(tcg_double);
} else {
TCGv_i32 tcg_single = tcg_temp_new_i32();
if (is_signed) {
gen_helper_vfp_sqtos(tcg_single, tcg_int,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_uqtos(tcg_single, tcg_int,
tcg_shift, tcg_fpstatus);
}
write_fp_sreg(s, rd, tcg_single);
tcg_temp_free_i32(tcg_single);
}
} else {
TCGv_i64 tcg_int = cpu_reg(s, rd);
TCGv_i32 tcg_rmode;
if (extract32(opcode, 2, 1)) {
/* There are too many rounding modes to all fit into rmode,
* so FCVTA[US] is a special case.
*/
rmode = FPROUNDING_TIEAWAY;
}
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
if (is_double) {
TCGv_i64 tcg_double = read_fp_dreg(s, rn);
if (is_signed) {
if (!sf) {
gen_helper_vfp_tosld(tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_tosqd(tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
}
} else {
if (!sf) {
gen_helper_vfp_tould(tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_touqd(tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
}
}
tcg_temp_free_i64(tcg_double);
} else {
TCGv_i32 tcg_single = read_fp_sreg(s, rn);
if (sf) {
if (is_signed) {
gen_helper_vfp_tosqs(tcg_int, tcg_single,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_touqs(tcg_int, tcg_single,
tcg_shift, tcg_fpstatus);
}
} else {
TCGv_i32 tcg_dest = tcg_temp_new_i32();
if (is_signed) {
gen_helper_vfp_tosls(tcg_dest, tcg_single,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_touls(tcg_dest, tcg_single,
tcg_shift, tcg_fpstatus);
}
tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
tcg_temp_free_i32(tcg_dest);
}
tcg_temp_free_i32(tcg_single);
}
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
tcg_temp_free_i32(tcg_rmode);
if (!sf) {
tcg_gen_ext32u_i64(tcg_int, tcg_int);
}
}
tcg_temp_free_ptr(tcg_fpstatus);
tcg_temp_free_i32(tcg_shift);
}
/* C3.6.29 Floating point <-> fixed point conversions
* 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
* +----+---+---+-----------+------+---+-------+--------+-------+------+------+
* | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
* +----+---+---+-----------+------+---+-------+--------+-------+------+------+
*/
static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int scale = extract32(insn, 10, 6);
int opcode = extract32(insn, 16, 3);
int rmode = extract32(insn, 19, 2);
int type = extract32(insn, 22, 2);
bool sbit = extract32(insn, 29, 1);
bool sf = extract32(insn, 31, 1);
bool itof;
if (sbit || (type > 1)
|| (!sf && scale < 32)) {
unallocated_encoding(s);
return;
}
switch ((rmode << 3) | opcode) {
case 0x2: /* SCVTF */
case 0x3: /* UCVTF */
itof = true;
break;
case 0x18: /* FCVTZS */
case 0x19: /* FCVTZU */
itof = false;
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
}
static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
{
/* FMOV: gpr to or from float, double, or top half of quad fp reg,
* without conversion.
*/
if (itof) {
TCGv_i64 tcg_rn = cpu_reg(s, rn);
switch (type) {
case 0:
{
/* 32 bit */
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_ext32u_i64(tmp, tcg_rn);
tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
tcg_gen_movi_i64(tmp, 0);
tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
tcg_temp_free_i64(tmp);
break;
}
case 1:
{
/* 64 bit */
TCGv_i64 tmp = tcg_const_i64(0);
tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
tcg_temp_free_i64(tmp);
break;
}
case 2:
/* 64 bit to top half. */
tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
break;
}
} else {
TCGv_i64 tcg_rd = cpu_reg(s, rd);
switch (type) {
case 0:
/* 32 bit */
tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
break;
case 1:
/* 64 bit */
tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
break;
case 2:
/* 64 bits from top half */
tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
break;
}
}
}
/* C3.6.30 Floating point <-> integer conversions
* 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
* +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
* | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
* +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
*/
static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 16, 3);
int rmode = extract32(insn, 19, 2);
int type = extract32(insn, 22, 2);
bool sbit = extract32(insn, 29, 1);
bool sf = extract32(insn, 31, 1);
if (sbit) {
unallocated_encoding(s);
return;
}
if (opcode > 5) {
/* FMOV */
bool itof = opcode & 1;
if (rmode >= 2) {
unallocated_encoding(s);
return;
}
switch (sf << 3 | type << 1 | rmode) {
case 0x0: /* 32 bit */
case 0xa: /* 64 bit */
case 0xd: /* 64 bit to top half of quad */
break;
default:
/* all other sf/type/rmode combinations are invalid */
unallocated_encoding(s);
break;
}
if (!fp_access_check(s)) {
return;
}
handle_fmov(s, rd, rn, type, itof);
} else {
/* actual FP conversions */
bool itof = extract32(opcode, 1, 1);
if (type > 1 || (rmode != 0 && opcode > 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
}
}
/* FP-specific subcases of table C3-6 (SIMD and FP data processing)
* 31 30 29 28 25 24 0
* +---+---+---+---------+-----------------------------+
* | | 0 | | 1 1 1 1 | |
* +---+---+---+---------+-----------------------------+
*/
static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
{
if (extract32(insn, 24, 1)) {
/* Floating point data-processing (3 source) */
disas_fp_3src(s, insn);
} else if (extract32(insn, 21, 1) == 0) {
/* Floating point to fixed point conversions */
disas_fp_fixed_conv(s, insn);
} else {
switch (extract32(insn, 10, 2)) {
case 1:
/* Floating point conditional compare */
disas_fp_ccomp(s, insn);
break;
case 2:
/* Floating point data-processing (2 source) */
disas_fp_2src(s, insn);
break;
case 3:
/* Floating point conditional select */
disas_fp_csel(s, insn);
break;
case 0:
switch (ctz32(extract32(insn, 12, 4))) {
case 0: /* [15:12] == xxx1 */
/* Floating point immediate */
disas_fp_imm(s, insn);
break;
case 1: /* [15:12] == xx10 */
/* Floating point compare */
disas_fp_compare(s, insn);
break;
case 2: /* [15:12] == x100 */
/* Floating point data-processing (1 source) */
disas_fp_1src(s, insn);
break;
case 3: /* [15:12] == 1000 */
unallocated_encoding(s);
break;
default: /* [15:12] == 0000 */
/* Floating point <-> integer conversions */
disas_fp_int_conv(s, insn);
break;
}
break;
}
}
}
static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
int pos)
{
/* Extract 64 bits from the middle of two concatenated 64 bit
* vector register slices left:right. The extracted bits start
* at 'pos' bits into the right (least significant) side.
* We return the result in tcg_right, and guarantee not to
* trash tcg_left.
*/
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
assert(pos > 0 && pos < 64);
tcg_gen_shri_i64(tcg_right, tcg_right, pos);
tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
tcg_temp_free_i64(tcg_tmp);
}
/* C3.6.1 EXT
* 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
* +---+---+-------------+-----+---+------+---+------+---+------+------+
* | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
* +---+---+-------------+-----+---+------+---+------+---+------+------+
*/
static void disas_simd_ext(DisasContext *s, uint32_t insn)
{
int is_q = extract32(insn, 30, 1);
int op2 = extract32(insn, 22, 2);
int imm4 = extract32(insn, 11, 4);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int pos = imm4 << 3;
TCGv_i64 tcg_resl, tcg_resh;
if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_resh = tcg_temp_new_i64();
tcg_resl = tcg_temp_new_i64();
/* Vd gets bits starting at pos bits into Vm:Vn. This is
* either extracting 128 bits from a 128:128 concatenation, or
* extracting 64 bits from a 64:64 concatenation.
*/
if (!is_q) {
read_vec_element(s, tcg_resl, rn, 0, MO_64);
if (pos != 0) {
read_vec_element(s, tcg_resh, rm, 0, MO_64);
do_ext64(s, tcg_resh, tcg_resl, pos);
}
tcg_gen_movi_i64(tcg_resh, 0);
} else {
TCGv_i64 tcg_hh;
typedef struct {
int reg;
int elt;
} EltPosns;
EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
EltPosns *elt = eltposns;
if (pos >= 64) {
elt++;
pos -= 64;
}
read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
elt++;
read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
elt++;
if (pos != 0) {
do_ext64(s, tcg_resh, tcg_resl, pos);
tcg_hh = tcg_temp_new_i64();
read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
do_ext64(s, tcg_hh, tcg_resh, pos);
tcg_temp_free_i64(tcg_hh);
}
}
write_vec_element(s, tcg_resl, rd, 0, MO_64);
tcg_temp_free_i64(tcg_resl);
write_vec_element(s, tcg_resh, rd, 1, MO_64);
tcg_temp_free_i64(tcg_resh);
}
/* C3.6.2 TBL/TBX
* 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
* +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
* | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
* +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
*/
static void disas_simd_tb(DisasContext *s, uint32_t insn)
{
int op2 = extract32(insn, 22, 2);
int is_q = extract32(insn, 30, 1);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int is_tblx = extract32(insn, 12, 1);
int len = extract32(insn, 13, 2);
TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
TCGv_i32 tcg_regno, tcg_numregs;
if (op2 != 0) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* This does a table lookup: for every byte element in the input
* we index into a table formed from up to four vector registers,
* and then the output is the result of the lookups. Our helper
* function does the lookup operation for a single 64 bit part of
* the input.
*/
tcg_resl = tcg_temp_new_i64();
tcg_resh = tcg_temp_new_i64();
if (is_tblx) {
read_vec_element(s, tcg_resl, rd, 0, MO_64);
} else {
tcg_gen_movi_i64(tcg_resl, 0);
}
if (is_tblx && is_q) {
read_vec_element(s, tcg_resh, rd, 1, MO_64);
} else {
tcg_gen_movi_i64(tcg_resh, 0);
}
tcg_idx = tcg_temp_new_i64();
tcg_regno = tcg_const_i32(rn);
tcg_numregs = tcg_const_i32(len + 1);
read_vec_element(s, tcg_idx, rm, 0, MO_64);
gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
tcg_regno, tcg_numregs);
if (is_q) {
read_vec_element(s, tcg_idx, rm, 1, MO_64);
gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
tcg_regno, tcg_numregs);
}
tcg_temp_free_i64(tcg_idx);
tcg_temp_free_i32(tcg_regno);
tcg_temp_free_i32(tcg_numregs);
write_vec_element(s, tcg_resl, rd, 0, MO_64);
tcg_temp_free_i64(tcg_resl);
write_vec_element(s, tcg_resh, rd, 1, MO_64);
tcg_temp_free_i64(tcg_resh);
}
/* C3.6.3 ZIP/UZP/TRN
* 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
* +---+---+-------------+------+---+------+---+------------------+------+
* | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
* +---+---+-------------+------+---+------+---+------------------+------+
*/
static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rm = extract32(insn, 16, 5);
int size = extract32(insn, 22, 2);
/* opc field bits [1:0] indicate ZIP/UZP/TRN;
* bit 2 indicates 1 vs 2 variant of the insn.
*/
int opcode = extract32(insn, 12, 2);
bool part = extract32(insn, 14, 1);
bool is_q = extract32(insn, 30, 1);
int esize = 8 << size;
int i, ofs;
int datasize = is_q ? 128 : 64;
int elements = datasize / esize;
TCGv_i64 tcg_res, tcg_resl, tcg_resh;
if (opcode == 0 || (size == 3 && !is_q)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_resl = tcg_const_i64(0);
tcg_resh = tcg_const_i64(0);
tcg_res = tcg_temp_new_i64();
for (i = 0; i < elements; i++) {
switch (opcode) {
case 1: /* UZP1/2 */
{
int midpoint = elements / 2;
if (i < midpoint) {
read_vec_element(s, tcg_res, rn, 2 * i + part, size);
} else {
read_vec_element(s, tcg_res, rm,
2 * (i - midpoint) + part, size);
}
break;
}
case 2: /* TRN1/2 */
if (i & 1) {
read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
} else {
read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
}
break;
case 3: /* ZIP1/2 */
{
int base = part * elements / 2;
if (i & 1) {
read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
} else {
read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
}
break;
}
default:
g_assert_not_reached();
}
ofs = i * esize;
if (ofs < 64) {
tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
} else {
tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
}
}
tcg_temp_free_i64(tcg_res);
write_vec_element(s, tcg_resl, rd, 0, MO_64);
tcg_temp_free_i64(tcg_resl);
write_vec_element(s, tcg_resh, rd, 1, MO_64);
tcg_temp_free_i64(tcg_resh);
}
static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
int opc, bool is_min, TCGv_ptr fpst)
{
/* Helper function for disas_simd_across_lanes: do a single precision
* min/max operation on the specified two inputs,
* and return the result in tcg_elt1.
*/
if (opc == 0xc) {
if (is_min) {
gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
} else {
gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
}
} else {
assert(opc == 0xf);
if (is_min) {
gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
} else {
gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
}
}
}
/* C3.6.4 AdvSIMD across lanes
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
* | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
*/
static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
bool is_q = extract32(insn, 30, 1);
bool is_u = extract32(insn, 29, 1);
bool is_fp = false;
bool is_min = false;
int esize;
int elements;
int i;
TCGv_i64 tcg_res, tcg_elt;
switch (opcode) {
case 0x1b: /* ADDV */
if (is_u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x3: /* SADDLV, UADDLV */
case 0xa: /* SMAXV, UMAXV */
case 0x1a: /* SMINV, UMINV */
if (size == 3 || (size == 2 && !is_q)) {
unallocated_encoding(s);
return;
}
break;
case 0xc: /* FMAXNMV, FMINNMV */
case 0xf: /* FMAXV, FMINV */
if (!is_u || !is_q || extract32(size, 0, 1)) {
unallocated_encoding(s);
return;
}
/* Bit 1 of size field encodes min vs max, and actual size is always
* 32 bits: adjust the size variable so following code can rely on it
*/
is_min = extract32(size, 1, 1);
is_fp = true;
size = 2;
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
esize = 8 << size;
elements = (is_q ? 128 : 64) / esize;
tcg_res = tcg_temp_new_i64();
tcg_elt = tcg_temp_new_i64();
/* These instructions operate across all lanes of a vector
* to produce a single result. We can guarantee that a 64
* bit intermediate is sufficient:
* + for [US]ADDLV the maximum element size is 32 bits, and
* the result type is 64 bits
* + for FMAX*V, FMIN*V, ADDV the intermediate type is the
* same as the element size, which is 32 bits at most
* For the integer operations we can choose to work at 64
* or 32 bits and truncate at the end; for simplicity
* we use 64 bits always. The floating point
* ops do require 32 bit intermediates, though.
*/
if (!is_fp) {
read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
for (i = 1; i < elements; i++) {
read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
switch (opcode) {
case 0x03: /* SADDLV / UADDLV */
case 0x1b: /* ADDV */
tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
break;
case 0x0a: /* SMAXV / UMAXV */
tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
tcg_res,
tcg_res, tcg_elt, tcg_res, tcg_elt);
break;
case 0x1a: /* SMINV / UMINV */
tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
tcg_res,
tcg_res, tcg_elt, tcg_res, tcg_elt);
break;
break;
default:
g_assert_not_reached();
}
}
} else {
/* Floating point ops which work on 32 bit (single) intermediates.
* Note that correct NaN propagation requires that we do these
* operations in exactly the order specified by the pseudocode.
*/
TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
TCGv_ptr fpst = get_fpstatus_ptr();
assert(esize == 32);
assert(elements == 4);
read_vec_element(s, tcg_elt, rn, 0, MO_32);
tcg_gen_trunc_i64_i32(tcg_elt1, tcg_elt);
read_vec_element(s, tcg_elt, rn, 1, MO_32);
tcg_gen_trunc_i64_i32(tcg_elt2, tcg_elt);
do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
read_vec_element(s, tcg_elt, rn, 2, MO_32);
tcg_gen_trunc_i64_i32(tcg_elt2, tcg_elt);
read_vec_element(s, tcg_elt, rn, 3, MO_32);
tcg_gen_trunc_i64_i32(tcg_elt3, tcg_elt);
do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
tcg_temp_free_i32(tcg_elt1);
tcg_temp_free_i32(tcg_elt2);
tcg_temp_free_i32(tcg_elt3);
tcg_temp_free_ptr(fpst);
}
tcg_temp_free_i64(tcg_elt);
/* Now truncate the result to the width required for the final output */
if (opcode == 0x03) {
/* SADDLV, UADDLV: result is 2*esize */
size++;
}
switch (size) {
case 0:
tcg_gen_ext8u_i64(tcg_res, tcg_res);
break;
case 1:
tcg_gen_ext16u_i64(tcg_res, tcg_res);
break;
case 2:
tcg_gen_ext32u_i64(tcg_res, tcg_res);
break;
case 3:
break;
default:
g_assert_not_reached();
}
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_i64(tcg_res);
}
/* C6.3.31 DUP (Element, Vector)
*
* 31 30 29 21 20 16 15 10 9 5 4 0
* +---+---+-------------------+--------+-------------+------+------+
* | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
* +---+---+-------------------+--------+-------------+------+------+
*
* size: encoded in imm5 (see ARM ARM LowestSetBit())
*/
static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
int imm5)
{
int size = ctz32(imm5);
int esize = 8 << size;
int elements = (is_q ? 128 : 64) / esize;
int index, i;
TCGv_i64 tmp;
if (size > 3 || (size == 3 && !is_q)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
index = imm5 >> (size + 1);
tmp = tcg_temp_new_i64();
read_vec_element(s, tmp, rn, index, size);
for (i = 0; i < elements; i++) {
write_vec_element(s, tmp, rd, i, size);
}
if (!is_q) {
clear_vec_high(s, rd);
}
tcg_temp_free_i64(tmp);
}
/* C6.3.31 DUP (element, scalar)
* 31 21 20 16 15 10 9 5 4 0
* +-----------------------+--------+-------------+------+------+
* | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
* +-----------------------+--------+-------------+------+------+
*/
static void handle_simd_dupes(DisasContext *s, int rd, int rn,
int imm5)
{
int size = ctz32(imm5);
int index;
TCGv_i64 tmp;
if (size > 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
index = imm5 >> (size + 1);
/* This instruction just extracts the specified element and
* zero-extends it into the bottom of the destination register.
*/
tmp = tcg_temp_new_i64();
read_vec_element(s, tmp, rn, index, size);
write_fp_dreg(s, rd, tmp);
tcg_temp_free_i64(tmp);
}
/* C6.3.32 DUP (General)
*
* 31 30 29 21 20 16 15 10 9 5 4 0
* +---+---+-------------------+--------+-------------+------+------+
* | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
* +---+---+-------------------+--------+-------------+------+------+
*
* size: encoded in imm5 (see ARM ARM LowestSetBit())
*/
static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
int imm5)
{
int size = ctz32(imm5);
int esize = 8 << size;
int elements = (is_q ? 128 : 64)/esize;
int i = 0;
if (size > 3 || ((size == 3) && !is_q)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
for (i = 0; i < elements; i++) {
write_vec_element(s, cpu_reg(s, rn), rd, i, size);
}
if (!is_q) {
clear_vec_high(s, rd);
}
}
/* C6.3.150 INS (Element)
*
* 31 21 20 16 15 14 11 10 9 5 4 0
* +-----------------------+--------+------------+---+------+------+
* | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
* +-----------------------+--------+------------+---+------+------+
*
* size: encoded in imm5 (see ARM ARM LowestSetBit())
* index: encoded in imm5<4:size+1>
*/
static void handle_simd_inse(DisasContext *s, int rd, int rn,
int imm4, int imm5)
{
int size = ctz32(imm5);
int src_index, dst_index;
TCGv_i64 tmp;
if (size > 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
dst_index = extract32(imm5, 1+size, 5);
src_index = extract32(imm4, size, 4);
tmp = tcg_temp_new_i64();
read_vec_element(s, tmp, rn, src_index, size);
write_vec_element(s, tmp, rd, dst_index, size);
tcg_temp_free_i64(tmp);
}
/* C6.3.151 INS (General)
*
* 31 21 20 16 15 10 9 5 4 0
* +-----------------------+--------+-------------+------+------+
* | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
* +-----------------------+--------+-------------+------+------+
*
* size: encoded in imm5 (see ARM ARM LowestSetBit())
* index: encoded in imm5<4:size+1>
*/
static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
{
int size = ctz32(imm5);
int idx;
if (size > 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
idx = extract32(imm5, 1 + size, 4 - size);
write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
}
/*
* C6.3.321 UMOV (General)
* C6.3.237 SMOV (General)
*
* 31 30 29 21 20 16 15 12 10 9 5 4 0
* +---+---+-------------------+--------+-------------+------+------+
* | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
* +---+---+-------------------+--------+-------------+------+------+
*
* U: unsigned when set
* size: encoded in imm5 (see ARM ARM LowestSetBit())
*/
static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
int rn, int rd, int imm5)
{
int size = ctz32(imm5);
int element;
TCGv_i64 tcg_rd;
/* Check for UnallocatedEncodings */
if (is_signed) {
if (size > 2 || (size == 2 && !is_q)) {
unallocated_encoding(s);
return;
}
} else {
if (size > 3
|| (size < 3 && is_q)
|| (size == 3 && !is_q)) {
unallocated_encoding(s);
return;
}
}
if (!fp_access_check(s)) {
return;
}
element = extract32(imm5, 1+size, 4);
tcg_rd = cpu_reg(s, rd);
read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
if (is_signed && !is_q) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
}
/* C3.6.5 AdvSIMD copy
* 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
* +---+---+----+-----------------+------+---+------+---+------+------+
* | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
* +---+---+----+-----------------+------+---+------+---+------+------+
*/
static void disas_simd_copy(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm4 = extract32(insn, 11, 4);
int op = extract32(insn, 29, 1);
int is_q = extract32(insn, 30, 1);
int imm5 = extract32(insn, 16, 5);
if (op) {
if (is_q) {
/* INS (element) */
handle_simd_inse(s, rd, rn, imm4, imm5);
} else {
unallocated_encoding(s);
}
} else {
switch (imm4) {
case 0:
/* DUP (element - vector) */
handle_simd_dupe(s, is_q, rd, rn, imm5);
break;
case 1:
/* DUP (general) */
handle_simd_dupg(s, is_q, rd, rn, imm5);
break;
case 3:
if (is_q) {
/* INS (general) */
handle_simd_insg(s, rd, rn, imm5);
} else {
unallocated_encoding(s);
}
break;
case 5:
case 7:
/* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
break;
default:
unallocated_encoding(s);
break;
}
}
}
/* C3.6.6 AdvSIMD modified immediate
* 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
* +---+---+----+---------------------+-----+-------+----+---+-------+------+
* | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
* +---+---+----+---------------------+-----+-------+----+---+-------+------+
*
* There are a number of operations that can be carried out here:
* MOVI - move (shifted) imm into register
* MVNI - move inverted (shifted) imm into register
* ORR - bitwise OR of (shifted) imm with register
* BIC - bitwise clear of (shifted) imm with register
*/
static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int cmode = extract32(insn, 12, 4);
int cmode_3_1 = extract32(cmode, 1, 3);
int cmode_0 = extract32(cmode, 0, 1);
int o2 = extract32(insn, 11, 1);
uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
bool is_neg = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
uint64_t imm = 0;
TCGv_i64 tcg_rd, tcg_imm;
int i;
if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* See AdvSIMDExpandImm() in ARM ARM */
switch (cmode_3_1) {
case 0: /* Replicate(Zeros(24):imm8, 2) */
case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
case 3: /* Replicate(imm8:Zeros(24), 2) */
{
int shift = cmode_3_1 * 8;
imm = bitfield_replicate(abcdefgh << shift, 32);
break;
}
case 4: /* Replicate(Zeros(8):imm8, 4) */
case 5: /* Replicate(imm8:Zeros(8), 4) */
{
int shift = (cmode_3_1 & 0x1) * 8;
imm = bitfield_replicate(abcdefgh << shift, 16);
break;
}
case 6:
if (cmode_0) {
/* Replicate(Zeros(8):imm8:Ones(16), 2) */
imm = (abcdefgh << 16) | 0xffff;
} else {
/* Replicate(Zeros(16):imm8:Ones(8), 2) */
imm = (abcdefgh << 8) | 0xff;
}
imm = bitfield_replicate(imm, 32);
break;
case 7:
if (!cmode_0 && !is_neg) {
imm = bitfield_replicate(abcdefgh, 8);
} else if (!cmode_0 && is_neg) {
int i;
imm = 0;
for (i = 0; i < 8; i++) {
if ((abcdefgh) & (1 << i)) {
imm |= 0xffULL << (i * 8);
}
}
} else if (cmode_0) {
if (is_neg) {
imm = (abcdefgh & 0x3f) << 48;
if (abcdefgh & 0x80) {
imm |= 0x8000000000000000ULL;
}
if (abcdefgh & 0x40) {
imm |= 0x3fc0000000000000ULL;
} else {
imm |= 0x4000000000000000ULL;
}
} else {
imm = (abcdefgh & 0x3f) << 19;
if (abcdefgh & 0x80) {
imm |= 0x80000000;
}
if (abcdefgh & 0x40) {
imm |= 0x3e000000;
} else {
imm |= 0x40000000;
}
imm |= (imm << 32);
}
}
break;
}
if (cmode_3_1 != 7 && is_neg) {
imm = ~imm;
}
tcg_imm = tcg_const_i64(imm);
tcg_rd = new_tmp_a64(s);
for (i = 0; i < 2; i++) {
int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
if (i == 1 && !is_q) {
/* non-quad ops clear high half of vector */
tcg_gen_movi_i64(tcg_rd, 0);
} else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
if (is_neg) {
/* AND (BIC) */
tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
} else {
/* ORR */
tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
}
} else {
/* MOVI */
tcg_gen_mov_i64(tcg_rd, tcg_imm);
}
tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
}
tcg_temp_free_i64(tcg_imm);
}
/* C3.6.7 AdvSIMD scalar copy
* 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
* +-----+----+-----------------+------+---+------+---+------+------+
* | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
* +-----+----+-----------------+------+---+------+---+------+------+
*/
static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm4 = extract32(insn, 11, 4);
int imm5 = extract32(insn, 16, 5);
int op = extract32(insn, 29, 1);
if (op != 0 || imm4 != 0) {
unallocated_encoding(s);
return;
}
/* DUP (element, scalar) */
handle_simd_dupes(s, rd, rn, imm5);
}
/* C3.6.8 AdvSIMD scalar pairwise
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
* +-----+---+-----------+------+-----------+--------+-----+------+------+
* | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
* +-----+---+-----------+------+-----------+--------+-----+------+------+
*/
static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
{
int u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
TCGv_ptr fpst;
/* For some ops (the FP ones), size[1] is part of the encoding.
* For ADDP strictly it is not but size[1] is always 1 for valid
* encodings.
*/
opcode |= (extract32(size, 1, 1) << 5);
switch (opcode) {
case 0x3b: /* ADDP */
if (u || size != 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
TCGV_UNUSED_PTR(fpst);
break;
case 0xc: /* FMAXNMP */
case 0xd: /* FADDP */
case 0xf: /* FMAXP */
case 0x2c: /* FMINNMP */
case 0x2f: /* FMINP */
/* FP op, size[0] is 32 or 64 bit */
if (!u) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
size = extract32(size, 0, 1) ? 3 : 2;
fpst = get_fpstatus_ptr();
break;
default:
unallocated_encoding(s);
return;
}
if (size == 3) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64();
read_vec_element(s, tcg_op1, rn, 0, MO_64);
read_vec_element(s, tcg_op2, rn, 1, MO_64);
switch (opcode) {
case 0x3b: /* ADDP */
tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
break;
case 0xc: /* FMAXNMP */
gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xd: /* FADDP */
gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xf: /* FMAXP */
gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2c: /* FMINNMP */
gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2f: /* FMINP */
gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
tcg_temp_free_i64(tcg_res);
} else {
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
switch (opcode) {
case 0xc: /* FMAXNMP */
gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xd: /* FADDP */
gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xf: /* FMAXP */
gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2c: /* FMINNMP */
gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2f: /* FMINP */
gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
write_fp_sreg(s, rd, tcg_res);
tcg_temp_free_i32(tcg_op1);
tcg_temp_free_i32(tcg_op2);
tcg_temp_free_i32(tcg_res);
}
if (!TCGV_IS_UNUSED_PTR(fpst)) {
tcg_temp_free_ptr(fpst);
}
}
/*
* Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
*
* This code is handles the common shifting code and is used by both
* the vector and scalar code.
*/
static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
TCGv_i64 tcg_rnd, bool accumulate,
bool is_u, int size, int shift)
{
bool extended_result = false;
bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
int ext_lshift = 0;
TCGv_i64 tcg_src_hi;
if (round && size == 3) {
extended_result = true;
ext_lshift = 64 - shift;
tcg_src_hi = tcg_temp_new_i64();
} else if (shift == 64) {
if (!accumulate && is_u) {
/* result is zero */
tcg_gen_movi_i64(tcg_res, 0);
return;
}
}
/* Deal with the rounding step */
if (round) {
if (extended_result) {
TCGv_i64 tcg_zero = tcg_const_i64(0);
if (!is_u) {
/* take care of sign extending tcg_res */
tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
tcg_gen_add2_i64(tcg_src, tcg_src_hi,
tcg_src, tcg_src_hi,
tcg_rnd, tcg_zero);
} else {
tcg_gen_add2_i64(tcg_src, tcg_src_hi,
tcg_src, tcg_zero,
tcg_rnd, tcg_zero);
}
tcg_temp_free_i64(tcg_zero);
} else {
tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
}
}
/* Now do the shift right */
if (round && extended_result) {
/* extended case, >64 bit precision required */
if (ext_lshift == 0) {
/* special case, only high bits matter */
tcg_gen_mov_i64(tcg_src, tcg_src_hi);
} else {
tcg_gen_shri_i64(tcg_src, tcg_src, shift);
tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
}
} else {
if (is_u) {
if (shift == 64) {
/* essentially shifting in 64 zeros */
tcg_gen_movi_i64(tcg_src, 0);
} else {
tcg_gen_shri_i64(tcg_src, tcg_src, shift);
}
} else {
if (shift == 64) {
/* effectively extending the sign-bit */
tcg_gen_sari_i64(tcg_src, tcg_src, 63);
} else {
tcg_gen_sari_i64(tcg_src, tcg_src, shift);
}
}
}
if (accumulate) {
tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
} else {
tcg_gen_mov_i64(tcg_res, tcg_src);
}
if (extended_result) {
tcg_temp_free_i64(tcg_src_hi);
}
}
/* Common SHL/SLI - Shift left with an optional insert */
static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
bool insert, int shift)
{
if (insert) { /* SLI */
tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
} else { /* SHL */
tcg_gen_shli_i64(tcg_res, tcg_src, shift);
}
}
/* SRI: shift right with insert */
static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
int size, int shift)
{
int esize = 8 << size;
/* shift count same as element size is valid but does nothing;
* special case to avoid potential shift by 64.
*/
if (shift != esize) {
tcg_gen_shri_i64(tcg_src, tcg_src, shift);
tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
}
}
/* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
static void handle_scalar_simd_shri(DisasContext *s,
bool is_u, int immh, int immb,
int opcode, int rn, int rd)
{
const int size = 3;
int immhb = immh << 3 | immb;
int shift = 2 * (8 << size) - immhb;
bool accumulate = false;
bool round = false;
bool insert = false;
TCGv_i64 tcg_rn;
TCGv_i64 tcg_rd;
TCGv_i64 tcg_round;
if (!extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
switch (opcode) {
case 0x02: /* SSRA / USRA (accumulate) */
accumulate = true;
break;
case 0x04: /* SRSHR / URSHR (rounding) */
round = true;
break;
case 0x06: /* SRSRA / URSRA (accum + rounding) */
accumulate = round = true;
break;
case 0x08: /* SRI */
insert = true;
break;
}
if (round) {
uint64_t round_const = 1ULL << (shift - 1);
tcg_round = tcg_const_i64(round_const);
} else {
TCGV_UNUSED_I64(tcg_round);
}
tcg_rn = read_fp_dreg(s, rn);
tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
if (insert) {
handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
} else {
handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
accumulate, is_u, size, shift);
}
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_rn);
tcg_temp_free_i64(tcg_rd);
if (round) {
tcg_temp_free_i64(tcg_round);
}
}
/* SHL/SLI - Scalar shift left */
static void handle_scalar_simd_shli(DisasContext *s, bool insert,
int immh, int immb, int opcode,
int rn, int rd)
{
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = immhb - (8 << size);
TCGv_i64 tcg_rn = new_tmp_a64(s);
TCGv_i64 tcg_rd = new_tmp_a64(s);
if (!extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rn = read_fp_dreg(s, rn);
tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_rn);
tcg_temp_free_i64(tcg_rd);
}
/* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
* (signed/unsigned) narrowing */
static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
bool is_u_shift, bool is_u_narrow,
int immh, int immb, int opcode,
int rn, int rd)
{
int immhb = immh << 3 | immb;
int size = 32 - clz32(immh) - 1;
int esize = 8 << size;
int shift = (2 * esize) - immhb;
int elements = is_scalar ? 1 : (64 / esize);
bool round = extract32(opcode, 0, 1);
TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
TCGv_i64 tcg_rn, tcg_rd, tcg_round;
TCGv_i32 tcg_rd_narrowed;
TCGv_i64 tcg_final;
static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
{ gen_helper_neon_narrow_sat_s8,
gen_helper_neon_unarrow_sat8 },
{ gen_helper_neon_narrow_sat_s16,
gen_helper_neon_unarrow_sat16 },
{ gen_helper_neon_narrow_sat_s32,
gen_helper_neon_unarrow_sat32 },
{ NULL, NULL },
};
static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
gen_helper_neon_narrow_sat_u8,
gen_helper_neon_narrow_sat_u16,
gen_helper_neon_narrow_sat_u32,
NULL
};
NeonGenNarrowEnvFn *narrowfn;
int i;
assert(size < 4);
if (extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (is_u_shift) {
narrowfn = unsigned_narrow_fns[size];
} else {
narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
}
tcg_rn = tcg_temp_new_i64();
tcg_rd = tcg_temp_new_i64();
tcg_rd_narrowed = tcg_temp_new_i32();
tcg_final = tcg_const_i64(0);
if (round) {
uint64_t round_const = 1ULL << (shift - 1);
tcg_round = tcg_const_i64(round_const);
} else {
TCGV_UNUSED_I64(tcg_round);
}
for (i = 0; i < elements; i++) {
read_vec_element(s, tcg_rn, rn, i, ldop);
handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
false, is_u_shift, size+1, shift);
narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
}
if (!is_q) {
clear_vec_high(s, rd);
write_vec_element(s, tcg_final, rd, 0, MO_64);
} else {
write_vec_element(s, tcg_final, rd, 1, MO_64);
}
if (round) {
tcg_temp_free_i64(tcg_round);
}
tcg_temp_free_i64(tcg_rn);
tcg_temp_free_i64(tcg_rd);
tcg_temp_free_i32(tcg_rd_narrowed);
tcg_temp_free_i64(tcg_final);
return;
}
/* SQSHLU, UQSHL, SQSHL: saturating left shifts */
static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
bool src_unsigned, bool dst_unsigned,
int immh, int immb, int rn, int rd)
{
int immhb = immh << 3 | immb;
int size = 32 - clz32(immh) - 1;
int shift = immhb - (8 << size);
int pass;
assert(immh != 0);
assert(!(scalar && is_q));
if (!scalar) {
if (!is_q && extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
/* Since we use the variable-shift helpers we must
* replicate the shift count into each element of
* the tcg_shift value.
*/
switch (size) {
case 0:
shift |= shift << 8;
/* fall through */
case 1:
shift |= shift << 16;
break;
case 2:
case 3:
break;
default:
g_assert_not_reached();
}
}
if (!fp_access_check(s)) {
return;
}
if (size == 3) {
TCGv_i64 tcg_shift = tcg_const_i64(shift);
static NeonGenTwo64OpEnvFn * const fns[2][2] = {
{ gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
{ NULL, gen_helper_neon_qshl_u64 },
};
NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
int maxpass = is_q ? 2 : 1;
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
read_vec_element(s, tcg_op, rn, pass, MO_64);
genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
write_vec_element(s, tcg_op, rd, pass, MO_64);
tcg_temp_free_i64(tcg_op);
}
tcg_temp_free_i64(tcg_shift);
if (!is_q) {
clear_vec_high(s, rd);
}
} else {
TCGv_i32 tcg_shift = tcg_const_i32(shift);
static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
{
{ gen_helper_neon_qshl_s8,
gen_helper_neon_qshl_s16,
gen_helper_neon_qshl_s32 },
{ gen_helper_neon_qshlu_s8,
gen_helper_neon_qshlu_s16,
gen_helper_neon_qshlu_s32 }
}, {
{ NULL, NULL, NULL },
{ gen_helper_neon_qshl_u8,
gen_helper_neon_qshl_u16,
gen_helper_neon_qshl_u32 }
}
};
NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
TCGMemOp memop = scalar ? size : MO_32;
int maxpass = scalar ? 1 : is_q ? 4 : 2;
for (pass = 0; pass < maxpass; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op, rn, pass, memop);
genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
if (scalar) {
switch (size) {
case 0:
tcg_gen_ext8u_i32(tcg_op, tcg_op);
break;
case 1:
tcg_gen_ext16u_i32(tcg_op, tcg_op);
break;
case 2:
break;
default:
g_assert_not_reached();
}
write_fp_sreg(s, rd, tcg_op);
} else {
write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
}
tcg_temp_free_i32(tcg_op);
}
tcg_temp_free_i32(tcg_shift);
if (!is_q && !scalar) {
clear_vec_high(s, rd);
}
}
}
/* Common vector code for handling integer to FP conversion */
static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
int elements, int is_signed,
int fracbits, int size)
{
bool is_double = size == 3 ? true : false;
TCGv_ptr tcg_fpst = get_fpstatus_ptr();
TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
TCGv_i64 tcg_int = tcg_temp_new_i64();
TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
int pass;
for (pass = 0; pass < elements; pass++) {
read_vec_element(s, tcg_int, rn, pass, mop);
if (is_double) {
TCGv_i64 tcg_double = tcg_temp_new_i64();
if (is_signed) {
gen_helper_vfp_sqtod(tcg_double, tcg_int,
tcg_shift, tcg_fpst);
} else {
gen_helper_vfp_uqtod(tcg_double, tcg_int,
tcg_shift, tcg_fpst);
}
if (elements == 1) {
write_fp_dreg(s, rd, tcg_double);
} else {
write_vec_element(s, tcg_double, rd, pass, MO_64);
}
tcg_temp_free_i64(tcg_double);
} else {
TCGv_i32 tcg_single = tcg_temp_new_i32();
if (is_signed) {
gen_helper_vfp_sqtos(tcg_single, tcg_int,
tcg_shift, tcg_fpst);
} else {
gen_helper_vfp_uqtos(tcg_single, tcg_int,
tcg_shift, tcg_fpst);
}
if (elements == 1) {
write_fp_sreg(s, rd, tcg_single);
} else {
write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
}
tcg_temp_free_i32(tcg_single);
}
}
if (!is_double && elements == 2) {
clear_vec_high(s, rd);
}
tcg_temp_free_i64(tcg_int);
tcg_temp_free_ptr(tcg_fpst);
tcg_temp_free_i32(tcg_shift);
}
/* UCVTF/SCVTF - Integer to FP conversion */
static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
bool is_q, bool is_u,
int immh, int immb, int opcode,
int rn, int rd)
{
bool is_double = extract32(immh, 3, 1);
int size = is_double ? MO_64 : MO_32;
int elements;
int immhb = immh << 3 | immb;
int fracbits = (is_double ? 128 : 64) - immhb;
if (!extract32(immh, 2, 2)) {
unallocated_encoding(s);
return;
}
if (is_scalar) {
elements = 1;
} else {
elements = is_double ? 2 : is_q ? 4 : 2;
if (is_double && !is_q) {
unallocated_encoding(s);
return;
}
}
if (!fp_access_check(s)) {
return;
}
/* immh == 0 would be a failure of the decode logic */
g_assert(immh);
handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
}
/* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
bool is_q, bool is_u,
int immh, int immb, int rn, int rd)
{
bool is_double = extract32(immh, 3, 1);
int immhb = immh << 3 | immb;
int fracbits = (is_double ? 128 : 64) - immhb;
int pass;
TCGv_ptr tcg_fpstatus;
TCGv_i32 tcg_rmode, tcg_shift;
if (!extract32(immh, 2, 2)) {
unallocated_encoding(s);
return;
}
if (!is_scalar && !is_q && is_double) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
assert(!(is_scalar && is_q));
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
tcg_fpstatus = get_fpstatus_ptr();
tcg_shift = tcg_const_i32(fracbits);
if (is_double) {
int maxpass = is_scalar ? 1 : 2;
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
read_vec_element(s, tcg_op, rn, pass, MO_64);
if (is_u) {
gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
}
write_vec_element(s, tcg_op, rd, pass, MO_64);
tcg_temp_free_i64(tcg_op);
}
if (!is_q) {
clear_vec_high(s, rd);
}
} else {
int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
for (pass = 0; pass < maxpass; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
if (is_u) {
gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
}
if (is_scalar) {
write_fp_sreg(s, rd, tcg_op);
} else {
write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
}
tcg_temp_free_i32(tcg_op);
}
if (!is_q && !is_scalar) {
clear_vec_high(s, rd);
}
}
tcg_temp_free_ptr(tcg_fpstatus);
tcg_temp_free_i32(tcg_shift);
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
tcg_temp_free_i32(tcg_rmode);
}
/* C3.6.9 AdvSIMD scalar shift by immediate
* 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
* +-----+---+-------------+------+------+--------+---+------+------+
* | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
* +-----+---+-------------+------+------+--------+---+------+------+
*
* This is the scalar version so it works on a fixed sized registers
*/
static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 5);
int immb = extract32(insn, 16, 3);
int immh = extract32(insn, 19, 4);
bool is_u = extract32(insn, 29, 1);
if (immh == 0) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0x08: /* SRI */
if (!is_u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x00: /* SSHR / USHR */
case 0x02: /* SSRA / USRA */
case 0x04: /* SRSHR / URSHR */
case 0x06: /* SRSRA / URSRA */
handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
break;
case 0x0a: /* SHL / SLI */
handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
break;
case 0x1c: /* SCVTF, UCVTF */
handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
opcode, rn, rd);
break;
case 0x10: /* SQSHRUN, SQSHRUN2 */
case 0x11: /* SQRSHRUN, SQRSHRUN2 */
if (!is_u) {
unallocated_encoding(s);
return;
}
handle_vec_simd_sqshrn(s, true, false, false, true,
immh, immb, opcode, rn, rd);
break;
case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
immh, immb, opcode, rn, rd);
break;
case 0xc: /* SQSHLU */
if (!is_u) {
unallocated_encoding(s);
return;
}
handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
break;
case 0xe: /* SQSHL, UQSHL */
handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
break;
case 0x1f: /* FCVTZS, FCVTZU */
handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
break;
default:
unallocated_encoding(s);
break;
}
}
/* C3.6.10 AdvSIMD scalar three different
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
* +-----+---+-----------+------+---+------+--------+-----+------+------+
* | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
* +-----+---+-----------+------+---+------+--------+-----+------+------+
*/
static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
{
bool is_u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 4);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
if (is_u) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0x9: /* SQDMLAL, SQDMLAL2 */
case 0xb: /* SQDMLSL, SQDMLSL2 */
case 0xd: /* SQDMULL, SQDMULL2 */
if (size == 0 || size == 3) {
unallocated_encoding(s);
return;
}
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (size == 2) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64();
read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
switch (opcode) {
case 0xd: /* SQDMULL, SQDMULL2 */
break;
case 0xb: /* SQDMLSL, SQDMLSL2 */
tcg_gen_neg_i64(tcg_res, tcg_res);
/* fall through */
case 0x9: /* SQDMLAL, SQDMLAL2 */
read_vec_element(s, tcg_op1, rd, 0, MO_64);
gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
tcg_res, tcg_op1);
break;
default:
g_assert_not_reached();
}
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
tcg_temp_free_i64(tcg_res);
} else {
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
TCGv_i64 tcg_res = tcg_temp_new_i64();
read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
switch (opcode) {
case 0xd: /* SQDMULL, SQDMULL2 */
break;
case 0xb: /* SQDMLSL, SQDMLSL2 */
gen_helper_neon_negl_u32(tcg_res, tcg_res);
/* fall through */
case 0x9: /* SQDMLAL, SQDMLAL2 */
{
TCGv_i64 tcg_op3 = tcg_temp_new_i64();
read_vec_element(s, tcg_op3, rd, 0, MO_32);
gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
tcg_res, tcg_op3);
tcg_temp_free_i64(tcg_op3);
break;
}
default:
g_assert_not_reached();
}
tcg_gen_ext32u_i64(tcg_res, tcg_res);
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_i32(tcg_op1);
tcg_temp_free_i32(tcg_op2);
tcg_temp_free_i64(tcg_res);
}
}
static void handle_3same_64(DisasContext *s, int opcode, bool u,
TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
{
/* Handle 64x64->64 opcodes which are shared between the scalar
* and vector 3-same groups. We cover every opcode where size == 3
* is valid in either the three-reg-same (integer, not pairwise)
* or scalar-three-reg-same groups. (Some opcodes are not yet
* implemented.)
*/
TCGCond cond;
switch (opcode) {
case 0x1: /* SQADD */
if (u) {
gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
} else {
gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
}
break;
case 0x5: /* SQSUB */
if (u) {
gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
} else {
gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
}
break;
case 0x6: /* CMGT, CMHI */
/* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
* We implement this using setcond (test) and then negating.
*/
cond = u ? TCG_COND_GTU : TCG_COND_GT;
do_cmop:
tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
tcg_gen_neg_i64(tcg_rd, tcg_rd);
break;
case 0x7: /* CMGE, CMHS */
cond = u ? TCG_COND_GEU : TCG_COND_GE;
goto do_cmop;
case 0x11: /* CMTST, CMEQ */
if (u) {
cond = TCG_COND_EQ;
goto do_cmop;
}
/* CMTST : test is "if (X & Y != 0)". */
tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
tcg_gen_neg_i64(tcg_rd, tcg_rd);
break;
case 0x8: /* SSHL, USHL */
if (u) {
gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
} else {
gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
}
break;
case 0x9: /* SQSHL, UQSHL */
if (u) {
gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
} else {
gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
}
break;
case 0xa: /* SRSHL, URSHL */
if (u) {
gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
} else {
gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
}
break;
case 0xb: /* SQRSHL, UQRSHL */
if (u) {
gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
} else {
gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
}
break;
case 0x10: /* ADD, SUB */
if (u) {
tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
} else {
tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
}
break;
default:
g_assert_not_reached();
}
}
/* Handle the 3-same-operands float operations; shared by the scalar
* and vector encodings. The caller must filter out any encodings
* not allocated for the encoding it is dealing with.
*/
static void handle_3same_float(DisasContext *s, int size, int elements,
int fpopcode, int rd, int rn, int rm)
{
int pass;
TCGv_ptr fpst = get_fpstatus_ptr();
for (pass = 0; pass < elements; pass++) {
if (size) {
/* Double */
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64();
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
switch (fpopcode) {
case 0x39: /* FMLS */
/* As usual for ARM, separate negation for fused multiply-add */
gen_helper_vfp_negd(tcg_op1, tcg_op1);
/* fall through */
case 0x19: /* FMLA */
read_vec_element(s, tcg_res, rd, pass, MO_64);
gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
tcg_res, fpst);
break;
case 0x18: /* FMAXNM */
gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1a: /* FADD */
gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1b: /* FMULX */
gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1c: /* FCMEQ */
gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1e: /* FMAX */
gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1f: /* FRECPS */
gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x38: /* FMINNM */
gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3a: /* FSUB */
gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3e: /* FMIN */
gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3f: /* FRSQRTS */
gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5b: /* FMUL */
gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5c: /* FCMGE */
gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5d: /* FACGE */
gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5f: /* FDIV */
gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7a: /* FABD */
gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
gen_helper_vfp_absd(tcg_res, tcg_res);
break;
case 0x7c: /* FCMGT */
gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7d: /* FACGT */
gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
write_vec_element(s, tcg_res, rd, pass, MO_64);
tcg_temp_free_i64(tcg_res);
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
} else {
/* Single */
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
switch (fpopcode) {
case 0x39: /* FMLS */
/* As usual for ARM, separate negation for fused multiply-add */
gen_helper_vfp_negs(tcg_op1, tcg_op1);
/* fall through */
case 0x19: /* FMLA */
read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
tcg_res, fpst);
break;
case 0x1a: /* FADD */
gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1b: /* FMULX */
gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1c: /* FCMEQ */
gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1e: /* FMAX */
gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1f: /* FRECPS */
gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x18: /* FMAXNM */
gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x38: /* FMINNM */
gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3a: /* FSUB */
gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3e: /* FMIN */
gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3f: /* FRSQRTS */
gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5b: /* FMUL */
gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5c: /* FCMGE */
gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5d: /* FACGE */
gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5f: /* FDIV */
gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7a: /* FABD */
gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
gen_helper_vfp_abss(tcg_res, tcg_res);
break;
case 0x7c: /* FCMGT */
gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7d: /* FACGT */
gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
if (elements == 1) {
/* scalar single so clear high part */
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
write_vec_element(s, tcg_tmp, rd, pass, MO_64);
tcg_temp_free_i64(tcg_tmp);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
}
tcg_temp_free_i32(tcg_res);
tcg_temp_free_i32(tcg_op1);
tcg_temp_free_i32(tcg_op2);
}
}
tcg_temp_free_ptr(fpst);
if ((elements << size) < 4) {
/* scalar, or non-quad vector op */
clear_vec_high(s, rd);
}
}
/* C3.6.11 AdvSIMD scalar three same
* 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
* +-----+---+-----------+------+---+------+--------+---+------+------+
* | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
* +-----+---+-----------+------+---+------+--------+---+------+------+
*/
static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 5);
int rm = extract32(insn, 16, 5);
int size = extract32(insn, 22, 2);
bool u = extract32(insn, 29, 1);
TCGv_i64 tcg_rd;
if (opcode >= 0x18) {
/* Floating point: U, size[1] and opcode indicate operation */
int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
switch (fpopcode) {
case 0x1b: /* FMULX */
case 0x1f: /* FRECPS */
case 0x3f: /* FRSQRTS */
case 0x5d: /* FACGE */
case 0x7d: /* FACGT */
case 0x1c: /* FCMEQ */
case 0x5c: /* FCMGE */
case 0x7c: /* FCMGT */
case 0x7a: /* FABD */
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
return;
}
switch (opcode) {
case 0x1: /* SQADD, UQADD */
case 0x5: /* SQSUB, UQSUB */
case 0x9: /* SQSHL, UQSHL */
case 0xb: /* SQRSHL, UQRSHL */
break;
case 0x8: /* SSHL, USHL */
case 0xa: /* SRSHL, URSHL */
case 0x6: /* CMGT, CMHI */
case 0x7: /* CMGE, CMHS */
case 0x11: /* CMTST, CMEQ */
case 0x10: /* ADD, SUB (vector) */
if (size != 3) {
unallocated_encoding(s);
return;
}
break;
case 0x16: /* SQDMULH, SQRDMULH (vector) */
if (size != 1 && size != 2) {
unallocated_encoding(s);
return;
}
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rd = tcg_temp_new_i64();
if (size == 3) {
TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
tcg_temp_free_i64(tcg_rn);
tcg_temp_free_i64(tcg_rm);
} else {
/* Do a single operation on the lowest element in the vector.
* We use the standard Neon helpers and rely on 0 OP 0 == 0 with
* no side effects for all these operations.
* OPTME: special-purpose helpers would avoid doing some
* unnecessary work in the helper for the 8 and 16 bit cases.
*/
NeonGenTwoOpEnvFn *genenvfn;
TCGv_i32 tcg_rn = tcg_temp_new_i32();
TCGv_i32 tcg_rm = tcg_temp_new_i32();
TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_rn, rn, 0, size);
read_vec_element_i32(s, tcg_rm, rm, 0, size);
switch (opcode) {
case 0x1: /* SQADD, UQADD */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
{ gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
{ gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x5: /* SQSUB, UQSUB */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
{ gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
{ gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x9: /* SQSHL, UQSHL */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
{ gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
{ gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0xb: /* SQRSHL, UQRSHL */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
{ gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
{ gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x16: /* SQDMULH, SQRDMULH */
{
static NeonGenTwoOpEnvFn * const fns[2][2] = {
{ gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
{ gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
};
assert(size == 1 || size == 2);
genenvfn = fns[size - 1][u];
break;
}
default:
g_assert_not_reached();
}
genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
tcg_temp_free_i32(tcg_rd32);
tcg_temp_free_i32(tcg_rn);
tcg_temp_free_i32(tcg_rm);
}
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_rd);
}
static void handle_2misc_64(DisasContext *s, int opcode, bool u,
TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
{
/* Handle 64->64 opcodes which are shared between the scalar and
* vector 2-reg-misc groups. We cover every integer opcode where size == 3
* is valid in either group and also the double-precision fp ops.
* The caller only need provide tcg_rmode and tcg_fpstatus if the op
* requires them.
*/
TCGCond cond;
switch (opcode) {
case 0x4: /* CLS, CLZ */
if (u) {
gen_helper_clz64(tcg_rd, tcg_rn);
} else {
gen_helper_cls64(tcg_rd, tcg_rn);
}
break;
case 0x5: /* NOT */
/* This opcode is shared with CNT and RBIT but we have earlier
* enforced that size == 3 if and only if this is the NOT insn.
*/
tcg_gen_not_i64(tcg_rd, tcg_rn);
break;
case 0x7: /* SQABS, SQNEG */
if (u) {
gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
} else {
gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
}
break;
case 0xa: /* CMLT */
/* 64 bit integer comparison against zero, result is
* test ? (2^64 - 1) : 0. We implement via setcond(!test) and
* subtracting 1.
*/
cond = TCG_COND_LT;
do_cmop:
tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
tcg_gen_neg_i64(tcg_rd, tcg_rd);
break;
case 0x8: /* CMGT, CMGE */
cond = u ? TCG_COND_GE : TCG_COND_GT;
goto do_cmop;
case 0x9: /* CMEQ, CMLE */
cond = u ? TCG_COND_LE : TCG_COND_EQ;
goto do_cmop;
case 0xb: /* ABS, NEG */
if (u) {
tcg_gen_neg_i64(tcg_rd, tcg_rn);
} else {
TCGv_i64 tcg_zero = tcg_const_i64(0);
tcg_gen_neg_i64(tcg_rd, tcg_rn);
tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
tcg_rn, tcg_rd);
tcg_temp_free_i64(tcg_zero);
}
break;
case 0x2f: /* FABS */
gen_helper_vfp_absd(tcg_rd, tcg_rn);
break;
case 0x6f: /* FNEG */
gen_helper_vfp_negd(tcg_rd, tcg_rn);
break;
case 0x7f: /* FSQRT */
gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
break;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
{
TCGv_i32 tcg_shift = tcg_const_i32(0);
gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_shift);
break;
}
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
{
TCGv_i32 tcg_shift = tcg_const_i32(0);
gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_shift);
break;
}
case 0x18: /* FRINTN */
case 0x19: /* FRINTM */
case 0x38: /* FRINTP */
case 0x39: /* FRINTZ */
case 0x58: /* FRINTA */
case 0x79: /* FRINTI */
gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
break;
case 0x59: /* FRINTX */
gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
break;
default:
g_assert_not_reached();
}
}
static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
bool is_scalar, bool is_u, bool is_q,
int size, int rn, int rd)
{
bool is_double = (size == 3);
TCGv_ptr fpst;
if (!fp_access_check(s)) {
return;
}
fpst = get_fpstatus_ptr();
if (is_double) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
TCGv_i64 tcg_zero = tcg_const_i64(0);
TCGv_i64 tcg_res = tcg_temp_new_i64();
NeonGenTwoDoubleOPFn *genfn;
bool swap = false;
int pass;
switch (opcode) {
case 0x2e: /* FCMLT (zero) */
swap = true;
/* fallthrough */
case 0x2c: /* FCMGT (zero) */
genfn = gen_helper_neon_cgt_f64;
break;
case 0x2d: /* FCMEQ (zero) */
genfn = gen_helper_neon_ceq_f64;
break;
case 0x6d: /* FCMLE (zero) */
swap = true;
/* fall through */
case 0x6c: /* FCMGE (zero) */
genfn = gen_helper_neon_cge_f64;
break;
default:
g_assert_not_reached();
}
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
read_vec_element(s, tcg_op, rn, pass, MO_64);
if (swap) {
genfn(tcg_res, tcg_zero, tcg_op, fpst);
} else {
genfn(tcg_res, tcg_op, tcg_zero, fpst);
}
write_vec_element(s, tcg_res, rd, pass, MO_64);
}
if (is_scalar) {
clear_vec_high(s, rd);
}
tcg_temp_free_i64(tcg_res);
tcg_temp_free_i64(tcg_zero);
tcg_temp_free_i64(tcg_op);
} else {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i32 tcg_zero = tcg_const_i32(0);
TCGv_i32 tcg_res = tcg_temp_new_i32();
NeonGenTwoSingleOPFn *genfn;
bool swap = false;
int pass, maxpasses;
switch (opcode) {
case 0x2e: /* FCMLT (zero) */
swap = true;
/* fall through */
case 0x2c: /* FCMGT (zero) */
genfn = gen_helper_neon_cgt_f32;
break;
case 0x2d: /* FCMEQ (zero) */
genfn = gen_helper_neon_ceq_f32;
break;
case 0x6d: /* FCMLE (zero) */
swap = true;
/* fall through */
case 0x6c: /* FCMGE (zero) */
genfn = gen_helper_neon_cge_f32;
break;
default:
g_assert_not_reached();
}
if (is_scalar) {
maxpasses = 1;
} else {
maxpasses = is_q ? 4 : 2;
}
for (pass = 0; pass < maxpasses; pass++) {
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
if (swap) {
genfn(tcg_res, tcg_zero, tcg_op, fpst);
} else {
genfn(tcg_res, tcg_op, tcg_zero, fpst);
}
if (is_scalar) {
write_fp_sreg(s, rd, tcg_res);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
}
}
tcg_temp_free_i32(tcg_res);
tcg_temp_free_i32(tcg_zero);
tcg_temp_free_i32(tcg_op);
if (!is_q && !is_scalar) {
clear_vec_high(s, rd);
}
}
tcg_temp_free_ptr(fpst);
}
static void handle_2misc_reciprocal(DisasContext *s, int opcode,
bool is_scalar, bool is_u, bool is_q,
int size, int rn, int rd)
{
bool is_double = (size == 3);
TCGv_ptr fpst = get_fpstatus_ptr();
if (is_double) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64();
int pass;
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
read_vec_element(s, tcg_op, rn, pass, MO_64);
switch (opcode) {
case 0x3d: /* FRECPE */
gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
break;
case 0x3f: /* FRECPX */
gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
break;
case 0x7d: /* FRSQRTE */
gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
break;
default:
g_assert_not_reached();
}
write_vec_element(s, tcg_res, rd, pass, MO_64);
}
if (is_scalar) {
clear_vec_high(s, rd);
}
tcg_temp_free_i64(tcg_res);
tcg_temp_free_i64(tcg_op);
} else {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
int pass, maxpasses;
if (is_scalar) {
maxpasses = 1;
} else {
maxpasses = is_q ? 4 : 2;
}
for (pass = 0; pass < maxpasses; pass++) {
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
switch (opcode) {
case 0x3c: /* URECPE */
gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
break;
case 0x3d: /* FRECPE */
gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
break;
case 0x3f: /* FRECPX */
gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
break;
case 0x7d: /* FRSQRTE */
gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
break;
default:
g_assert_not_reached();
}
if (is_scalar) {
write_fp_sreg(s, rd, tcg_res);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
}
}
tcg_temp_free_i32(tcg_res);
tcg_temp_free_i32(tcg_op);
if (!is_q && !is_scalar) {
clear_vec_high(s, rd);
}
}
tcg_temp_free_ptr(fpst);
}
static void handle_2misc_narrow(DisasContext *s, bool scalar,
int opcode, bool u, bool is_q,
int size, int rn, int rd)
{
/* Handle 2-reg-misc ops which are narrowing (so each 2*size element
* in the source becomes a size element in the destination).
*/
int pass;
TCGv_i32 tcg_res[2];
int destelt = is_q ? 2 : 0;
int passes = scalar ? 1 : 2;
if (scalar) {
tcg_res[1] = tcg_const_i32(0);
}
for (pass = 0; pass < passes; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
NeonGenNarrowFn *genfn = NULL;
NeonGenNarrowEnvFn *genenvfn = NULL;
if (scalar) {
read_vec_element(s, tcg_op, rn, pass, size + 1);
} else {
read_vec_element(s, tcg_op, rn, pass, MO_64);
}
tcg_res[pass] = tcg_temp_new_i32();
switch (opcode) {
case 0x12: /* XTN, SQXTUN */
{
static NeonGenNarrowFn * const xtnfns[3] = {
gen_helper_neon_narrow_u8,
gen_helper_neon_narrow_u16,
tcg_gen_trunc_i64_i32,
};
static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
gen_helper_neon_unarrow_sat8,
gen_helper_neon_unarrow_sat16,
gen_helper_neon_unarrow_sat32,
};
if (u) {
genenvfn = sqxtunfns[size];
} else {
genfn = xtnfns[size];
}
break;
}
case 0x14: /* SQXTN, UQXTN */
{
static NeonGenNarrowEnvFn * const fns[3][2] = {
{ gen_helper_neon_narrow_sat_s8,
gen_helper_neon_narrow_sat_u8 },
{ gen_helper_neon_narrow_sat_s16,
gen_helper_neon_narrow_sat_u16 },
{ gen_helper_neon_narrow_sat_s32,
gen_helper_neon_narrow_sat_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x16: /* FCVTN, FCVTN2 */
/* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
if (size == 2) {
gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
} else {
TCGv_i32 tcg_lo = tcg_temp_new_i32();
TCGv_i32 tcg_hi = tcg_temp_new_i32();
tcg_gen_trunc_i64_i32(tcg_lo, tcg_op);
gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
tcg_gen_shri_i64(tcg_op, tcg_op, 32);
tcg_gen_trunc_i64_i32(tcg_hi, tcg_op);
gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
tcg_temp_free_i32(tcg_lo);
tcg_temp_free_i32(tcg_hi);
}
break;
case 0x56: /* FCVTXN, FCVTXN2 */
/* 64 bit to 32 bit float conversion
* with von Neumann rounding (round to odd)
*/
assert(size == 2);
gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
break;
default:
g_assert_not_reached();
}
if (genfn) {
genfn(tcg_res[pass], tcg_op);
} else if (genenvfn) {
genenvfn(tcg_res[pass], cpu_env, tcg_op);
}
tcg_temp_free_i64(tcg_op);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
tcg_temp_free_i32(tcg_res[pass]);
}
if (!is_q) {
clear_vec_high(s, rd);
}
}
/* Remaining saturating accumulating ops */
static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
bool is_q, int size, int rn, int rd)
{
bool is_double = (size == 3);
if (is_double) {
TCGv_i64 tcg_rn = tcg_temp_new_i64();
TCGv_i64 tcg_rd = tcg_temp_new_i64();
int pass;
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
read_vec_element(s, tcg_rn, rn, pass, MO_64);
read_vec_element(s, tcg_rd, rd, pass, MO_64);
if (is_u) { /* USQADD */
gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
} else { /* SUQADD */
gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
}
write_vec_element(s, tcg_rd, rd, pass, MO_64);
}
if (is_scalar) {
clear_vec_high(s, rd);
}
tcg_temp_free_i64(tcg_rd);
tcg_temp_free_i64(tcg_rn);
} else {
TCGv_i32 tcg_rn = tcg_temp_new_i32();
TCGv_i32 tcg_rd = tcg_temp_new_i32();
int pass, maxpasses;
if (is_scalar) {
maxpasses = 1;
} else {
maxpasses = is_q ? 4 : 2;
}
for (pass = 0; pass < maxpasses; pass++) {
if (is_scalar) {
read_vec_element_i32(s, tcg_rn, rn, pass, size);
read_vec_element_i32(s, tcg_rd, rd, pass, size);
} else {
read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
}
if (is_u) { /* USQADD */
switch (size) {
case 0:
gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
break;
case 1:
gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
break;
case 2:
gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
break;
default:
g_assert_not_reached();
}
} else { /* SUQADD */
switch (size) {
case 0:
gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
break;
case 1:
gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
break;
case 2:
gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
break;
default:
g_assert_not_reached();
}
}
if (is_scalar) {
TCGv_i64 tcg_zero = tcg_const_i64(0);
write_vec_element(s, tcg_zero, rd, 0, MO_64);
tcg_temp_free_i64(tcg_zero);
}
write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
}
if (!is_q) {
clear_vec_high(s, rd);
}
tcg_temp_free_i32(tcg_rd);
tcg_temp_free_i32(tcg_rn);
}
}
/* C3.6.12 AdvSIMD scalar two reg misc
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
* +-----+---+-----------+------+-----------+--------+-----+------+------+
* | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
* +-----+---+-----------+------+-----------+--------+-----+------+------+
*/
static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 12, 5);
int size = extract32(insn, 22, 2);
bool u = extract32(insn, 29, 1);
bool is_fcvt = false;
int rmode;
TCGv_i32 tcg_rmode;
TCGv_ptr tcg_fpstatus;
switch (opcode) {
case 0x3: /* USQADD / SUQADD*/
if (!fp_access_check(s)) {
return;
}
handle_2misc_satacc(s, true, u, false, size, rn, rd);
return;
case 0x7: /* SQABS / SQNEG */
break;
case 0xa: /* CMLT */
if (u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x8: /* CMGT, CMGE */
case 0x9: /* CMEQ, CMLE */
case 0xb: /* ABS, NEG */
if (size != 3) {
unallocated_encoding(s);
return;
}
break;
case 0x12: /* SQXTUN */
if (!u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x14: /* SQXTN, UQXTN */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
return;
case 0xc ... 0xf:
case 0x16 ... 0x1d:
case 0x1f:
/* Floating point: U, size[1] and opcode indicate operation;
* size[0] indicates single or double precision.
*/
opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
size = extract32(size, 0, 1) ? 3 : 2;
switch (opcode) {
case 0x2c: /* FCMGT (zero) */
case 0x2d: /* FCMEQ (zero) */
case 0x2e: /* FCMLT (zero) */
case 0x6c: /* FCMGE (zero) */
case 0x6d: /* FCMLE (zero) */
handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
return;
case 0x1d: /* SCVTF */
case 0x5d: /* UCVTF */
{
bool is_signed = (opcode == 0x1d);
if (!fp_access_check(s)) {
return;
}
handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
return;
}
case 0x3d: /* FRECPE */
case 0x3f: /* FRECPX */
case 0x7d: /* FRSQRTE */
if (!fp_access_check(s)) {
return;
}
handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
return;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
is_fcvt = true;
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
break;
case 0x1c: /* FCVTAS */
case 0x5c: /* FCVTAU */
/* TIEAWAY doesn't fit in the usual rounding mode encoding */
is_fcvt = true;
rmode = FPROUNDING_TIEAWAY;
break;
case 0x56: /* FCVTXN, FCVTXN2 */
if (size == 2) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
return;
default:
unallocated_encoding(s);
return;
}
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (is_fcvt) {
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
tcg_fpstatus = get_fpstatus_ptr();
} else {
TCGV_UNUSED_I32(tcg_rmode);
TCGV_UNUSED_PTR(tcg_fpstatus);
}
if (size == 3) {
TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
TCGv_i64 tcg_rd = tcg_temp_new_i64();
handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_rd);
tcg_temp_free_i64(tcg_rn);
} else {
TCGv_i32 tcg_rn = tcg_temp_new_i32();
TCGv_i32 tcg_rd = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_rn, rn, 0, size);
switch (opcode) {
case 0x7: /* SQABS, SQNEG */
{
NeonGenOneOpEnvFn *genfn;
static NeonGenOneOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
{ gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
{ gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
};
genfn = fns[size][u];
genfn(tcg_rd, cpu_env, tcg_rn);
break;
}
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
{
TCGv_i32 tcg_shift = tcg_const_i32(0);
gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_shift);
break;
}
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
{
TCGv_i32 tcg_shift = tcg_const_i32(0);
gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_shift);
break;
}
default:
g_assert_not_reached();
}
write_fp_sreg(s, rd, tcg_rd);
tcg_temp_free_i32(tcg_rd);
tcg_temp_free_i32(tcg_rn);
}
if (is_fcvt) {
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
tcg_temp_free_i32(tcg_rmode);
tcg_temp_free_ptr(tcg_fpstatus);
}
}
/* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
int immh, int immb, int opcode, int rn, int rd)
{
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = 2 * (8 << size) - immhb;
bool accumulate = false;
bool round = false;
bool insert = false;
int dsize = is_q ? 128 : 64;
int esize = 8 << size;
int elements = dsize/esize;
TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
TCGv_i64 tcg_rn = new_tmp_a64(s);
TCGv_i64 tcg_rd = new_tmp_a64(s);
TCGv_i64 tcg_round;
int i;
if (extract32(immh, 3, 1) && !is_q) {
unallocated_encoding(s);
return;
}
if (size > 3 && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
switch (opcode) {
case 0x02: /* SSRA / USRA (accumulate) */
accumulate = true;
break;
case 0x04: /* SRSHR / URSHR (rounding) */
round = true;
break;
case 0x06: /* SRSRA / URSRA (accum + rounding) */
accumulate = round = true;
break;
case 0x08: /* SRI */
insert = true;
break;
}
if (round) {
uint64_t round_const = 1ULL << (shift - 1);
tcg_round = tcg_const_i64(round_const);
} else {
TCGV_UNUSED_I64(tcg_round);
}
for (i = 0; i < elements; i++) {
read_vec_element(s, tcg_rn, rn, i, memop);
if (accumulate || insert) {
read_vec_element(s, tcg_rd, rd, i, memop);
}
if (insert) {
handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
} else {
handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
accumulate, is_u, size, shift);
}
write_vec_element(s, tcg_rd, rd, i, size);
}
if (!is_q) {
clear_vec_high(s, rd);
}
if (round) {
tcg_temp_free_i64(tcg_round);
}
}
/* SHL/SLI - Vector shift left */
static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
int immh, int immb, int opcode, int rn, int rd)
{
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = immhb - (8 << size);
int dsize = is_q ? 128 : 64;
int esize = 8 << size;
int elements = dsize/esize;
TCGv_i64 tcg_rn = new_tmp_a64(s);
TCGv_i64 tcg_rd = new_tmp_a64(s);
int i;
if (extract32(immh, 3, 1) && !is_q) {
unallocated_encoding(s);
return;
}
if (size > 3 && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
for (i = 0; i < elements; i++) {
read_vec_element(s, tcg_rn, rn, i, size);
if (insert) {
read_vec_element(s, tcg_rd, rd, i, size);
}
handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
write_vec_element(s, tcg_rd, rd, i, size);
}
if (!is_q) {
clear_vec_high(s, rd);
}
}
/* USHLL/SHLL - Vector shift left with widening */
static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
int immh, int immb, int opcode, int rn, int rd)
{
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = immhb - (8 << size);
int dsize = 64;
int esize = 8 << size;
int elements = dsize/esize;
TCGv_i64 tcg_rn = new_tmp_a64(s);
TCGv_i64 tcg_rd = new_tmp_a64(s);
int i;
if (size >= 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* For the LL variants the store is larger than the load,
* so if rd == rn we would overwrite parts of our input.
* So load everything right now and use shifts in the main loop.
*/
read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
for (i = 0; i < elements; i++) {
tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
write_vec_element(s, tcg_rd, rd, i, size + 1);
}
}
/* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
int immh, int immb, int opcode, int rn, int rd)
{
int immhb = immh << 3 | immb;
int size = 32 - clz32(immh) - 1;
int dsize = 64;
int esize = 8 << size;
int elements = dsize/esize;
int shift = (2 * esize) - immhb;
bool round = extract32(opcode, 0, 1);
TCGv_i64 tcg_rn, tcg_rd, tcg_final;
TCGv_i64 tcg_round;
int i;
if (extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rn = tcg_temp_new_i64();
tcg_rd = tcg_temp_new_i64();
tcg_final = tcg_temp_new_i64();
read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
if (round) {
uint64_t round_const = 1ULL << (shift - 1);
tcg_round = tcg_const_i64(round_const);
} else {
TCGV_UNUSED_I64(tcg_round);
}
for (i = 0; i < elements; i++) {
read_vec_element(s, tcg_rn, rn, i, size+1);
handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
false, true, size+1, shift);
tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
}
if (!is_q) {
clear_vec_high(s, rd);
write_vec_element(s, tcg_final, rd, 0, MO_64);
} else {
write_vec_element(s, tcg_final, rd, 1, MO_64);
}
if (round) {
tcg_temp_free_i64(tcg_round);
}
tcg_temp_free_i64(tcg_rn);
tcg_temp_free_i64(tcg_rd);
tcg_temp_free_i64(tcg_final);
return;
}
/* C3.6.14 AdvSIMD shift by immediate
* 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
* +---+---+---+-------------+------+------+--------+---+------+------+
* | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
* +---+---+---+-------------+------+------+--------+---+------+------+
*/
static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 5);
int immb = extract32(insn, 16, 3);
int immh = extract32(insn, 19, 4);
bool is_u = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
switch (opcode) {
case 0x08: /* SRI */
if (!is_u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x00: /* SSHR / USHR */
case 0x02: /* SSRA / USRA (accumulate) */
case 0x04: /* SRSHR / URSHR (rounding) */
case 0x06: /* SRSRA / URSRA (accum + rounding) */
handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
break;
case 0x0a: /* SHL / SLI */
handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
break;
case 0x10: /* SHRN */
case 0x11: /* RSHRN / SQRSHRUN */
if (is_u) {
handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
opcode, rn, rd);
} else {
handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
}
break;
case 0x12: /* SQSHRN / UQSHRN */
case 0x13: /* SQRSHRN / UQRSHRN */
handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
opcode, rn, rd);
break;
case 0x14: /* SSHLL / USHLL */
handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
break;
case 0x1c: /* SCVTF / UCVTF */
handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
opcode, rn, rd);
break;
case 0xc: /* SQSHLU */
if (!is_u) {
unallocated_encoding(s);
return;
}
handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
break;
case 0xe: /* SQSHL, UQSHL */
handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
break;
case 0x1f: /* FCVTZS/ FCVTZU */
handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
return;
default:
unallocated_encoding(s);
return;
}
}
/* Generate code to do a "long" addition or subtraction, ie one done in
* TCGv_i64 on vector lanes twice the width specified by size.
*/
static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
{
static NeonGenTwo64OpFn * const fns[3][2] = {
{ gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
{ gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
{ tcg_gen_add_i64, tcg_gen_sub_i64 },
};
NeonGenTwo64OpFn *genfn;
assert(size < 3);
genfn = fns[size][is_sub];
genfn(tcg_res, tcg_op1, tcg_op2);
}
static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
int opcode, int rd, int rn, int rm)
{
/* 3-reg-different widening insns: 64 x 64 -> 128 */
TCGv_i64 tcg_res[2];
int pass, accop;
tcg_res[0] = tcg_temp_new_i64();
tcg_res[1] = tcg_temp_new_i64();
/* Does this op do an adding accumulate, a subtracting accumulate,
* or no accumulate at all?
*/
switch (opcode) {
case 5:
case 8:
case 9:
accop = 1;
break;
case 10:
case 11:
accop = -1;
break;
default:
accop = 0;
break;
}
if (accop != 0) {
read_vec_element(s, tcg_res[0], rd, 0, MO_64);
read_vec_element(s, tcg_res[1], rd, 1, MO_64);
}
/* size == 2 means two 32x32->64 operations; this is worth special
* casing because we can generally handle it inline.
*/
if (size == 2) {
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
TCGv_i64 tcg_passres;
TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
int elt = pass + is_q * 2;
read_vec_element(s, tcg_op1, rn, elt, memop);
read_vec_element(s, tcg_op2, rm, elt, memop);
if (accop == 0) {
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64();
}
switch (opcode) {
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
break;
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
break;
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
{
TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
tcg_passres,
tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
tcg_temp_free_i64(tcg_tmp1);
tcg_temp_free_i64(tcg_tmp2);
break;
}
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
break;
case 9: /* SQDMLAL, SQDMLAL2 */
case 11: /* SQDMLSL, SQDMLSL2 */
case 13: /* SQDMULL, SQDMULL2 */
tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
tcg_passres, tcg_passres);
break;
default:
g_assert_not_reached();
}
if (opcode == 9 || opcode == 11) {
/* saturating accumulate ops */
if (accop < 0) {
tcg_gen_neg_i64(tcg_passres, tcg_passres);
}
gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
tcg_res[pass], tcg_passres);
} else if (accop > 0) {
tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
} else if (accop < 0) {
tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
}
if (accop != 0) {
tcg_temp_free_i64(tcg_passres);
}
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
}
} else {
/* size 0 or 1, generally helper functions */
for (pass = 0; pass < 2; pass++) {
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
TCGv_i64 tcg_passres;
int elt = pass + is_q * 2;
read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
if (accop == 0) {
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64();
}
switch (opcode) {
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
{
TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
static NeonGenWidenFn * const widenfns[2][2] = {
{ gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
{ gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
};
NeonGenWidenFn *widenfn = widenfns[size][is_u];
widenfn(tcg_op2_64, tcg_op2);
widenfn(tcg_passres, tcg_op1);
gen_neon_addl(size, (opcode == 2), tcg_passres,
tcg_passres, tcg_op2_64);
tcg_temp_free_i64(tcg_op2_64);
break;
}
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
if (size == 0) {
if (is_u) {
gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
}
} else {
if (is_u) {
gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
}
}
break;
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
if (size == 0) {
if (is_u) {
gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
}
} else {
if (is_u) {
gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
}
}
break;
case 9: /* SQDMLAL, SQDMLAL2 */
case 11: /* SQDMLSL, SQDMLSL2 */
case 13: /* SQDMULL, SQDMULL2 */
assert(size == 1);
gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
tcg_passres, tcg_passres);
break;
case 14: /* PMULL */
assert(size == 0);
gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_i32(tcg_op1);
tcg_temp_free_i32(tcg_op2);
if (accop != 0) {
if (opcode == 9 || opcode == 11) {
/* saturating accumulate ops */
if (accop < 0) {
gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
}
gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
tcg_res[pass],
tcg_passres);
} else {
gen_neon_addl(size, (accop < 0), tcg_res[pass],
tcg_res[pass], tcg_passres);
}
tcg_temp_free_i64(tcg_passres);
}
}
}
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
tcg_temp_free_i64(tcg_res[0]);
tcg_temp_free_i64(tcg_res[1]);
}
static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
int opcode, int rd, int rn, int rm)
{
TCGv_i64 tcg_res[2];
int part = is_q ? 2 : 0;
int pass;
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
static NeonGenWidenFn * const widenfns[3][2] = {
{ gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
{ gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
{ tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
};
NeonGenWidenFn *widenfn = widenfns[size][is_u];
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
widenfn(tcg_op2_wide, tcg_op2);
tcg_temp_free_i32(tcg_op2);
tcg_res[pass] = tcg_temp_new_i64();
gen_neon_addl(size, (opcode == 3),
tcg_res[pass], tcg_op1, tcg_op2_wide);
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2_wide);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_res[pass]);
}
}
static void do_narrow_high_u32(TCGv_i32 res, TCGv_i64 in)
{
tcg_gen_shri_i64(in, in, 32);
tcg_gen_trunc_i64_i32(res, in);
}
static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
{
tcg_gen_addi_i64(in, in, 1U << 31);
do_narrow_high_u32(res, in);
}
static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
int opcode, int rd, int rn, int rm)
{
TCGv_i32 tcg_res[2];
int part = is_q ? 2 : 0;
int pass;
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
TCGv_i64 tcg_wideres = tcg_temp_new_i64();
static NeonGenNarrowFn * const narrowfns[3][2] = {
{ gen_helper_neon_narrow_high_u8,
gen_helper_neon_narrow_round_high_u8 },
{ gen_helper_neon_narrow_high_u16,
gen_helper_neon_narrow_round_high_u16 },
{ do_narrow_high_u32, do_narrow_round_high_u32 },
};
NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
tcg_res[pass] = tcg_temp_new_i32();
gennarrow(tcg_res[pass], tcg_wideres);
tcg_temp_free_i64(tcg_wideres);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
tcg_temp_free_i32(tcg_res[pass]);
}
if (!is_q) {
clear_vec_high(s, rd);
}
}
static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
{
/* PMULL of 64 x 64 -> 128 is an odd special case because it
* is the only three-reg-diff instruction which produces a
* 128-bit wide result from a single operation. However since
* it's possible to calculate the two halves more or less
* separately we just use two helper calls.
*/
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64();
read_vec_element(s, tcg_op1, rn, is_q, MO_64);
read_vec_element(s, tcg_op2, rm, is_q, MO_64);
gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
write_vec_element(s, tcg_res, rd, 0, MO_64);
gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
write_vec_element(s, tcg_res, rd, 1, MO_64);
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
tcg_temp_free_i64(tcg_res);
}
/* C3.6.15 AdvSIMD three different
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
* | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
*/
static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
{
/* Instructions in this group fall into three basic classes
* (in each case with the operation working on each element in
* the input vectors):
* (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
* 128 bit input)
* (2) wide 64 x 128 -> 128
* (3) narrowing 128 x 128 -> 64
* Here we do initial decode, catch unallocated cases and
* dispatch to separate functions for each class.
*/
int is_q = extract32(insn, 30, 1);
int is_u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 4);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
switch (opcode) {
case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
/* 64 x 128 -> 128 */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
break;
case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
/* 128 x 128 -> 64 */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
break;
case 14: /* PMULL, PMULL2 */
if (is_u || size == 1 || size == 2) {
unallocated_encoding(s);
return;
}
if (size == 3) {
if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_pmull_64(s, is_q, rd, rn, rm);
return;
}
goto is_widening;
case 9: /* SQDMLAL, SQDMLAL2 */
case 11: /* SQDMLSL, SQDMLSL2 */
case 13: /* SQDMULL, SQDMULL2 */
if (is_u || size == 0) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
/* 64 x 64 -> 128 */
if (size == 3) {
unallocated_encoding(s);
return;
}
is_widening:
if (!fp_access_check(s)) {
return;
}
handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
break;
default:
/* opcode 15 not allocated */
unallocated_encoding(s);
break;
}
}
/* Logic op (opcode == 3) subgroup of C3.6.16. */
static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rm = extract32(insn, 16, 5);
int size = extract32(insn, 22, 2);
bool is_u = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
int pass;
if (!fp_access_check(s)) {
return;
}
tcg_op1 = tcg_temp_new_i64();
tcg_op2 = tcg_temp_new_i64();
tcg_res[0] = tcg_temp_new_i64();
tcg_res[1] = tcg_temp_new_i64();
for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
if (!is_u) {
switch (size) {
case 0: /* AND */
tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
break;
case 1: /* BIC */
tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
break;
case 2: /* ORR */
tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
break;
case 3: /* ORN */
tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
break;
}
} else {
if (size != 0) {
/* B* ops need res loaded to operate on */
read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
}
switch (size) {
case 0: /* EOR */
tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
break;
case 1: /* BSL bitwise select */
tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
break;
case 2: /* BIT, bitwise insert if true */
tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
break;
case 3: /* BIF, bitwise insert if false */
tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
break;
}
}
}
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
if (!is_q) {
tcg_gen_movi_i64(tcg_res[1], 0);
}
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
tcg_temp_free_i64(tcg_res[0]);
tcg_temp_free_i64(tcg_res[1]);
}
/* Helper functions for 32 bit comparisons */
static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
{
tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
}
static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
{
tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
}
static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
{
tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
}
static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
{
tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
}
/* Pairwise op subgroup of C3.6.16.
*
* This is called directly or via the handle_3same_float for float pairwise
* operations where the opcode and size are calculated differently.
*/
static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
int size, int rn, int rm, int rd)
{
TCGv_ptr fpst;
int pass;
/* Floating point operations need fpst */
if (opcode >= 0x58) {
fpst = get_fpstatus_ptr();
} else {
TCGV_UNUSED_PTR(fpst);
}
if (!fp_access_check(s)) {
return;
}
/* These operations work on the concatenated rm:rn, with each pair of
* adjacent elements being operated on to produce an element in the result.
*/
if (size == 3) {
TCGv_i64 tcg_res[2];
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
int passreg = (pass == 0) ? rn : rm;
read_vec_element(s, tcg_op1, passreg, 0, MO_64);
read_vec_element(s, tcg_op2, passreg, 1, MO_64);
tcg_res[pass] = tcg_temp_new_i64();
switch (opcode) {
case 0x17: /* ADDP */
tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
break;
case 0x58: /* FMAXNMP */
gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x5a: /* FADDP */
gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x5e: /* FMAXP */
gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x78: /* FMINNMP */
gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x7e: /* FMINP */
gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_res[pass]);
}
} else {
int maxpass = is_q ? 4 : 2;
TCGv_i32 tcg_res[4];
for (pass = 0; pass < maxpass; pass++) {
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
NeonGenTwoOpFn *genfn = NULL;
int passreg = pass < (maxpass / 2) ? rn : rm;
int passelt = (is_q && (pass & 1)) ? 2 : 0;
read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
tcg_res[pass] = tcg_temp_new_i32();
switch (opcode) {
case 0x17: /* ADDP */
{
static NeonGenTwoOpFn * const fns[3] = {
gen_helper_neon_padd_u8,
gen_helper_neon_padd_u16,
tcg_gen_add_i32,
};
genfn = fns[size];
break;
}
case 0x14: /* SMAXP, UMAXP */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
{ gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
{ gen_max_s32, gen_max_u32 },
};
genfn = fns[size][u];
break;
}
case 0x15: /* SMINP, UMINP */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
{ gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
{ gen_min_s32, gen_min_u32 },
};
genfn = fns[size][u];
break;
}
/* The FP operations are all on single floats (32 bit) */
case 0x58: /* FMAXNMP */
gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x5a: /* FADDP */
gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x5e: /* FMAXP */
gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x78: /* FMINNMP */
gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x7e: /* FMINP */
gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
/* FP ops called directly, otherwise call now */
if (genfn) {
genfn(tcg_res[pass], tcg_op1, tcg_op2);
}
tcg_temp_free_i32(tcg_op1);
tcg_temp_free_i32(tcg_op2);
}
for (pass = 0; pass < maxpass; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
tcg_temp_free_i32(tcg_res[pass]);
}
if (!is_q) {
clear_vec_high(s, rd);
}
}
if (!TCGV_IS_UNUSED_PTR(fpst)) {
tcg_temp_free_ptr(fpst);
}
}
/* Floating point op subgroup of C3.6.16. */
static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
{
/* For floating point ops, the U, size[1] and opcode bits
* together indicate the operation. size[0] indicates single
* or double.
*/
int fpopcode = extract32(insn, 11, 5)
| (extract32(insn, 23, 1) << 5)
| (extract32(insn, 29, 1) << 6);
int is_q = extract32(insn, 30, 1);
int size = extract32(insn, 22, 1);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int datasize = is_q ? 128 : 64;
int esize = 32 << size;
int elements = datasize / esize;
if (size == 1 && !is_q) {
unallocated_encoding(s);
return;
}
switch (fpopcode) {
case 0x58: /* FMAXNMP */
case 0x5a: /* FADDP */
case 0x5e: /* FMAXP */
case 0x78: /* FMINNMP */
case 0x7e: /* FMINP */
if (size && !is_q) {
unallocated_encoding(s);
return;
}
handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
rn, rm, rd);
return;
case 0x1b: /* FMULX */
case 0x1f: /* FRECPS */
case 0x3f: /* FRSQRTS */
case 0x5d: /* FACGE */
case 0x7d: /* FACGT */
case 0x19: /* FMLA */
case 0x39: /* FMLS */
case 0x18: /* FMAXNM */
case 0x1a: /* FADD */
case 0x1c: /* FCMEQ */
case 0x1e: /* FMAX */
case 0x38: /* FMINNM */
case 0x3a: /* FSUB */
case 0x3e: /* FMIN */
case 0x5b: /* FMUL */
case 0x5c: /* FCMGE */
case 0x5f: /* FDIV */
case 0x7a: /* FABD */
case 0x7c: /* FCMGT */
if (!fp_access_check(s)) {
return;
}
handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
return;
default:
unallocated_encoding(s);
return;
}
}
/* Integer op subgroup of C3.6.16. */
static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
{
int is_q = extract32(insn, 30, 1);
int u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 11, 5);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int pass;
switch (opcode) {
case 0x13: /* MUL, PMUL */
if (u && size != 0) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x0: /* SHADD, UHADD */
case 0x2: /* SRHADD, URHADD */
case 0x4: /* SHSUB, UHSUB */
case 0xc: /* SMAX, UMAX */
case 0xd: /* SMIN, UMIN */
case 0xe: /* SABD, UABD */
case 0xf: /* SABA, UABA */
case 0x12: /* MLA, MLS */
if (size == 3) {
unallocated_encoding(s);
return;
}
break;
case 0x16: /* SQDMULH, SQRDMULH */
if (size == 0 || size == 3) {
unallocated_encoding(s);
return;
}
break;
default:
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
}
if (!fp_access_check(s)) {
return;
}
if (size == 3) {
assert(is_q);
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64();
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
write_vec_element(s, tcg_res, rd, pass, MO_64);
tcg_temp_free_i64(tcg_res);
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
}
} else {
for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
NeonGenTwoOpFn *genfn = NULL;
NeonGenTwoOpEnvFn *genenvfn = NULL;
read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
switch (opcode) {
case 0x0: /* SHADD, UHADD */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
{ gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
{ gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
};
genfn = fns[size][u];
break;
}
case 0x1: /* SQADD, UQADD */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
{ gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
{ gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x2: /* SRHADD, URHADD */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
{ gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
{ gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
};
genfn = fns[size][u];
break;
}
case 0x4: /* SHSUB, UHSUB */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
{ gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
{ gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
};
genfn = fns[size][u];
break;
}
case 0x5: /* SQSUB, UQSUB */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
{ gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
{ gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x6: /* CMGT, CMHI */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
{ gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
{ gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
};
genfn = fns[size][u];
break;
}
case 0x7: /* CMGE, CMHS */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
{ gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
{ gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
};
genfn = fns[size][u];
break;
}
case 0x8: /* SSHL, USHL */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
{ gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
{ gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
};
genfn = fns[size][u];
break;
}
case 0x9: /* SQSHL, UQSHL */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
{ gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
{ gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0xa: /* SRSHL, URSHL */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
{ gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
{ gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
};
genfn = fns[size][u];
break;
}
case 0xb: /* SQRSHL, UQRSHL */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
{ gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
{ gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0xc: /* SMAX, UMAX */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
{ gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
{ gen_max_s32, gen_max_u32 },
};
genfn = fns[size][u];
break;
}
case 0xd: /* SMIN, UMIN */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
{ gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
{ gen_min_s32, gen_min_u32 },
};
genfn = fns[size][u];
break;
}
case 0xe: /* SABD, UABD */
case 0xf: /* SABA, UABA */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
{ gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
{ gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
};
genfn = fns[size][u];
break;
}
case 0x10: /* ADD, SUB */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
{ gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
{ tcg_gen_add_i32, tcg_gen_sub_i32 },
};
genfn = fns[size][u];
break;
}
case 0x11: /* CMTST, CMEQ */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
{ gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
{ gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
};
genfn = fns[size][u];
break;
}
case 0x13: /* MUL, PMUL */
if (u) {
/* PMUL */
assert(size == 0);
genfn = gen_helper_neon_mul_p8;
break;
}
/* fall through : MUL */
case 0x12: /* MLA, MLS */
{
static NeonGenTwoOpFn * const fns[3] = {
gen_helper_neon_mul_u8,
gen_helper_neon_mul_u16,
tcg_gen_mul_i32,
};
genfn = fns[size];
break;
}
case 0x16: /* SQDMULH, SQRDMULH */
{
static NeonGenTwoOpEnvFn * const fns[2][2] = {
{ gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
{ gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
};
assert(size == 1 || size == 2);
genenvfn = fns[size - 1][u];
break;
}
default:
g_assert_not_reached();
}
if (genenvfn) {
genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
} else {
genfn(tcg_res, tcg_op1, tcg_op2);
}
if (opcode == 0xf || opcode == 0x12) {
/* SABA, UABA, MLA, MLS: accumulating ops */
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
{ gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
{ tcg_gen_add_i32, tcg_gen_sub_i32 },
};
bool is_sub = (opcode == 0x12 && u); /* MLS */
genfn = fns[size][is_sub];
read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
genfn(tcg_res, tcg_op1, tcg_res);
}
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
tcg_temp_free_i32(tcg_res);
tcg_temp_free_i32(tcg_op1);
tcg_temp_free_i32(tcg_op2);
}
}
if (!is_q) {
clear_vec_high(s, rd);
}
}
/* C3.6.16 AdvSIMD three same
* 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
* +---+---+---+-----------+------+---+------+--------+---+------+------+
* | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
* +---+---+---+-----------+------+---+------+--------+---+------+------+
*/
static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
{
int opcode = extract32(insn, 11, 5);
switch (opcode) {
case 0x3: /* logic ops */
disas_simd_3same_logic(s, insn);
break;
case 0x17: /* ADDP */
case 0x14: /* SMAXP, UMAXP */
case 0x15: /* SMINP, UMINP */
{
/* Pairwise operations */
int is_q = extract32(insn, 30, 1);
int u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
if (opcode == 0x17) {
if (u || (size == 3 && !is_q)) {
unallocated_encoding(s);
return;
}
} else {
if (size == 3) {
unallocated_encoding(s);
return;
}
}
handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
break;
}
case 0x18 ... 0x31:
/* floating point ops, sz[1] and U are part of opcode */
disas_simd_3same_float(s, insn);
break;
default:
disas_simd_3same_int(s, insn);
break;
}
}
static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
int size, int rn, int rd)
{
/* Handle 2-reg-misc ops which are widening (so each size element
* in the source becomes a 2*size element in the destination.
* The only instruction like this is FCVTL.
*/
int pass;
if (size == 3) {
/* 32 -> 64 bit fp conversion */
TCGv_i64 tcg_res[2];
int srcelt = is_q ? 2 : 0;
for (pass = 0; pass < 2; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
tcg_res[pass] = tcg_temp_new_i64();
read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
tcg_temp_free_i32(tcg_op);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_res[pass]);
}
} else {
/* 16 -> 32 bit fp conversion */
int srcelt = is_q ? 4 : 0;
TCGv_i32 tcg_res[4];
for (pass = 0; pass < 4; pass++) {
tcg_res[pass] = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
cpu_env);
}
for (pass = 0; pass < 4; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
tcg_temp_free_i32(tcg_res[pass]);
}
}
}
static void handle_rev(DisasContext *s, int opcode, bool u,
bool is_q, int size, int rn, int rd)
{
int op = (opcode << 1) | u;
int opsz = op + size;
int grp_size = 3 - opsz;
int dsize = is_q ? 128 : 64;
int i;
if (opsz >= 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (size == 0) {
/* Special case bytes, use bswap op on each group of elements */
int groups = dsize / (8 << grp_size);
for (i = 0; i < groups; i++) {
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
read_vec_element(s, tcg_tmp, rn, i, grp_size);
switch (grp_size) {
case MO_16:
tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
break;
case MO_32:
tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
break;
case MO_64:
tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
break;
default:
g_assert_not_reached();
}
write_vec_element(s, tcg_tmp, rd, i, grp_size);
tcg_temp_free_i64(tcg_tmp);
}
if (!is_q) {
clear_vec_high(s, rd);
}
} else {
int revmask = (1 << grp_size) - 1;
int esize = 8 << size;
int elements = dsize / esize;
TCGv_i64 tcg_rn = tcg_temp_new_i64();
TCGv_i64 tcg_rd = tcg_const_i64(0);
TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
for (i = 0; i < elements; i++) {
int e_rev = (i & 0xf) ^ revmask;
int off = e_rev * esize;
read_vec_element(s, tcg_rn, rn, i, size);
if (off >= 64) {
tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
tcg_rn, off - 64, esize);
} else {
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
}
}
write_vec_element(s, tcg_rd, rd, 0, MO_64);
write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
tcg_temp_free_i64(tcg_rd_hi);
tcg_temp_free_i64(tcg_rd);
tcg_temp_free_i64(tcg_rn);
}
}
static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
bool is_q, int size, int rn, int rd)
{
/* Implement the pairwise operations from 2-misc:
* SADDLP, UADDLP, SADALP, UADALP.
* These all add pairs of elements in the input to produce a
* double-width result element in the output (possibly accumulating).
*/
bool accum = (opcode == 0x6);
int maxpass = is_q ? 2 : 1;
int pass;
TCGv_i64 tcg_res[2];
if (size == 2) {
/* 32 + 32 -> 64 op */
TCGMemOp memop = size + (u ? 0 : MO_SIGN);
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
tcg_res[pass] = tcg_temp_new_i64();
read_vec_element(s, tcg_op1, rn, pass * 2, memop);
read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
if (accum) {
read_vec_element(s, tcg_op1, rd, pass, MO_64);
tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
}
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
}
} else {
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
NeonGenOneOpFn *genfn;
static NeonGenOneOpFn * const fns[2][2] = {
{ gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
{ gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
};
genfn = fns[size][u];
tcg_res[pass] = tcg_temp_new_i64();
read_vec_element(s, tcg_op, rn, pass, MO_64);
genfn(tcg_res[pass], tcg_op);
if (accum) {
read_vec_element(s, tcg_op, rd, pass, MO_64);
if (size == 0) {
gen_helper_neon_addl_u16(tcg_res[pass],
tcg_res[pass], tcg_op);
} else {
gen_helper_neon_addl_u32(tcg_res[pass],
tcg_res[pass], tcg_op);
}
}
tcg_temp_free_i64(tcg_op);
}
}
if (!is_q) {
tcg_res[1] = tcg_const_i64(0);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_res[pass]);
}
}
static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
{
/* Implement SHLL and SHLL2 */
int pass;
int part = is_q ? 2 : 0;
TCGv_i64 tcg_res[2];
for (pass = 0; pass < 2; pass++) {
static NeonGenWidenFn * const widenfns[3] = {
gen_helper_neon_widen_u8,
gen_helper_neon_widen_u16,
tcg_gen_extu_i32_i64,
};
NeonGenWidenFn *widenfn = widenfns[size];
TCGv_i32 tcg_op = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
tcg_res[pass] = tcg_temp_new_i64();
widenfn(tcg_res[pass], tcg_op);
tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
tcg_temp_free_i32(tcg_op);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_res[pass]);
}
}
/* C3.6.17 AdvSIMD two reg misc
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
* | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
*/
static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
{
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
bool u = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
bool need_fpstatus = false;
bool need_rmode = false;
int rmode = -1;
TCGv_i32 tcg_rmode;
TCGv_ptr tcg_fpstatus;
switch (opcode) {
case 0x0: /* REV64, REV32 */
case 0x1: /* REV16 */
handle_rev(s, opcode, u, is_q, size, rn, rd);
return;
case 0x5: /* CNT, NOT, RBIT */
if (u && size == 0) {
/* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
size = 3;
break;
} else if (u && size == 1) {
/* RBIT */
break;
} else if (!u && size == 0) {
/* CNT */
break;
}
unallocated_encoding(s);
return;
case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
return;
case 0x4: /* CLS, CLZ */
if (size == 3) {
unallocated_encoding(s);
return;
}
break;
case 0x2: /* SADDLP, UADDLP */
case 0x6: /* SADALP, UADALP */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
return;
case 0x13: /* SHLL, SHLL2 */
if (u == 0 || size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_shll(s, is_q, size, rn, rd);
return;
case 0xa: /* CMLT */
if (u == 1) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x8: /* CMGT, CMGE */
case 0x9: /* CMEQ, CMLE */
case 0xb: /* ABS, NEG */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x3: /* SUQADD, USQADD */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
return;
case 0x7: /* SQABS, SQNEG */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0xc ... 0xf:
case 0x16 ... 0x1d:
case 0x1f:
{
/* Floating point: U, size[1] and opcode indicate operation;
* size[0] indicates single or double precision.
*/
int is_double = extract32(size, 0, 1);
opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
size = is_double ? 3 : 2;
switch (opcode) {
case 0x2f: /* FABS */
case 0x6f: /* FNEG */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x1d: /* SCVTF */
case 0x5d: /* UCVTF */
{
bool is_signed = (opcode == 0x1d) ? true : false;
int elements = is_double ? 2 : is_q ? 4 : 2;
if (is_double && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
return;
}
case 0x2c: /* FCMGT (zero) */
case 0x2d: /* FCMEQ (zero) */
case 0x2e: /* FCMLT (zero) */
case 0x6c: /* FCMGE (zero) */
case 0x6d: /* FCMLE (zero) */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
return;
case 0x7f: /* FSQRT */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
need_fpstatus = true;
need_rmode = true;
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x5c: /* FCVTAU */
case 0x1c: /* FCVTAS */
need_fpstatus = true;
need_rmode = true;
rmode = FPROUNDING_TIEAWAY;
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x3c: /* URECPE */
if (size == 3) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x3d: /* FRECPE */
case 0x7d: /* FRSQRTE */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
return;
case 0x56: /* FCVTXN, FCVTXN2 */
if (size == 2) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x16: /* FCVTN, FCVTN2 */
/* handle_2misc_narrow does a 2*size -> size operation, but these
* instructions encode the source size rather than dest size.
*/
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
return;
case 0x17: /* FCVTL, FCVTL2 */
if (!fp_access_check(s)) {
return;
}
handle_2misc_widening(s, opcode, is_q, size, rn, rd);
return;
case 0x18: /* FRINTN */
case 0x19: /* FRINTM */
case 0x38: /* FRINTP */
case 0x39: /* FRINTZ */
need_rmode = true;
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
/* fall through */
case 0x59: /* FRINTX */
case 0x79: /* FRINTI */
need_fpstatus = true;
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x58: /* FRINTA */
need_rmode = true;
rmode = FPROUNDING_TIEAWAY;
need_fpstatus = true;
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x7c: /* URSQRTE */
if (size == 3) {
unallocated_encoding(s);
return;
}
need_fpstatus = true;
break;
default:
unallocated_encoding(s);
return;
}
break;
}
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (need_fpstatus) {
tcg_fpstatus = get_fpstatus_ptr();
} else {
TCGV_UNUSED_PTR(tcg_fpstatus);
}
if (need_rmode) {
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
} else {
TCGV_UNUSED_I32(tcg_rmode);
}
if (size == 3) {
/* All 64-bit element operations can be shared with scalar 2misc */
int pass;
for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64();
read_vec_element(s, tcg_op, rn, pass, MO_64);
handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
tcg_rmode, tcg_fpstatus);
write_vec_element(s, tcg_res, rd, pass, MO_64);
tcg_temp_free_i64(tcg_res);
tcg_temp_free_i64(tcg_op);
}
} else {
int pass;
for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
TCGCond cond;
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
if (size == 2) {
/* Special cases for 32 bit elements */
switch (opcode) {
case 0xa: /* CMLT */
/* 32 bit integer comparison against zero, result is
* test ? (2^32 - 1) : 0. We implement via setcond(test)
* and inverting.
*/
cond = TCG_COND_LT;
do_cmop:
tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
tcg_gen_neg_i32(tcg_res, tcg_res);
break;
case 0x8: /* CMGT, CMGE */
cond = u ? TCG_COND_GE : TCG_COND_GT;
goto do_cmop;
case 0x9: /* CMEQ, CMLE */
cond = u ? TCG_COND_LE : TCG_COND_EQ;
goto do_cmop;
case 0x4: /* CLS */
if (u) {
gen_helper_clz32(tcg_res, tcg_op);
} else {
gen_helper_cls32(tcg_res, tcg_op);
}
break;
case 0x7: /* SQABS, SQNEG */
if (u) {
gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
} else {
gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
}
break;
case 0xb: /* ABS, NEG */
if (u) {
tcg_gen_neg_i32(tcg_res, tcg_op);
} else {
TCGv_i32 tcg_zero = tcg_const_i32(0);
tcg_gen_neg_i32(tcg_res, tcg_op);
tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
tcg_zero, tcg_op, tcg_res);
tcg_temp_free_i32(tcg_zero);
}
break;
case 0x2f: /* FABS */
gen_helper_vfp_abss(tcg_res, tcg_op);
break;
case 0x6f: /* FNEG */
gen_helper_vfp_negs(tcg_res, tcg_op);
break;
case 0x7f: /* FSQRT */
gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
break;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
{
TCGv_i32 tcg_shift = tcg_const_i32(0);
gen_helper_vfp_tosls(tcg_res, tcg_op,
tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_shift);
break;
}
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
{
TCGv_i32 tcg_shift = tcg_const_i32(0);
gen_helper_vfp_touls(tcg_res, tcg_op,
tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_shift);
break;
}
case 0x18: /* FRINTN */
case 0x19: /* FRINTM */
case 0x38: /* FRINTP */
case 0x39: /* FRINTZ */
case 0x58: /* FRINTA */
case 0x79: /* FRINTI */
gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x59: /* FRINTX */
gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x7c: /* URSQRTE */
gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
break;
default:
g_assert_not_reached();
}
} else {
/* Use helpers for 8 and 16 bit elements */
switch (opcode) {
case 0x5: /* CNT, RBIT */
/* For these two insns size is part of the opcode specifier
* (handled earlier); they always operate on byte elements.
*/
if (u) {
gen_helper_neon_rbit_u8(tcg_res, tcg_op);
} else {
gen_helper_neon_cnt_u8(tcg_res, tcg_op);
}
break;
case 0x7: /* SQABS, SQNEG */
{
NeonGenOneOpEnvFn *genfn;
static NeonGenOneOpEnvFn * const fns[2][2] = {
{ gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
{ gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
};
genfn = fns[size][u];
genfn(tcg_res, cpu_env, tcg_op);
break;
}
case 0x8: /* CMGT, CMGE */
case 0x9: /* CMEQ, CMLE */
case 0xa: /* CMLT */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
{ gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
{ gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
};
NeonGenTwoOpFn *genfn;
int comp;
bool reverse;
TCGv_i32 tcg_zero = tcg_const_i32(0);
/* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
comp = (opcode - 0x8) * 2 + u;
/* ...but LE, LT are implemented as reverse GE, GT */
reverse = (comp > 2);
if (reverse) {
comp = 4 - comp;
}
genfn = fns[comp][size];
if (reverse) {
genfn(tcg_res, tcg_zero, tcg_op);
} else {
genfn(tcg_res, tcg_op, tcg_zero);
}
tcg_temp_free_i32(tcg_zero);
break;
}
case 0xb: /* ABS, NEG */
if (u) {
TCGv_i32 tcg_zero = tcg_const_i32(0);
if (size) {
gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
} else {
gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
}
tcg_temp_free_i32(tcg_zero);
} else {
if (size) {
gen_helper_neon_abs_s16(tcg_res, tcg_op);
} else {
gen_helper_neon_abs_s8(tcg_res, tcg_op);
}
}
break;
case 0x4: /* CLS, CLZ */
if (u) {
if (size == 0) {
gen_helper_neon_clz_u8(tcg_res, tcg_op);
} else {
gen_helper_neon_clz_u16(tcg_res, tcg_op);
}
} else {
if (size == 0) {
gen_helper_neon_cls_s8(tcg_res, tcg_op);
} else {
gen_helper_neon_cls_s16(tcg_res, tcg_op);
}
}
break;
default:
g_assert_not_reached();
}
}
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
tcg_temp_free_i32(tcg_res);
tcg_temp_free_i32(tcg_op);
}
}
if (!is_q) {
clear_vec_high(s, rd);
}
if (need_rmode) {
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
tcg_temp_free_i32(tcg_rmode);
}
if (need_fpstatus) {
tcg_temp_free_ptr(tcg_fpstatus);
}
}
/* C3.6.13 AdvSIMD scalar x indexed element
* 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
* | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
* C3.6.18 AdvSIMD vector x indexed element
* 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
* +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
* | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
* +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
*/
static void disas_simd_indexed(DisasContext *s, uint32_t insn)
{
/* This encoding has two kinds of instruction:
* normal, where we perform elt x idxelt => elt for each
* element in the vector
* long, where we perform elt x idxelt and generate a result of
* double the width of the input element
* The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
*/
bool is_scalar = extract32(insn, 28, 1);
bool is_q = extract32(insn, 30, 1);
bool u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int l = extract32(insn, 21, 1);
int m = extract32(insn, 20, 1);
/* Note that the Rm field here is only 4 bits, not 5 as it usually is */
int rm = extract32(insn, 16, 4);
int opcode = extract32(insn, 12, 4);
int h = extract32(insn, 11, 1);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
bool is_long = false;
bool is_fp = false;
int index;
TCGv_ptr fpst;
switch (opcode) {
case 0x0: /* MLA */
case 0x4: /* MLS */
if (!u || is_scalar) {
unallocated_encoding(s);
return;
}
break;
case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
if (is_scalar) {
unallocated_encoding(s);
return;
}
is_long = true;
break;
case 0x3: /* SQDMLAL, SQDMLAL2 */
case 0x7: /* SQDMLSL, SQDMLSL2 */
case 0xb: /* SQDMULL, SQDMULL2 */
is_long = true;
/* fall through */
case 0xc: /* SQDMULH */
case 0xd: /* SQRDMULH */
if (u) {
unallocated_encoding(s);
return;
}
break;
case 0x8: /* MUL */
if (u || is_scalar) {
unallocated_encoding(s);
return;
}
break;
case 0x1: /* FMLA */
case 0x5: /* FMLS */
if (u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x9: /* FMUL, FMULX */
if (!extract32(size, 1, 1)) {
unallocated_encoding(s);
return;
}
is_fp = true;
break;
default:
unallocated_encoding(s);
return;
}
if (is_fp) {
/* low bit of size indicates single/double */
size = extract32(size, 0, 1) ? 3 : 2;
if (size == 2) {
index = h << 1 | l;
} else {
if (l || !is_q) {
unallocated_encoding(s);
return;
}
index = h;
}
rm |= (m << 4);
} else {
switch (size) {
case 1:
index = h << 2 | l << 1 | m;
break;
case 2:
index = h << 1 | l;
rm |= (m << 4);
break;
default:
unallocated_encoding(s);
return;
}
}
if (!fp_access_check(s)) {
return;
}
if (is_fp) {
fpst = get_fpstatus_ptr();
} else {
TCGV_UNUSED_PTR(fpst);
}
if (size == 3) {
TCGv_i64 tcg_idx = tcg_temp_new_i64();
int pass;
assert(is_fp && is_q && !is_long);
read_vec_element(s, tcg_idx, rm, index, MO_64);
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64();
read_vec_element(s, tcg_op, rn, pass, MO_64);
switch (opcode) {
case 0x5: /* FMLS */
/* As usual for ARM, separate negation for fused multiply-add */
gen_helper_vfp_negd(tcg_op, tcg_op);
/* fall through */
case 0x1: /* FMLA */
read_vec_element(s, tcg_res, rd, pass, MO_64);
gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
break;
case 0x9: /* FMUL, FMULX */
if (u) {
gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
} else {
gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
}
break;
default:
g_assert_not_reached();
}
write_vec_element(s, tcg_res, rd, pass, MO_64);
tcg_temp_free_i64(tcg_op);
tcg_temp_free_i64(tcg_res);
}
if (is_scalar) {
clear_vec_high(s, rd);
}
tcg_temp_free_i64(tcg_idx);
} else if (!is_long) {
/* 32 bit floating point, or 16 or 32 bit integer.
* For the 16 bit scalar case we use the usual Neon helpers and
* rely on the fact that 0 op 0 == 0 with no side effects.
*/
TCGv_i32 tcg_idx = tcg_temp_new_i32();
int pass, maxpasses;
if (is_scalar) {
maxpasses = 1;
} else {
maxpasses = is_q ? 4 : 2;
}
read_vec_element_i32(s, tcg_idx, rm, index, size);
if (size == 1 && !is_scalar) {
/* The simplest way to handle the 16x16 indexed ops is to duplicate
* the index into both halves of the 32 bit tcg_idx and then use
* the usual Neon helpers.
*/
tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
}
for (pass = 0; pass < maxpasses; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
switch (opcode) {
case 0x0: /* MLA */
case 0x4: /* MLS */
case 0x8: /* MUL */
{
static NeonGenTwoOpFn * const fns[2][2] = {
{ gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
{ tcg_gen_add_i32, tcg_gen_sub_i32 },
};
NeonGenTwoOpFn *genfn;
bool is_sub = opcode == 0x4;
if (size == 1) {
gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
} else {
tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
}
if (opcode == 0x8) {
break;
}
read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
genfn = fns[size - 1][is_sub];
genfn(tcg_res, tcg_op, tcg_res);
break;
}
case 0x5: /* FMLS */
/* As usual for ARM, separate negation for fused multiply-add */
gen_helper_vfp_negs(tcg_op, tcg_op);
/* fall through */
case 0x1: /* FMLA */
read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
break;
case 0x9: /* FMUL, FMULX */
if (u) {
gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
} else {
gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
}
break;
case 0xc: /* SQDMULH */
if (size == 1) {
gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
tcg_op, tcg_idx);
} else {
gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
tcg_op, tcg_idx);
}
break;
case 0xd: /* SQRDMULH */
if (size == 1) {
gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
tcg_op, tcg_idx);
} else {
gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
tcg_op, tcg_idx);
}
break;
default:
g_assert_not_reached();
}
if (is_scalar) {
write_fp_sreg(s, rd, tcg_res);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
}
tcg_temp_free_i32(tcg_op);
tcg_temp_free_i32(tcg_res);
}
tcg_temp_free_i32(tcg_idx);
if (!is_q) {
clear_vec_high(s, rd);
}
} else {
/* long ops: 16x16->32 or 32x32->64 */
TCGv_i64 tcg_res[2];
int pass;
bool satop = extract32(opcode, 0, 1);
TCGMemOp memop = MO_32;
if (satop || !u) {
memop |= MO_SIGN;
}
if (size == 2) {
TCGv_i64 tcg_idx = tcg_temp_new_i64();
read_vec_element(s, tcg_idx, rm, index, memop);
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
TCGv_i64 tcg_passres;
int passelt;
if (is_scalar) {
passelt = 0;
} else {
passelt = pass + (is_q * 2);
}
read_vec_element(s, tcg_op, rn, passelt, memop);
tcg_res[pass] = tcg_temp_new_i64();
if (opcode == 0xa || opcode == 0xb) {
/* Non-accumulating ops */
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64();
}
tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
tcg_temp_free_i64(tcg_op);
if (satop) {
/* saturating, doubling */
gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
tcg_passres, tcg_passres);
}
if (opcode == 0xa || opcode == 0xb) {
continue;
}
/* Accumulating op: handle accumulate step */
read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
switch (opcode) {
case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
break;
case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
break;
case 0x7: /* SQDMLSL, SQDMLSL2 */
tcg_gen_neg_i64(tcg_passres, tcg_passres);
/* fall through */
case 0x3: /* SQDMLAL, SQDMLAL2 */
gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
tcg_res[pass],
tcg_passres);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_i64(tcg_passres);
}
tcg_temp_free_i64(tcg_idx);
if (is_scalar) {
clear_vec_high(s, rd);
}
} else {
TCGv_i32 tcg_idx = tcg_temp_new_i32();
assert(size == 1);
read_vec_element_i32(s, tcg_idx, rm, index, size);
if (!is_scalar) {
/* The simplest way to handle the 16x16 indexed ops is to
* duplicate the index into both halves of the 32 bit tcg_idx
* and then use the usual Neon helpers.
*/
tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
}
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i64 tcg_passres;
if (is_scalar) {
read_vec_element_i32(s, tcg_op, rn, pass, size);
} else {
read_vec_element_i32(s, tcg_op, rn,
pass + (is_q * 2), MO_32);
}
tcg_res[pass] = tcg_temp_new_i64();
if (opcode == 0xa || opcode == 0xb) {
/* Non-accumulating ops */
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64();
}
if (memop & MO_SIGN) {
gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
} else {
gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
}
if (satop) {
gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
tcg_passres, tcg_passres);
}
tcg_temp_free_i32(tcg_op);
if (opcode == 0xa || opcode == 0xb) {
continue;
}
/* Accumulating op: handle accumulate step */
read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
switch (opcode) {
case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
tcg_passres);
break;
case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
tcg_passres);
break;
case 0x7: /* SQDMLSL, SQDMLSL2 */
gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
/* fall through */
case 0x3: /* SQDMLAL, SQDMLAL2 */
gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
tcg_res[pass],
tcg_passres);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_i64(tcg_passres);
}
tcg_temp_free_i32(tcg_idx);
if (is_scalar) {
tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
}
}
if (is_scalar) {
tcg_res[1] = tcg_const_i64(0);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_res[pass]);
}
}
if (!TCGV_IS_UNUSED_PTR(fpst)) {
tcg_temp_free_ptr(fpst);
}
}
/* C3.6.19 Crypto AES
* 31 24 23 22 21 17 16 12 11 10 9 5 4 0
* +-----------------+------+-----------+--------+-----+------+------+
* | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
* +-----------------+------+-----------+--------+-----+------+------+
*/
static void disas_crypto_aes(DisasContext *s, uint32_t insn)
{
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int decrypt;
TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
CryptoThreeOpEnvFn *genfn;
if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
|| size != 0) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0x4: /* AESE */
decrypt = 0;
genfn = gen_helper_crypto_aese;
break;
case 0x6: /* AESMC */
decrypt = 0;
genfn = gen_helper_crypto_aesmc;
break;
case 0x5: /* AESD */
decrypt = 1;
genfn = gen_helper_crypto_aese;
break;
case 0x7: /* AESIMC */
decrypt = 1;
genfn = gen_helper_crypto_aesmc;
break;
default:
unallocated_encoding(s);
return;
}
/* Note that we convert the Vx register indexes into the
* index within the vfp.regs[] array, so we can share the
* helper with the AArch32 instructions.
*/
tcg_rd_regno = tcg_const_i32(rd << 1);
tcg_rn_regno = tcg_const_i32(rn << 1);
tcg_decrypt = tcg_const_i32(decrypt);
genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
tcg_temp_free_i32(tcg_rd_regno);
tcg_temp_free_i32(tcg_rn_regno);
tcg_temp_free_i32(tcg_decrypt);
}
/* C3.6.20 Crypto three-reg SHA
* 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
* +-----------------+------+---+------+---+--------+-----+------+------+
* | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
* +-----------------+------+---+------+---+--------+-----+------+------+
*/
static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
{
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 3);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
CryptoThreeOpEnvFn *genfn;
TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
int feature = ARM_FEATURE_V8_SHA256;
if (size != 0) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0: /* SHA1C */
case 1: /* SHA1P */
case 2: /* SHA1M */
case 3: /* SHA1SU0 */
genfn = NULL;
feature = ARM_FEATURE_V8_SHA1;
break;
case 4: /* SHA256H */
genfn = gen_helper_crypto_sha256h;
break;
case 5: /* SHA256H2 */
genfn = gen_helper_crypto_sha256h2;
break;
case 6: /* SHA256SU1 */
genfn = gen_helper_crypto_sha256su1;
break;
default:
unallocated_encoding(s);
return;
}
if (!arm_dc_feature(s, feature)) {
unallocated_encoding(s);
return;
}
tcg_rd_regno = tcg_const_i32(rd << 1);
tcg_rn_regno = tcg_const_i32(rn << 1);
tcg_rm_regno = tcg_const_i32(rm << 1);
if (genfn) {
genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
} else {
TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
tcg_rn_regno, tcg_rm_regno, tcg_opcode);
tcg_temp_free_i32(tcg_opcode);
}
tcg_temp_free_i32(tcg_rd_regno);
tcg_temp_free_i32(tcg_rn_regno);
tcg_temp_free_i32(tcg_rm_regno);
}
/* C3.6.21 Crypto two-reg SHA
* 31 24 23 22 21 17 16 12 11 10 9 5 4 0
* +-----------------+------+-----------+--------+-----+------+------+
* | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
* +-----------------+------+-----------+--------+-----+------+------+
*/
static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
{
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
CryptoTwoOpEnvFn *genfn;
int feature;
TCGv_i32 tcg_rd_regno, tcg_rn_regno;
if (size != 0) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0: /* SHA1H */
feature = ARM_FEATURE_V8_SHA1;
genfn = gen_helper_crypto_sha1h;
break;
case 1: /* SHA1SU1 */
feature = ARM_FEATURE_V8_SHA1;
genfn = gen_helper_crypto_sha1su1;
break;
case 2: /* SHA256SU0 */
feature = ARM_FEATURE_V8_SHA256;
genfn = gen_helper_crypto_sha256su0;
break;
default:
unallocated_encoding(s);
return;
}
if (!arm_dc_feature(s, feature)) {
unallocated_encoding(s);
return;
}
tcg_rd_regno = tcg_const_i32(rd << 1);
tcg_rn_regno = tcg_const_i32(rn << 1);
genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
tcg_temp_free_i32(tcg_rd_regno);
tcg_temp_free_i32(tcg_rn_regno);
}
/* C3.6 Data processing - SIMD, inc Crypto
*
* As the decode gets a little complex we are using a table based
* approach for this part of the decode.
*/
static const AArch64DecodeTable data_proc_simd[] = {
/* pattern , mask , fn */
{ 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
{ 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
{ 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
{ 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
{ 0x0e000400, 0x9fe08400, disas_simd_copy },
{ 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
/* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
{ 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
{ 0x0f000400, 0x9f800400, disas_simd_shift_imm },
{ 0x0e000000, 0xbf208c00, disas_simd_tb },
{ 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
{ 0x2e000000, 0xbf208400, disas_simd_ext },
{ 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
{ 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
{ 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
{ 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
{ 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
{ 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
{ 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
{ 0x4e280800, 0xff3e0c00, disas_crypto_aes },
{ 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
{ 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
{ 0x00000000, 0x00000000, NULL }
};
static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
{
/* Note that this is called with all non-FP cases from
* table C3-6 so it must UNDEF for entries not specifically
* allocated to instructions in that table.
*/
AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
if (fn) {
fn(s, insn);
} else {
unallocated_encoding(s);
}
}
/* C3.6 Data processing - SIMD and floating point */
static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
{
if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
disas_data_proc_fp(s, insn);
} else {
/* SIMD, including crypto */
disas_data_proc_simd(s, insn);
}
}
/* C3.1 A64 instruction index by encoding */
static void disas_a64_insn(CPUARMState *env, DisasContext *s)
{
uint32_t insn;
insn = arm_ldl_code(env, s->pc, s->bswap_code);
s->insn = insn;
s->pc += 4;
s->fp_access_checked = false;
switch (extract32(insn, 25, 4)) {
case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
unallocated_encoding(s);
break;
case 0x8: case 0x9: /* Data processing - immediate */
disas_data_proc_imm(s, insn);
break;
case 0xa: case 0xb: /* Branch, exception generation and system insns */
disas_b_exc_sys(s, insn);
break;
case 0x4:
case 0x6:
case 0xc:
case 0xe: /* Loads and stores */
disas_ldst(s, insn);
break;
case 0x5:
case 0xd: /* Data processing - register */
disas_data_proc_reg(s, insn);
break;
case 0x7:
case 0xf: /* Data processing - SIMD and floating point */
disas_data_proc_simd_fp(s, insn);
break;
default:
assert(FALSE); /* all 15 cases should be handled above */
break;
}
/* if we allocated any temporaries, free them here */
free_tmp_a64(s);
}
void gen_intermediate_code_internal_a64(ARMCPU *cpu,
TranslationBlock *tb,
bool search_pc)
{
CPUState *cs = CPU(cpu);
CPUARMState *env = &cpu->env;
DisasContext dc1, *dc = &dc1;
CPUBreakpoint *bp;
uint16_t *gen_opc_end;
int j, lj;
target_ulong pc_start;
target_ulong next_page_start;
int num_insns;
int max_insns;
pc_start = tb->pc;
dc->tb = tb;
gen_opc_end = tcg_ctx.gen_opc_buf + OPC_MAX_SIZE;
dc->is_jmp = DISAS_NEXT;
dc->pc = pc_start;
dc->singlestep_enabled = cs->singlestep_enabled;
dc->condjmp = 0;
dc->aarch64 = 1;
dc->thumb = 0;
dc->bswap_code = 0;
dc->condexec_mask = 0;
dc->condexec_cond = 0;
#if !defined(CONFIG_USER_ONLY)
dc->user = (ARM_TBFLAG_AA64_EL(tb->flags) == 0);
#endif
dc->cpacr_fpen = ARM_TBFLAG_AA64_FPEN(tb->flags);
dc->vec_len = 0;
dc->vec_stride = 0;
dc->cp_regs = cpu->cp_regs;
dc->current_pl = arm_current_pl(env);
dc->features = env->features;
init_tmp_a64_array(dc);
next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
lj = -1;
num_insns = 0;
max_insns = tb->cflags & CF_COUNT_MASK;
if (max_insns == 0) {
max_insns = CF_COUNT_MASK;
}
gen_tb_start();
tcg_clear_temp_count();
do {
if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
if (bp->pc == dc->pc) {
gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
/* Advance PC so that clearing the breakpoint will
invalidate this TB. */
dc->pc += 2;
goto done_generating;
}
}
}
if (search_pc) {
j = tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf;
if (lj < j) {
lj++;
while (lj < j) {
tcg_ctx.gen_opc_instr_start[lj++] = 0;
}
}
tcg_ctx.gen_opc_pc[lj] = dc->pc;
tcg_ctx.gen_opc_instr_start[lj] = 1;
tcg_ctx.gen_opc_icount[lj] = num_insns;
}
if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) {
gen_io_start();
}
if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT))) {
tcg_gen_debug_insn_start(dc->pc);
}
disas_a64_insn(env, dc);
if (tcg_check_temp_count()) {
fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
dc->pc);
}
/* Translation stops when a conditional branch is encountered.
* Otherwise the subsequent code could get translated several times.
* Also stop translation when a page boundary is reached. This
* ensures prefetch aborts occur at the right place.
*/
num_insns++;
} while (!dc->is_jmp && tcg_ctx.gen_opc_ptr < gen_opc_end &&
!cs->singlestep_enabled &&
!singlestep &&
dc->pc < next_page_start &&
num_insns < max_insns);
if (tb->cflags & CF_LAST_IO) {
gen_io_end();
}
if (unlikely(cs->singlestep_enabled) && dc->is_jmp != DISAS_EXC) {
/* Note that this means single stepping WFI doesn't halt the CPU.
* For conditional branch insns this is harmless unreachable code as
* gen_goto_tb() has already handled emitting the debug exception
* (and thus a tb-jump is not possible when singlestepping).
*/
assert(dc->is_jmp != DISAS_TB_JUMP);
if (dc->is_jmp != DISAS_JUMP) {
gen_a64_set_pc_im(dc->pc);
}
gen_exception_internal(EXCP_DEBUG);
} else {
switch (dc->is_jmp) {
case DISAS_NEXT:
gen_goto_tb(dc, 1, dc->pc);
break;
default:
case DISAS_UPDATE:
gen_a64_set_pc_im(dc->pc);
/* fall through */
case DISAS_JUMP:
/* indicate that the hash table must be used to find the next TB */
tcg_gen_exit_tb(0);
break;
case DISAS_TB_JUMP:
case DISAS_EXC:
case DISAS_SWI:
break;
case DISAS_WFE:
gen_a64_set_pc_im(dc->pc);
gen_helper_wfe(cpu_env);
break;
case DISAS_WFI:
/* This is a special case because we don't want to just halt the CPU
* if trying to debug across a WFI.
*/
gen_a64_set_pc_im(dc->pc);
gen_helper_wfi(cpu_env);
break;
}
}
done_generating:
gen_tb_end(tb, num_insns);
*tcg_ctx.gen_opc_ptr = INDEX_op_end;
#ifdef DEBUG_DISAS
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
qemu_log("----------------\n");
qemu_log("IN: %s\n", lookup_symbol(pc_start));
log_target_disas(env, pc_start, dc->pc - pc_start,
4 | (dc->bswap_code << 1));
qemu_log("\n");
}
#endif
if (search_pc) {
j = tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf;
lj++;
while (lj <= j) {
tcg_ctx.gen_opc_instr_start[lj++] = 0;
}
} else {
tb->size = dc->pc - pc_start;
tb->icount = num_insns;
}
}