mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-29 22:40:25 +00:00
20015f72bd
The dirty memory bitmap is managed by ram_addr.h and copied to migration_bitmap[] periodically during live migration. Move the code to sync the bitmap to ram_addr.h where related code lives. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Message-Id: <1417519399-3166-5-git-send-email-stefanha@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1921 lines
54 KiB
C
1921 lines
54 KiB
C
/*
|
|
* QEMU System Emulator
|
|
*
|
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <stdlib.h>
|
|
#include <zlib.h>
|
|
#ifndef _WIN32
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
#endif
|
|
#include "config.h"
|
|
#include "monitor/monitor.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/bitmap.h"
|
|
#include "sysemu/arch_init.h"
|
|
#include "audio/audio.h"
|
|
#include "hw/i386/pc.h"
|
|
#include "hw/pci/pci.h"
|
|
#include "hw/audio/audio.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "migration/migration.h"
|
|
#include "hw/i386/smbios.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "hw/audio/pcspk.h"
|
|
#include "migration/page_cache.h"
|
|
#include "qemu/config-file.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qmp-commands.h"
|
|
#include "trace.h"
|
|
#include "exec/cpu-all.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "hw/acpi/acpi.h"
|
|
#include "qemu/host-utils.h"
|
|
#include "qemu/rcu_queue.h"
|
|
|
|
#ifdef DEBUG_ARCH_INIT
|
|
#define DPRINTF(fmt, ...) \
|
|
do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF(fmt, ...) \
|
|
do { } while (0)
|
|
#endif
|
|
|
|
#ifdef TARGET_SPARC
|
|
int graphic_width = 1024;
|
|
int graphic_height = 768;
|
|
int graphic_depth = 8;
|
|
#else
|
|
int graphic_width = 800;
|
|
int graphic_height = 600;
|
|
int graphic_depth = 32;
|
|
#endif
|
|
|
|
|
|
#if defined(TARGET_ALPHA)
|
|
#define QEMU_ARCH QEMU_ARCH_ALPHA
|
|
#elif defined(TARGET_ARM)
|
|
#define QEMU_ARCH QEMU_ARCH_ARM
|
|
#elif defined(TARGET_CRIS)
|
|
#define QEMU_ARCH QEMU_ARCH_CRIS
|
|
#elif defined(TARGET_I386)
|
|
#define QEMU_ARCH QEMU_ARCH_I386
|
|
#elif defined(TARGET_M68K)
|
|
#define QEMU_ARCH QEMU_ARCH_M68K
|
|
#elif defined(TARGET_LM32)
|
|
#define QEMU_ARCH QEMU_ARCH_LM32
|
|
#elif defined(TARGET_MICROBLAZE)
|
|
#define QEMU_ARCH QEMU_ARCH_MICROBLAZE
|
|
#elif defined(TARGET_MIPS)
|
|
#define QEMU_ARCH QEMU_ARCH_MIPS
|
|
#elif defined(TARGET_MOXIE)
|
|
#define QEMU_ARCH QEMU_ARCH_MOXIE
|
|
#elif defined(TARGET_OPENRISC)
|
|
#define QEMU_ARCH QEMU_ARCH_OPENRISC
|
|
#elif defined(TARGET_PPC)
|
|
#define QEMU_ARCH QEMU_ARCH_PPC
|
|
#elif defined(TARGET_S390X)
|
|
#define QEMU_ARCH QEMU_ARCH_S390X
|
|
#elif defined(TARGET_SH4)
|
|
#define QEMU_ARCH QEMU_ARCH_SH4
|
|
#elif defined(TARGET_SPARC)
|
|
#define QEMU_ARCH QEMU_ARCH_SPARC
|
|
#elif defined(TARGET_XTENSA)
|
|
#define QEMU_ARCH QEMU_ARCH_XTENSA
|
|
#elif defined(TARGET_UNICORE32)
|
|
#define QEMU_ARCH QEMU_ARCH_UNICORE32
|
|
#elif defined(TARGET_TRICORE)
|
|
#define QEMU_ARCH QEMU_ARCH_TRICORE
|
|
#endif
|
|
|
|
const uint32_t arch_type = QEMU_ARCH;
|
|
static bool mig_throttle_on;
|
|
static int dirty_rate_high_cnt;
|
|
static void check_guest_throttling(void);
|
|
|
|
static uint64_t bitmap_sync_count;
|
|
|
|
/***********************************************************/
|
|
/* ram save/restore */
|
|
|
|
#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
|
|
#define RAM_SAVE_FLAG_COMPRESS 0x02
|
|
#define RAM_SAVE_FLAG_MEM_SIZE 0x04
|
|
#define RAM_SAVE_FLAG_PAGE 0x08
|
|
#define RAM_SAVE_FLAG_EOS 0x10
|
|
#define RAM_SAVE_FLAG_CONTINUE 0x20
|
|
#define RAM_SAVE_FLAG_XBZRLE 0x40
|
|
/* 0x80 is reserved in migration.h start with 0x100 next */
|
|
#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
|
|
|
|
static struct defconfig_file {
|
|
const char *filename;
|
|
/* Indicates it is an user config file (disabled by -no-user-config) */
|
|
bool userconfig;
|
|
} default_config_files[] = {
|
|
{ CONFIG_QEMU_CONFDIR "/qemu.conf", true },
|
|
{ NULL }, /* end of list */
|
|
};
|
|
|
|
static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
|
|
|
|
int qemu_read_default_config_files(bool userconfig)
|
|
{
|
|
int ret;
|
|
struct defconfig_file *f;
|
|
|
|
for (f = default_config_files; f->filename; f++) {
|
|
if (!userconfig && f->userconfig) {
|
|
continue;
|
|
}
|
|
ret = qemu_read_config_file(f->filename);
|
|
if (ret < 0 && ret != -ENOENT) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool is_zero_range(uint8_t *p, uint64_t size)
|
|
{
|
|
return buffer_find_nonzero_offset(p, size) == size;
|
|
}
|
|
|
|
/* struct contains XBZRLE cache and a static page
|
|
used by the compression */
|
|
static struct {
|
|
/* buffer used for XBZRLE encoding */
|
|
uint8_t *encoded_buf;
|
|
/* buffer for storing page content */
|
|
uint8_t *current_buf;
|
|
/* Cache for XBZRLE, Protected by lock. */
|
|
PageCache *cache;
|
|
QemuMutex lock;
|
|
} XBZRLE;
|
|
|
|
/* buffer used for XBZRLE decoding */
|
|
static uint8_t *xbzrle_decoded_buf;
|
|
|
|
static void XBZRLE_cache_lock(void)
|
|
{
|
|
if (migrate_use_xbzrle())
|
|
qemu_mutex_lock(&XBZRLE.lock);
|
|
}
|
|
|
|
static void XBZRLE_cache_unlock(void)
|
|
{
|
|
if (migrate_use_xbzrle())
|
|
qemu_mutex_unlock(&XBZRLE.lock);
|
|
}
|
|
|
|
/*
|
|
* called from qmp_migrate_set_cache_size in main thread, possibly while
|
|
* a migration is in progress.
|
|
* A running migration maybe using the cache and might finish during this
|
|
* call, hence changes to the cache are protected by XBZRLE.lock().
|
|
*/
|
|
int64_t xbzrle_cache_resize(int64_t new_size)
|
|
{
|
|
PageCache *new_cache;
|
|
int64_t ret;
|
|
|
|
if (new_size < TARGET_PAGE_SIZE) {
|
|
return -1;
|
|
}
|
|
|
|
XBZRLE_cache_lock();
|
|
|
|
if (XBZRLE.cache != NULL) {
|
|
if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
|
|
goto out_new_size;
|
|
}
|
|
new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
|
|
TARGET_PAGE_SIZE);
|
|
if (!new_cache) {
|
|
error_report("Error creating cache");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
cache_fini(XBZRLE.cache);
|
|
XBZRLE.cache = new_cache;
|
|
}
|
|
|
|
out_new_size:
|
|
ret = pow2floor(new_size);
|
|
out:
|
|
XBZRLE_cache_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/* accounting for migration statistics */
|
|
typedef struct AccountingInfo {
|
|
uint64_t dup_pages;
|
|
uint64_t skipped_pages;
|
|
uint64_t norm_pages;
|
|
uint64_t iterations;
|
|
uint64_t xbzrle_bytes;
|
|
uint64_t xbzrle_pages;
|
|
uint64_t xbzrle_cache_miss;
|
|
double xbzrle_cache_miss_rate;
|
|
uint64_t xbzrle_overflows;
|
|
} AccountingInfo;
|
|
|
|
static AccountingInfo acct_info;
|
|
|
|
static void acct_clear(void)
|
|
{
|
|
memset(&acct_info, 0, sizeof(acct_info));
|
|
}
|
|
|
|
uint64_t dup_mig_bytes_transferred(void)
|
|
{
|
|
return acct_info.dup_pages * TARGET_PAGE_SIZE;
|
|
}
|
|
|
|
uint64_t dup_mig_pages_transferred(void)
|
|
{
|
|
return acct_info.dup_pages;
|
|
}
|
|
|
|
uint64_t skipped_mig_bytes_transferred(void)
|
|
{
|
|
return acct_info.skipped_pages * TARGET_PAGE_SIZE;
|
|
}
|
|
|
|
uint64_t skipped_mig_pages_transferred(void)
|
|
{
|
|
return acct_info.skipped_pages;
|
|
}
|
|
|
|
uint64_t norm_mig_bytes_transferred(void)
|
|
{
|
|
return acct_info.norm_pages * TARGET_PAGE_SIZE;
|
|
}
|
|
|
|
uint64_t norm_mig_pages_transferred(void)
|
|
{
|
|
return acct_info.norm_pages;
|
|
}
|
|
|
|
uint64_t xbzrle_mig_bytes_transferred(void)
|
|
{
|
|
return acct_info.xbzrle_bytes;
|
|
}
|
|
|
|
uint64_t xbzrle_mig_pages_transferred(void)
|
|
{
|
|
return acct_info.xbzrle_pages;
|
|
}
|
|
|
|
uint64_t xbzrle_mig_pages_cache_miss(void)
|
|
{
|
|
return acct_info.xbzrle_cache_miss;
|
|
}
|
|
|
|
double xbzrle_mig_cache_miss_rate(void)
|
|
{
|
|
return acct_info.xbzrle_cache_miss_rate;
|
|
}
|
|
|
|
uint64_t xbzrle_mig_pages_overflow(void)
|
|
{
|
|
return acct_info.xbzrle_overflows;
|
|
}
|
|
|
|
/* This is the last block that we have visited serching for dirty pages
|
|
*/
|
|
static RAMBlock *last_seen_block;
|
|
/* This is the last block from where we have sent data */
|
|
static RAMBlock *last_sent_block;
|
|
static ram_addr_t last_offset;
|
|
static unsigned long *migration_bitmap;
|
|
static uint64_t migration_dirty_pages;
|
|
static uint32_t last_version;
|
|
static bool ram_bulk_stage;
|
|
|
|
struct CompressParam {
|
|
bool start;
|
|
bool done;
|
|
QEMUFile *file;
|
|
QemuMutex mutex;
|
|
QemuCond cond;
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
};
|
|
typedef struct CompressParam CompressParam;
|
|
|
|
struct DecompressParam {
|
|
bool start;
|
|
QemuMutex mutex;
|
|
QemuCond cond;
|
|
void *des;
|
|
uint8 *compbuf;
|
|
int len;
|
|
};
|
|
typedef struct DecompressParam DecompressParam;
|
|
|
|
static CompressParam *comp_param;
|
|
static QemuThread *compress_threads;
|
|
/* comp_done_cond is used to wake up the migration thread when
|
|
* one of the compression threads has finished the compression.
|
|
* comp_done_lock is used to co-work with comp_done_cond.
|
|
*/
|
|
static QemuMutex *comp_done_lock;
|
|
static QemuCond *comp_done_cond;
|
|
/* The empty QEMUFileOps will be used by file in CompressParam */
|
|
static const QEMUFileOps empty_ops = { };
|
|
|
|
static bool compression_switch;
|
|
static bool quit_comp_thread;
|
|
static bool quit_decomp_thread;
|
|
static DecompressParam *decomp_param;
|
|
static QemuThread *decompress_threads;
|
|
static uint8_t *compressed_data_buf;
|
|
|
|
static int do_compress_ram_page(CompressParam *param);
|
|
|
|
static void *do_data_compress(void *opaque)
|
|
{
|
|
CompressParam *param = opaque;
|
|
|
|
while (!quit_comp_thread) {
|
|
qemu_mutex_lock(¶m->mutex);
|
|
/* Re-check the quit_comp_thread in case of
|
|
* terminate_compression_threads is called just before
|
|
* qemu_mutex_lock(¶m->mutex) and after
|
|
* while(!quit_comp_thread), re-check it here can make
|
|
* sure the compression thread terminate as expected.
|
|
*/
|
|
while (!param->start && !quit_comp_thread) {
|
|
qemu_cond_wait(¶m->cond, ¶m->mutex);
|
|
}
|
|
if (!quit_comp_thread) {
|
|
do_compress_ram_page(param);
|
|
}
|
|
param->start = false;
|
|
qemu_mutex_unlock(¶m->mutex);
|
|
|
|
qemu_mutex_lock(comp_done_lock);
|
|
param->done = true;
|
|
qemu_cond_signal(comp_done_cond);
|
|
qemu_mutex_unlock(comp_done_lock);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline void terminate_compression_threads(void)
|
|
{
|
|
int idx, thread_count;
|
|
|
|
thread_count = migrate_compress_threads();
|
|
quit_comp_thread = true;
|
|
for (idx = 0; idx < thread_count; idx++) {
|
|
qemu_mutex_lock(&comp_param[idx].mutex);
|
|
qemu_cond_signal(&comp_param[idx].cond);
|
|
qemu_mutex_unlock(&comp_param[idx].mutex);
|
|
}
|
|
}
|
|
|
|
void migrate_compress_threads_join(void)
|
|
{
|
|
int i, thread_count;
|
|
|
|
if (!migrate_use_compression()) {
|
|
return;
|
|
}
|
|
terminate_compression_threads();
|
|
thread_count = migrate_compress_threads();
|
|
for (i = 0; i < thread_count; i++) {
|
|
qemu_thread_join(compress_threads + i);
|
|
qemu_fclose(comp_param[i].file);
|
|
qemu_mutex_destroy(&comp_param[i].mutex);
|
|
qemu_cond_destroy(&comp_param[i].cond);
|
|
}
|
|
qemu_mutex_destroy(comp_done_lock);
|
|
qemu_cond_destroy(comp_done_cond);
|
|
g_free(compress_threads);
|
|
g_free(comp_param);
|
|
g_free(comp_done_cond);
|
|
g_free(comp_done_lock);
|
|
compress_threads = NULL;
|
|
comp_param = NULL;
|
|
comp_done_cond = NULL;
|
|
comp_done_lock = NULL;
|
|
}
|
|
|
|
void migrate_compress_threads_create(void)
|
|
{
|
|
int i, thread_count;
|
|
|
|
if (!migrate_use_compression()) {
|
|
return;
|
|
}
|
|
quit_comp_thread = false;
|
|
compression_switch = true;
|
|
thread_count = migrate_compress_threads();
|
|
compress_threads = g_new0(QemuThread, thread_count);
|
|
comp_param = g_new0(CompressParam, thread_count);
|
|
comp_done_cond = g_new0(QemuCond, 1);
|
|
comp_done_lock = g_new0(QemuMutex, 1);
|
|
qemu_cond_init(comp_done_cond);
|
|
qemu_mutex_init(comp_done_lock);
|
|
for (i = 0; i < thread_count; i++) {
|
|
/* com_param[i].file is just used as a dummy buffer to save data, set
|
|
* it's ops to empty.
|
|
*/
|
|
comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
|
|
comp_param[i].done = true;
|
|
qemu_mutex_init(&comp_param[i].mutex);
|
|
qemu_cond_init(&comp_param[i].cond);
|
|
qemu_thread_create(compress_threads + i, "compress",
|
|
do_data_compress, comp_param + i,
|
|
QEMU_THREAD_JOINABLE);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* save_page_header: Write page header to wire
|
|
*
|
|
* If this is the 1st block, it also writes the block identification
|
|
*
|
|
* Returns: Number of bytes written
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
* @block: block that contains the page we want to send
|
|
* @offset: offset inside the block for the page
|
|
* in the lower bits, it contains flags
|
|
*/
|
|
static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
|
|
{
|
|
size_t size;
|
|
|
|
qemu_put_be64(f, offset);
|
|
size = 8;
|
|
|
|
if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
|
|
qemu_put_byte(f, strlen(block->idstr));
|
|
qemu_put_buffer(f, (uint8_t *)block->idstr,
|
|
strlen(block->idstr));
|
|
size += 1 + strlen(block->idstr);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/* Update the xbzrle cache to reflect a page that's been sent as all 0.
|
|
* The important thing is that a stale (not-yet-0'd) page be replaced
|
|
* by the new data.
|
|
* As a bonus, if the page wasn't in the cache it gets added so that
|
|
* when a small write is made into the 0'd page it gets XBZRLE sent
|
|
*/
|
|
static void xbzrle_cache_zero_page(ram_addr_t current_addr)
|
|
{
|
|
if (ram_bulk_stage || !migrate_use_xbzrle()) {
|
|
return;
|
|
}
|
|
|
|
/* We don't care if this fails to allocate a new cache page
|
|
* as long as it updated an old one */
|
|
cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
|
|
bitmap_sync_count);
|
|
}
|
|
|
|
#define ENCODING_FLAG_XBZRLE 0x1
|
|
|
|
/**
|
|
* save_xbzrle_page: compress and send current page
|
|
*
|
|
* Returns: 1 means that we wrote the page
|
|
* 0 means that page is identical to the one already sent
|
|
* -1 means that xbzrle would be longer than normal
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
* @current_data:
|
|
* @current_addr:
|
|
* @block: block that contains the page we want to send
|
|
* @offset: offset inside the block for the page
|
|
* @last_stage: if we are at the completion stage
|
|
* @bytes_transferred: increase it with the number of transferred bytes
|
|
*/
|
|
static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
|
|
ram_addr_t current_addr, RAMBlock *block,
|
|
ram_addr_t offset, bool last_stage,
|
|
uint64_t *bytes_transferred)
|
|
{
|
|
int encoded_len = 0, bytes_xbzrle;
|
|
uint8_t *prev_cached_page;
|
|
|
|
if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
|
|
acct_info.xbzrle_cache_miss++;
|
|
if (!last_stage) {
|
|
if (cache_insert(XBZRLE.cache, current_addr, *current_data,
|
|
bitmap_sync_count) == -1) {
|
|
return -1;
|
|
} else {
|
|
/* update *current_data when the page has been
|
|
inserted into cache */
|
|
*current_data = get_cached_data(XBZRLE.cache, current_addr);
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
|
|
|
|
/* save current buffer into memory */
|
|
memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
|
|
|
|
/* XBZRLE encoding (if there is no overflow) */
|
|
encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
|
|
TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
|
|
TARGET_PAGE_SIZE);
|
|
if (encoded_len == 0) {
|
|
DPRINTF("Skipping unmodified page\n");
|
|
return 0;
|
|
} else if (encoded_len == -1) {
|
|
DPRINTF("Overflow\n");
|
|
acct_info.xbzrle_overflows++;
|
|
/* update data in the cache */
|
|
if (!last_stage) {
|
|
memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
|
|
*current_data = prev_cached_page;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* we need to update the data in the cache, in order to get the same data */
|
|
if (!last_stage) {
|
|
memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
|
|
}
|
|
|
|
/* Send XBZRLE based compressed page */
|
|
bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
|
|
qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
|
|
qemu_put_be16(f, encoded_len);
|
|
qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
|
|
bytes_xbzrle += encoded_len + 1 + 2;
|
|
acct_info.xbzrle_pages++;
|
|
acct_info.xbzrle_bytes += bytes_xbzrle;
|
|
*bytes_transferred += bytes_xbzrle;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline
|
|
ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
|
|
ram_addr_t start)
|
|
{
|
|
unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
|
|
unsigned long nr = base + (start >> TARGET_PAGE_BITS);
|
|
uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
|
|
unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
|
|
|
|
unsigned long next;
|
|
|
|
if (ram_bulk_stage && nr > base) {
|
|
next = nr + 1;
|
|
} else {
|
|
next = find_next_bit(migration_bitmap, size, nr);
|
|
}
|
|
|
|
if (next < size) {
|
|
clear_bit(next, migration_bitmap);
|
|
migration_dirty_pages--;
|
|
}
|
|
return (next - base) << TARGET_PAGE_BITS;
|
|
}
|
|
|
|
static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
|
|
{
|
|
migration_dirty_pages +=
|
|
cpu_physical_memory_sync_dirty_bitmap(migration_bitmap, start, length);
|
|
}
|
|
|
|
|
|
/* Fix me: there are too many global variables used in migration process. */
|
|
static int64_t start_time;
|
|
static int64_t bytes_xfer_prev;
|
|
static int64_t num_dirty_pages_period;
|
|
static uint64_t xbzrle_cache_miss_prev;
|
|
static uint64_t iterations_prev;
|
|
|
|
static void migration_bitmap_sync_init(void)
|
|
{
|
|
start_time = 0;
|
|
bytes_xfer_prev = 0;
|
|
num_dirty_pages_period = 0;
|
|
xbzrle_cache_miss_prev = 0;
|
|
iterations_prev = 0;
|
|
}
|
|
|
|
/* Called with iothread lock held, to protect ram_list.dirty_memory[] */
|
|
static void migration_bitmap_sync(void)
|
|
{
|
|
RAMBlock *block;
|
|
uint64_t num_dirty_pages_init = migration_dirty_pages;
|
|
MigrationState *s = migrate_get_current();
|
|
int64_t end_time;
|
|
int64_t bytes_xfer_now;
|
|
|
|
bitmap_sync_count++;
|
|
|
|
if (!bytes_xfer_prev) {
|
|
bytes_xfer_prev = ram_bytes_transferred();
|
|
}
|
|
|
|
if (!start_time) {
|
|
start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
|
|
}
|
|
|
|
trace_migration_bitmap_sync_start();
|
|
address_space_sync_dirty_bitmap(&address_space_memory);
|
|
|
|
rcu_read_lock();
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
trace_migration_bitmap_sync_end(migration_dirty_pages
|
|
- num_dirty_pages_init);
|
|
num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
|
|
end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
|
|
|
|
/* more than 1 second = 1000 millisecons */
|
|
if (end_time > start_time + 1000) {
|
|
if (migrate_auto_converge()) {
|
|
/* The following detection logic can be refined later. For now:
|
|
Check to see if the dirtied bytes is 50% more than the approx.
|
|
amount of bytes that just got transferred since the last time we
|
|
were in this routine. If that happens >N times (for now N==4)
|
|
we turn on the throttle down logic */
|
|
bytes_xfer_now = ram_bytes_transferred();
|
|
if (s->dirty_pages_rate &&
|
|
(num_dirty_pages_period * TARGET_PAGE_SIZE >
|
|
(bytes_xfer_now - bytes_xfer_prev)/2) &&
|
|
(dirty_rate_high_cnt++ > 4)) {
|
|
trace_migration_throttle();
|
|
mig_throttle_on = true;
|
|
dirty_rate_high_cnt = 0;
|
|
}
|
|
bytes_xfer_prev = bytes_xfer_now;
|
|
} else {
|
|
mig_throttle_on = false;
|
|
}
|
|
if (migrate_use_xbzrle()) {
|
|
if (iterations_prev != acct_info.iterations) {
|
|
acct_info.xbzrle_cache_miss_rate =
|
|
(double)(acct_info.xbzrle_cache_miss -
|
|
xbzrle_cache_miss_prev) /
|
|
(acct_info.iterations - iterations_prev);
|
|
}
|
|
iterations_prev = acct_info.iterations;
|
|
xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
|
|
}
|
|
s->dirty_pages_rate = num_dirty_pages_period * 1000
|
|
/ (end_time - start_time);
|
|
s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
|
|
start_time = end_time;
|
|
num_dirty_pages_period = 0;
|
|
}
|
|
s->dirty_sync_count = bitmap_sync_count;
|
|
}
|
|
|
|
/**
|
|
* save_zero_page: Send the zero page to the stream
|
|
*
|
|
* Returns: Number of pages written.
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
* @block: block that contains the page we want to send
|
|
* @offset: offset inside the block for the page
|
|
* @p: pointer to the page
|
|
* @bytes_transferred: increase it with the number of transferred bytes
|
|
*/
|
|
static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
|
|
uint8_t *p, uint64_t *bytes_transferred)
|
|
{
|
|
int pages = -1;
|
|
|
|
if (is_zero_range(p, TARGET_PAGE_SIZE)) {
|
|
acct_info.dup_pages++;
|
|
*bytes_transferred += save_page_header(f, block,
|
|
offset | RAM_SAVE_FLAG_COMPRESS);
|
|
qemu_put_byte(f, 0);
|
|
*bytes_transferred += 1;
|
|
pages = 1;
|
|
}
|
|
|
|
return pages;
|
|
}
|
|
|
|
/**
|
|
* ram_save_page: Send the given page to the stream
|
|
*
|
|
* Returns: Number of pages written.
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
* @block: block that contains the page we want to send
|
|
* @offset: offset inside the block for the page
|
|
* @last_stage: if we are at the completion stage
|
|
* @bytes_transferred: increase it with the number of transferred bytes
|
|
*/
|
|
static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
|
|
bool last_stage, uint64_t *bytes_transferred)
|
|
{
|
|
int pages = -1;
|
|
uint64_t bytes_xmit;
|
|
ram_addr_t current_addr;
|
|
MemoryRegion *mr = block->mr;
|
|
uint8_t *p;
|
|
int ret;
|
|
bool send_async = true;
|
|
|
|
p = memory_region_get_ram_ptr(mr) + offset;
|
|
|
|
/* In doubt sent page as normal */
|
|
bytes_xmit = 0;
|
|
ret = ram_control_save_page(f, block->offset,
|
|
offset, TARGET_PAGE_SIZE, &bytes_xmit);
|
|
if (bytes_xmit) {
|
|
*bytes_transferred += bytes_xmit;
|
|
pages = 1;
|
|
}
|
|
|
|
XBZRLE_cache_lock();
|
|
|
|
current_addr = block->offset + offset;
|
|
|
|
if (block == last_sent_block) {
|
|
offset |= RAM_SAVE_FLAG_CONTINUE;
|
|
}
|
|
if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
|
|
if (ret != RAM_SAVE_CONTROL_DELAYED) {
|
|
if (bytes_xmit > 0) {
|
|
acct_info.norm_pages++;
|
|
} else if (bytes_xmit == 0) {
|
|
acct_info.dup_pages++;
|
|
}
|
|
}
|
|
} else {
|
|
pages = save_zero_page(f, block, offset, p, bytes_transferred);
|
|
if (pages > 0) {
|
|
/* Must let xbzrle know, otherwise a previous (now 0'd) cached
|
|
* page would be stale
|
|
*/
|
|
xbzrle_cache_zero_page(current_addr);
|
|
} else if (!ram_bulk_stage && migrate_use_xbzrle()) {
|
|
pages = save_xbzrle_page(f, &p, current_addr, block,
|
|
offset, last_stage, bytes_transferred);
|
|
if (!last_stage) {
|
|
/* Can't send this cached data async, since the cache page
|
|
* might get updated before it gets to the wire
|
|
*/
|
|
send_async = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* XBZRLE overflow or normal page */
|
|
if (pages == -1) {
|
|
*bytes_transferred += save_page_header(f, block,
|
|
offset | RAM_SAVE_FLAG_PAGE);
|
|
if (send_async) {
|
|
qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
|
|
} else {
|
|
qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
|
|
}
|
|
*bytes_transferred += TARGET_PAGE_SIZE;
|
|
pages = 1;
|
|
acct_info.norm_pages++;
|
|
}
|
|
|
|
XBZRLE_cache_unlock();
|
|
|
|
return pages;
|
|
}
|
|
|
|
static int do_compress_ram_page(CompressParam *param)
|
|
{
|
|
int bytes_sent, blen;
|
|
uint8_t *p;
|
|
RAMBlock *block = param->block;
|
|
ram_addr_t offset = param->offset;
|
|
|
|
p = memory_region_get_ram_ptr(block->mr) + (offset & TARGET_PAGE_MASK);
|
|
|
|
bytes_sent = save_page_header(param->file, block, offset |
|
|
RAM_SAVE_FLAG_COMPRESS_PAGE);
|
|
blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE,
|
|
migrate_compress_level());
|
|
bytes_sent += blen;
|
|
|
|
return bytes_sent;
|
|
}
|
|
|
|
static inline void start_compression(CompressParam *param)
|
|
{
|
|
param->done = false;
|
|
qemu_mutex_lock(¶m->mutex);
|
|
param->start = true;
|
|
qemu_cond_signal(¶m->cond);
|
|
qemu_mutex_unlock(¶m->mutex);
|
|
}
|
|
|
|
static inline void start_decompression(DecompressParam *param)
|
|
{
|
|
qemu_mutex_lock(¶m->mutex);
|
|
param->start = true;
|
|
qemu_cond_signal(¶m->cond);
|
|
qemu_mutex_unlock(¶m->mutex);
|
|
}
|
|
|
|
static uint64_t bytes_transferred;
|
|
|
|
static void flush_compressed_data(QEMUFile *f)
|
|
{
|
|
int idx, len, thread_count;
|
|
|
|
if (!migrate_use_compression()) {
|
|
return;
|
|
}
|
|
thread_count = migrate_compress_threads();
|
|
for (idx = 0; idx < thread_count; idx++) {
|
|
if (!comp_param[idx].done) {
|
|
qemu_mutex_lock(comp_done_lock);
|
|
while (!comp_param[idx].done && !quit_comp_thread) {
|
|
qemu_cond_wait(comp_done_cond, comp_done_lock);
|
|
}
|
|
qemu_mutex_unlock(comp_done_lock);
|
|
}
|
|
if (!quit_comp_thread) {
|
|
len = qemu_put_qemu_file(f, comp_param[idx].file);
|
|
bytes_transferred += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void set_compress_params(CompressParam *param, RAMBlock *block,
|
|
ram_addr_t offset)
|
|
{
|
|
param->block = block;
|
|
param->offset = offset;
|
|
}
|
|
|
|
static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
|
|
ram_addr_t offset,
|
|
uint64_t *bytes_transferred)
|
|
{
|
|
int idx, thread_count, bytes_xmit = -1, pages = -1;
|
|
|
|
thread_count = migrate_compress_threads();
|
|
qemu_mutex_lock(comp_done_lock);
|
|
while (true) {
|
|
for (idx = 0; idx < thread_count; idx++) {
|
|
if (comp_param[idx].done) {
|
|
bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
|
|
set_compress_params(&comp_param[idx], block, offset);
|
|
start_compression(&comp_param[idx]);
|
|
pages = 1;
|
|
acct_info.norm_pages++;
|
|
*bytes_transferred += bytes_xmit;
|
|
break;
|
|
}
|
|
}
|
|
if (pages > 0) {
|
|
break;
|
|
} else {
|
|
qemu_cond_wait(comp_done_cond, comp_done_lock);
|
|
}
|
|
}
|
|
qemu_mutex_unlock(comp_done_lock);
|
|
|
|
return pages;
|
|
}
|
|
|
|
/**
|
|
* ram_save_compressed_page: compress the given page and send it to the stream
|
|
*
|
|
* Returns: Number of pages written.
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
* @block: block that contains the page we want to send
|
|
* @offset: offset inside the block for the page
|
|
* @last_stage: if we are at the completion stage
|
|
* @bytes_transferred: increase it with the number of transferred bytes
|
|
*/
|
|
static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block,
|
|
ram_addr_t offset, bool last_stage,
|
|
uint64_t *bytes_transferred)
|
|
{
|
|
int pages = -1;
|
|
uint64_t bytes_xmit;
|
|
MemoryRegion *mr = block->mr;
|
|
uint8_t *p;
|
|
int ret;
|
|
|
|
p = memory_region_get_ram_ptr(mr) + offset;
|
|
|
|
bytes_xmit = 0;
|
|
ret = ram_control_save_page(f, block->offset,
|
|
offset, TARGET_PAGE_SIZE, &bytes_xmit);
|
|
if (bytes_xmit) {
|
|
*bytes_transferred += bytes_xmit;
|
|
pages = 1;
|
|
}
|
|
if (block == last_sent_block) {
|
|
offset |= RAM_SAVE_FLAG_CONTINUE;
|
|
}
|
|
if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
|
|
if (ret != RAM_SAVE_CONTROL_DELAYED) {
|
|
if (bytes_xmit > 0) {
|
|
acct_info.norm_pages++;
|
|
} else if (bytes_xmit == 0) {
|
|
acct_info.dup_pages++;
|
|
}
|
|
}
|
|
} else {
|
|
/* When starting the process of a new block, the first page of
|
|
* the block should be sent out before other pages in the same
|
|
* block, and all the pages in last block should have been sent
|
|
* out, keeping this order is important, because the 'cont' flag
|
|
* is used to avoid resending the block name.
|
|
*/
|
|
if (block != last_sent_block) {
|
|
flush_compressed_data(f);
|
|
pages = save_zero_page(f, block, offset, p, bytes_transferred);
|
|
if (pages == -1) {
|
|
set_compress_params(&comp_param[0], block, offset);
|
|
/* Use the qemu thread to compress the data to make sure the
|
|
* first page is sent out before other pages
|
|
*/
|
|
bytes_xmit = do_compress_ram_page(&comp_param[0]);
|
|
acct_info.norm_pages++;
|
|
qemu_put_qemu_file(f, comp_param[0].file);
|
|
*bytes_transferred += bytes_xmit;
|
|
pages = 1;
|
|
}
|
|
} else {
|
|
pages = save_zero_page(f, block, offset, p, bytes_transferred);
|
|
if (pages == -1) {
|
|
pages = compress_page_with_multi_thread(f, block, offset,
|
|
bytes_transferred);
|
|
}
|
|
}
|
|
}
|
|
|
|
return pages;
|
|
}
|
|
|
|
/**
|
|
* ram_find_and_save_block: Finds a dirty page and sends it to f
|
|
*
|
|
* Called within an RCU critical section.
|
|
*
|
|
* Returns: The number of pages written
|
|
* 0 means no dirty pages
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
* @last_stage: if we are at the completion stage
|
|
* @bytes_transferred: increase it with the number of transferred bytes
|
|
*/
|
|
|
|
static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
|
|
uint64_t *bytes_transferred)
|
|
{
|
|
RAMBlock *block = last_seen_block;
|
|
ram_addr_t offset = last_offset;
|
|
bool complete_round = false;
|
|
int pages = 0;
|
|
MemoryRegion *mr;
|
|
|
|
if (!block)
|
|
block = QLIST_FIRST_RCU(&ram_list.blocks);
|
|
|
|
while (true) {
|
|
mr = block->mr;
|
|
offset = migration_bitmap_find_and_reset_dirty(mr, offset);
|
|
if (complete_round && block == last_seen_block &&
|
|
offset >= last_offset) {
|
|
break;
|
|
}
|
|
if (offset >= block->used_length) {
|
|
offset = 0;
|
|
block = QLIST_NEXT_RCU(block, next);
|
|
if (!block) {
|
|
block = QLIST_FIRST_RCU(&ram_list.blocks);
|
|
complete_round = true;
|
|
ram_bulk_stage = false;
|
|
if (migrate_use_xbzrle()) {
|
|
/* If xbzrle is on, stop using the data compression at this
|
|
* point. In theory, xbzrle can do better than compression.
|
|
*/
|
|
flush_compressed_data(f);
|
|
compression_switch = false;
|
|
}
|
|
}
|
|
} else {
|
|
if (compression_switch && migrate_use_compression()) {
|
|
pages = ram_save_compressed_page(f, block, offset, last_stage,
|
|
bytes_transferred);
|
|
} else {
|
|
pages = ram_save_page(f, block, offset, last_stage,
|
|
bytes_transferred);
|
|
}
|
|
|
|
/* if page is unmodified, continue to the next */
|
|
if (pages > 0) {
|
|
last_sent_block = block;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
last_seen_block = block;
|
|
last_offset = offset;
|
|
|
|
return pages;
|
|
}
|
|
|
|
void acct_update_position(QEMUFile *f, size_t size, bool zero)
|
|
{
|
|
uint64_t pages = size / TARGET_PAGE_SIZE;
|
|
if (zero) {
|
|
acct_info.dup_pages += pages;
|
|
} else {
|
|
acct_info.norm_pages += pages;
|
|
bytes_transferred += size;
|
|
qemu_update_position(f, size);
|
|
}
|
|
}
|
|
|
|
static ram_addr_t ram_save_remaining(void)
|
|
{
|
|
return migration_dirty_pages;
|
|
}
|
|
|
|
uint64_t ram_bytes_remaining(void)
|
|
{
|
|
return ram_save_remaining() * TARGET_PAGE_SIZE;
|
|
}
|
|
|
|
uint64_t ram_bytes_transferred(void)
|
|
{
|
|
return bytes_transferred;
|
|
}
|
|
|
|
uint64_t ram_bytes_total(void)
|
|
{
|
|
RAMBlock *block;
|
|
uint64_t total = 0;
|
|
|
|
rcu_read_lock();
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
|
|
total += block->used_length;
|
|
rcu_read_unlock();
|
|
return total;
|
|
}
|
|
|
|
void free_xbzrle_decoded_buf(void)
|
|
{
|
|
g_free(xbzrle_decoded_buf);
|
|
xbzrle_decoded_buf = NULL;
|
|
}
|
|
|
|
static void migration_end(void)
|
|
{
|
|
if (migration_bitmap) {
|
|
memory_global_dirty_log_stop();
|
|
g_free(migration_bitmap);
|
|
migration_bitmap = NULL;
|
|
}
|
|
|
|
XBZRLE_cache_lock();
|
|
if (XBZRLE.cache) {
|
|
cache_fini(XBZRLE.cache);
|
|
g_free(XBZRLE.encoded_buf);
|
|
g_free(XBZRLE.current_buf);
|
|
XBZRLE.cache = NULL;
|
|
XBZRLE.encoded_buf = NULL;
|
|
XBZRLE.current_buf = NULL;
|
|
}
|
|
XBZRLE_cache_unlock();
|
|
}
|
|
|
|
static void ram_migration_cancel(void *opaque)
|
|
{
|
|
migration_end();
|
|
}
|
|
|
|
static void reset_ram_globals(void)
|
|
{
|
|
last_seen_block = NULL;
|
|
last_sent_block = NULL;
|
|
last_offset = 0;
|
|
last_version = ram_list.version;
|
|
ram_bulk_stage = true;
|
|
}
|
|
|
|
#define MAX_WAIT 50 /* ms, half buffered_file limit */
|
|
|
|
|
|
/* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
|
|
* long-running RCU critical section. When rcu-reclaims in the code
|
|
* start to become numerous it will be necessary to reduce the
|
|
* granularity of these critical sections.
|
|
*/
|
|
|
|
static int ram_save_setup(QEMUFile *f, void *opaque)
|
|
{
|
|
RAMBlock *block;
|
|
int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
|
|
|
|
mig_throttle_on = false;
|
|
dirty_rate_high_cnt = 0;
|
|
bitmap_sync_count = 0;
|
|
migration_bitmap_sync_init();
|
|
|
|
if (migrate_use_xbzrle()) {
|
|
XBZRLE_cache_lock();
|
|
XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
|
|
TARGET_PAGE_SIZE,
|
|
TARGET_PAGE_SIZE);
|
|
if (!XBZRLE.cache) {
|
|
XBZRLE_cache_unlock();
|
|
error_report("Error creating cache");
|
|
return -1;
|
|
}
|
|
XBZRLE_cache_unlock();
|
|
|
|
/* We prefer not to abort if there is no memory */
|
|
XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
|
|
if (!XBZRLE.encoded_buf) {
|
|
error_report("Error allocating encoded_buf");
|
|
return -1;
|
|
}
|
|
|
|
XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
|
|
if (!XBZRLE.current_buf) {
|
|
error_report("Error allocating current_buf");
|
|
g_free(XBZRLE.encoded_buf);
|
|
XBZRLE.encoded_buf = NULL;
|
|
return -1;
|
|
}
|
|
|
|
acct_clear();
|
|
}
|
|
|
|
/* iothread lock needed for ram_list.dirty_memory[] */
|
|
qemu_mutex_lock_iothread();
|
|
qemu_mutex_lock_ramlist();
|
|
rcu_read_lock();
|
|
bytes_transferred = 0;
|
|
reset_ram_globals();
|
|
|
|
ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
|
|
migration_bitmap = bitmap_new(ram_bitmap_pages);
|
|
bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
|
|
|
|
/*
|
|
* Count the total number of pages used by ram blocks not including any
|
|
* gaps due to alignment or unplugs.
|
|
*/
|
|
migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
|
|
|
|
memory_global_dirty_log_start();
|
|
migration_bitmap_sync();
|
|
qemu_mutex_unlock_ramlist();
|
|
qemu_mutex_unlock_iothread();
|
|
|
|
qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
|
|
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
qemu_put_byte(f, strlen(block->idstr));
|
|
qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
|
|
qemu_put_be64(f, block->used_length);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
ram_control_before_iterate(f, RAM_CONTROL_SETUP);
|
|
ram_control_after_iterate(f, RAM_CONTROL_SETUP);
|
|
|
|
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ram_save_iterate(QEMUFile *f, void *opaque)
|
|
{
|
|
int ret;
|
|
int i;
|
|
int64_t t0;
|
|
int pages_sent = 0;
|
|
|
|
rcu_read_lock();
|
|
if (ram_list.version != last_version) {
|
|
reset_ram_globals();
|
|
}
|
|
|
|
/* Read version before ram_list.blocks */
|
|
smp_rmb();
|
|
|
|
ram_control_before_iterate(f, RAM_CONTROL_ROUND);
|
|
|
|
t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
|
|
i = 0;
|
|
while ((ret = qemu_file_rate_limit(f)) == 0) {
|
|
int pages;
|
|
|
|
pages = ram_find_and_save_block(f, false, &bytes_transferred);
|
|
/* no more pages to sent */
|
|
if (pages == 0) {
|
|
break;
|
|
}
|
|
pages_sent += pages;
|
|
acct_info.iterations++;
|
|
check_guest_throttling();
|
|
/* we want to check in the 1st loop, just in case it was the 1st time
|
|
and we had to sync the dirty bitmap.
|
|
qemu_get_clock_ns() is a bit expensive, so we only check each some
|
|
iterations
|
|
*/
|
|
if ((i & 63) == 0) {
|
|
uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
|
|
if (t1 > MAX_WAIT) {
|
|
DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
|
|
t1, i);
|
|
break;
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
flush_compressed_data(f);
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* Must occur before EOS (or any QEMUFile operation)
|
|
* because of RDMA protocol.
|
|
*/
|
|
ram_control_after_iterate(f, RAM_CONTROL_ROUND);
|
|
|
|
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
|
|
bytes_transferred += 8;
|
|
|
|
ret = qemu_file_get_error(f);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
return pages_sent;
|
|
}
|
|
|
|
/* Called with iothread lock */
|
|
static int ram_save_complete(QEMUFile *f, void *opaque)
|
|
{
|
|
rcu_read_lock();
|
|
|
|
migration_bitmap_sync();
|
|
|
|
ram_control_before_iterate(f, RAM_CONTROL_FINISH);
|
|
|
|
/* try transferring iterative blocks of memory */
|
|
|
|
/* flush all remaining blocks regardless of rate limiting */
|
|
while (true) {
|
|
int pages;
|
|
|
|
pages = ram_find_and_save_block(f, true, &bytes_transferred);
|
|
/* no more blocks to sent */
|
|
if (pages == 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
flush_compressed_data(f);
|
|
ram_control_after_iterate(f, RAM_CONTROL_FINISH);
|
|
migration_end();
|
|
|
|
rcu_read_unlock();
|
|
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
|
|
{
|
|
uint64_t remaining_size;
|
|
|
|
remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
|
|
|
|
if (remaining_size < max_size) {
|
|
qemu_mutex_lock_iothread();
|
|
rcu_read_lock();
|
|
migration_bitmap_sync();
|
|
rcu_read_unlock();
|
|
qemu_mutex_unlock_iothread();
|
|
remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
|
|
}
|
|
return remaining_size;
|
|
}
|
|
|
|
static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
|
|
{
|
|
unsigned int xh_len;
|
|
int xh_flags;
|
|
|
|
if (!xbzrle_decoded_buf) {
|
|
xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
|
|
}
|
|
|
|
/* extract RLE header */
|
|
xh_flags = qemu_get_byte(f);
|
|
xh_len = qemu_get_be16(f);
|
|
|
|
if (xh_flags != ENCODING_FLAG_XBZRLE) {
|
|
error_report("Failed to load XBZRLE page - wrong compression!");
|
|
return -1;
|
|
}
|
|
|
|
if (xh_len > TARGET_PAGE_SIZE) {
|
|
error_report("Failed to load XBZRLE page - len overflow!");
|
|
return -1;
|
|
}
|
|
/* load data and decode */
|
|
qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
|
|
|
|
/* decode RLE */
|
|
if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
|
|
TARGET_PAGE_SIZE) == -1) {
|
|
error_report("Failed to load XBZRLE page - decode error!");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Must be called from within a rcu critical section.
|
|
* Returns a pointer from within the RCU-protected ram_list.
|
|
*/
|
|
static inline void *host_from_stream_offset(QEMUFile *f,
|
|
ram_addr_t offset,
|
|
int flags)
|
|
{
|
|
static RAMBlock *block = NULL;
|
|
char id[256];
|
|
uint8_t len;
|
|
|
|
if (flags & RAM_SAVE_FLAG_CONTINUE) {
|
|
if (!block || block->max_length <= offset) {
|
|
error_report("Ack, bad migration stream!");
|
|
return NULL;
|
|
}
|
|
|
|
return memory_region_get_ram_ptr(block->mr) + offset;
|
|
}
|
|
|
|
len = qemu_get_byte(f);
|
|
qemu_get_buffer(f, (uint8_t *)id, len);
|
|
id[len] = 0;
|
|
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
if (!strncmp(id, block->idstr, sizeof(id)) &&
|
|
block->max_length > offset) {
|
|
return memory_region_get_ram_ptr(block->mr) + offset;
|
|
}
|
|
}
|
|
|
|
error_report("Can't find block %s!", id);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If a page (or a whole RDMA chunk) has been
|
|
* determined to be zero, then zap it.
|
|
*/
|
|
void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
|
|
{
|
|
if (ch != 0 || !is_zero_range(host, size)) {
|
|
memset(host, ch, size);
|
|
}
|
|
}
|
|
|
|
static void *do_data_decompress(void *opaque)
|
|
{
|
|
DecompressParam *param = opaque;
|
|
unsigned long pagesize;
|
|
|
|
while (!quit_decomp_thread) {
|
|
qemu_mutex_lock(¶m->mutex);
|
|
while (!param->start && !quit_decomp_thread) {
|
|
qemu_cond_wait(¶m->cond, ¶m->mutex);
|
|
pagesize = TARGET_PAGE_SIZE;
|
|
if (!quit_decomp_thread) {
|
|
/* uncompress() will return failed in some case, especially
|
|
* when the page is dirted when doing the compression, it's
|
|
* not a problem because the dirty page will be retransferred
|
|
* and uncompress() won't break the data in other pages.
|
|
*/
|
|
uncompress((Bytef *)param->des, &pagesize,
|
|
(const Bytef *)param->compbuf, param->len);
|
|
}
|
|
param->start = false;
|
|
}
|
|
qemu_mutex_unlock(¶m->mutex);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void migrate_decompress_threads_create(void)
|
|
{
|
|
int i, thread_count;
|
|
|
|
thread_count = migrate_decompress_threads();
|
|
decompress_threads = g_new0(QemuThread, thread_count);
|
|
decomp_param = g_new0(DecompressParam, thread_count);
|
|
compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
|
|
quit_decomp_thread = false;
|
|
for (i = 0; i < thread_count; i++) {
|
|
qemu_mutex_init(&decomp_param[i].mutex);
|
|
qemu_cond_init(&decomp_param[i].cond);
|
|
decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
|
|
qemu_thread_create(decompress_threads + i, "decompress",
|
|
do_data_decompress, decomp_param + i,
|
|
QEMU_THREAD_JOINABLE);
|
|
}
|
|
}
|
|
|
|
void migrate_decompress_threads_join(void)
|
|
{
|
|
int i, thread_count;
|
|
|
|
quit_decomp_thread = true;
|
|
thread_count = migrate_decompress_threads();
|
|
for (i = 0; i < thread_count; i++) {
|
|
qemu_mutex_lock(&decomp_param[i].mutex);
|
|
qemu_cond_signal(&decomp_param[i].cond);
|
|
qemu_mutex_unlock(&decomp_param[i].mutex);
|
|
}
|
|
for (i = 0; i < thread_count; i++) {
|
|
qemu_thread_join(decompress_threads + i);
|
|
qemu_mutex_destroy(&decomp_param[i].mutex);
|
|
qemu_cond_destroy(&decomp_param[i].cond);
|
|
g_free(decomp_param[i].compbuf);
|
|
}
|
|
g_free(decompress_threads);
|
|
g_free(decomp_param);
|
|
g_free(compressed_data_buf);
|
|
decompress_threads = NULL;
|
|
decomp_param = NULL;
|
|
compressed_data_buf = NULL;
|
|
}
|
|
|
|
static void decompress_data_with_multi_threads(uint8_t *compbuf,
|
|
void *host, int len)
|
|
{
|
|
int idx, thread_count;
|
|
|
|
thread_count = migrate_decompress_threads();
|
|
while (true) {
|
|
for (idx = 0; idx < thread_count; idx++) {
|
|
if (!decomp_param[idx].start) {
|
|
memcpy(decomp_param[idx].compbuf, compbuf, len);
|
|
decomp_param[idx].des = host;
|
|
decomp_param[idx].len = len;
|
|
start_decompression(&decomp_param[idx]);
|
|
break;
|
|
}
|
|
}
|
|
if (idx < thread_count) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int ram_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
int flags = 0, ret = 0;
|
|
static uint64_t seq_iter;
|
|
int len = 0;
|
|
|
|
seq_iter++;
|
|
|
|
if (version_id != 4) {
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* This RCU critical section can be very long running.
|
|
* When RCU reclaims in the code start to become numerous,
|
|
* it will be necessary to reduce the granularity of this
|
|
* critical section.
|
|
*/
|
|
rcu_read_lock();
|
|
while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
|
|
ram_addr_t addr, total_ram_bytes;
|
|
void *host;
|
|
uint8_t ch;
|
|
|
|
addr = qemu_get_be64(f);
|
|
flags = addr & ~TARGET_PAGE_MASK;
|
|
addr &= TARGET_PAGE_MASK;
|
|
|
|
switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
|
|
case RAM_SAVE_FLAG_MEM_SIZE:
|
|
/* Synchronize RAM block list */
|
|
total_ram_bytes = addr;
|
|
while (!ret && total_ram_bytes) {
|
|
RAMBlock *block;
|
|
uint8_t len;
|
|
char id[256];
|
|
ram_addr_t length;
|
|
|
|
len = qemu_get_byte(f);
|
|
qemu_get_buffer(f, (uint8_t *)id, len);
|
|
id[len] = 0;
|
|
length = qemu_get_be64(f);
|
|
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
if (!strncmp(id, block->idstr, sizeof(id))) {
|
|
if (length != block->used_length) {
|
|
Error *local_err = NULL;
|
|
|
|
ret = qemu_ram_resize(block->offset, length, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!block) {
|
|
error_report("Unknown ramblock \"%s\", cannot "
|
|
"accept migration", id);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
total_ram_bytes -= length;
|
|
}
|
|
break;
|
|
case RAM_SAVE_FLAG_COMPRESS:
|
|
host = host_from_stream_offset(f, addr, flags);
|
|
if (!host) {
|
|
error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
ch = qemu_get_byte(f);
|
|
ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
|
|
break;
|
|
case RAM_SAVE_FLAG_PAGE:
|
|
host = host_from_stream_offset(f, addr, flags);
|
|
if (!host) {
|
|
error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
|
|
break;
|
|
case RAM_SAVE_FLAG_COMPRESS_PAGE:
|
|
host = host_from_stream_offset(f, addr, flags);
|
|
if (!host) {
|
|
error_report("Invalid RAM offset " RAM_ADDR_FMT, addr);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
len = qemu_get_be32(f);
|
|
if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
|
|
error_report("Invalid compressed data length: %d", len);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
qemu_get_buffer(f, compressed_data_buf, len);
|
|
decompress_data_with_multi_threads(compressed_data_buf, host, len);
|
|
break;
|
|
case RAM_SAVE_FLAG_XBZRLE:
|
|
host = host_from_stream_offset(f, addr, flags);
|
|
if (!host) {
|
|
error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
if (load_xbzrle(f, addr, host) < 0) {
|
|
error_report("Failed to decompress XBZRLE page at "
|
|
RAM_ADDR_FMT, addr);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
break;
|
|
case RAM_SAVE_FLAG_EOS:
|
|
/* normal exit */
|
|
break;
|
|
default:
|
|
if (flags & RAM_SAVE_FLAG_HOOK) {
|
|
ram_control_load_hook(f, flags);
|
|
} else {
|
|
error_report("Unknown combination of migration flags: %#x",
|
|
flags);
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
if (!ret) {
|
|
ret = qemu_file_get_error(f);
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
DPRINTF("Completed load of VM with exit code %d seq iteration "
|
|
"%" PRIu64 "\n", ret, seq_iter);
|
|
return ret;
|
|
}
|
|
|
|
static SaveVMHandlers savevm_ram_handlers = {
|
|
.save_live_setup = ram_save_setup,
|
|
.save_live_iterate = ram_save_iterate,
|
|
.save_live_complete = ram_save_complete,
|
|
.save_live_pending = ram_save_pending,
|
|
.load_state = ram_load,
|
|
.cancel = ram_migration_cancel,
|
|
};
|
|
|
|
void ram_mig_init(void)
|
|
{
|
|
qemu_mutex_init(&XBZRLE.lock);
|
|
register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
|
|
}
|
|
|
|
struct soundhw {
|
|
const char *name;
|
|
const char *descr;
|
|
int enabled;
|
|
int isa;
|
|
union {
|
|
int (*init_isa) (ISABus *bus);
|
|
int (*init_pci) (PCIBus *bus);
|
|
} init;
|
|
};
|
|
|
|
static struct soundhw soundhw[9];
|
|
static int soundhw_count;
|
|
|
|
void isa_register_soundhw(const char *name, const char *descr,
|
|
int (*init_isa)(ISABus *bus))
|
|
{
|
|
assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
|
|
soundhw[soundhw_count].name = name;
|
|
soundhw[soundhw_count].descr = descr;
|
|
soundhw[soundhw_count].isa = 1;
|
|
soundhw[soundhw_count].init.init_isa = init_isa;
|
|
soundhw_count++;
|
|
}
|
|
|
|
void pci_register_soundhw(const char *name, const char *descr,
|
|
int (*init_pci)(PCIBus *bus))
|
|
{
|
|
assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
|
|
soundhw[soundhw_count].name = name;
|
|
soundhw[soundhw_count].descr = descr;
|
|
soundhw[soundhw_count].isa = 0;
|
|
soundhw[soundhw_count].init.init_pci = init_pci;
|
|
soundhw_count++;
|
|
}
|
|
|
|
void select_soundhw(const char *optarg)
|
|
{
|
|
struct soundhw *c;
|
|
|
|
if (is_help_option(optarg)) {
|
|
show_valid_cards:
|
|
|
|
if (soundhw_count) {
|
|
printf("Valid sound card names (comma separated):\n");
|
|
for (c = soundhw; c->name; ++c) {
|
|
printf ("%-11s %s\n", c->name, c->descr);
|
|
}
|
|
printf("\n-soundhw all will enable all of the above\n");
|
|
} else {
|
|
printf("Machine has no user-selectable audio hardware "
|
|
"(it may or may not have always-present audio hardware).\n");
|
|
}
|
|
exit(!is_help_option(optarg));
|
|
}
|
|
else {
|
|
size_t l;
|
|
const char *p;
|
|
char *e;
|
|
int bad_card = 0;
|
|
|
|
if (!strcmp(optarg, "all")) {
|
|
for (c = soundhw; c->name; ++c) {
|
|
c->enabled = 1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
p = optarg;
|
|
while (*p) {
|
|
e = strchr(p, ',');
|
|
l = !e ? strlen(p) : (size_t) (e - p);
|
|
|
|
for (c = soundhw; c->name; ++c) {
|
|
if (!strncmp(c->name, p, l) && !c->name[l]) {
|
|
c->enabled = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!c->name) {
|
|
if (l > 80) {
|
|
error_report("Unknown sound card name (too big to show)");
|
|
}
|
|
else {
|
|
error_report("Unknown sound card name `%.*s'",
|
|
(int) l, p);
|
|
}
|
|
bad_card = 1;
|
|
}
|
|
p += l + (e != NULL);
|
|
}
|
|
|
|
if (bad_card) {
|
|
goto show_valid_cards;
|
|
}
|
|
}
|
|
}
|
|
|
|
void audio_init(void)
|
|
{
|
|
struct soundhw *c;
|
|
ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
|
|
PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
|
|
|
|
for (c = soundhw; c->name; ++c) {
|
|
if (c->enabled) {
|
|
if (c->isa) {
|
|
if (!isa_bus) {
|
|
error_report("ISA bus not available for %s", c->name);
|
|
exit(1);
|
|
}
|
|
c->init.init_isa(isa_bus);
|
|
} else {
|
|
if (!pci_bus) {
|
|
error_report("PCI bus not available for %s", c->name);
|
|
exit(1);
|
|
}
|
|
c->init.init_pci(pci_bus);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int qemu_uuid_parse(const char *str, uint8_t *uuid)
|
|
{
|
|
int ret;
|
|
|
|
if (strlen(str) != 36) {
|
|
return -1;
|
|
}
|
|
|
|
ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
|
|
&uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
|
|
&uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
|
|
&uuid[15]);
|
|
|
|
if (ret != 16) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void do_acpitable_option(const QemuOpts *opts)
|
|
{
|
|
#ifdef TARGET_I386
|
|
Error *err = NULL;
|
|
|
|
acpi_table_add(opts, &err);
|
|
if (err) {
|
|
error_report("Wrong acpi table provided: %s",
|
|
error_get_pretty(err));
|
|
error_free(err);
|
|
exit(1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void do_smbios_option(QemuOpts *opts)
|
|
{
|
|
#ifdef TARGET_I386
|
|
smbios_entry_add(opts);
|
|
#endif
|
|
}
|
|
|
|
void cpudef_init(void)
|
|
{
|
|
#if defined(cpudef_setup)
|
|
cpudef_setup(); /* parse cpu definitions in target config file */
|
|
#endif
|
|
}
|
|
|
|
int kvm_available(void)
|
|
{
|
|
#ifdef CONFIG_KVM
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int xen_available(void)
|
|
{
|
|
#ifdef CONFIG_XEN
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
TargetInfo *qmp_query_target(Error **errp)
|
|
{
|
|
TargetInfo *info = g_malloc0(sizeof(*info));
|
|
|
|
info->arch = g_strdup(TARGET_NAME);
|
|
|
|
return info;
|
|
}
|
|
|
|
/* Stub function that's gets run on the vcpu when its brought out of the
|
|
VM to run inside qemu via async_run_on_cpu()*/
|
|
static void mig_sleep_cpu(void *opq)
|
|
{
|
|
qemu_mutex_unlock_iothread();
|
|
g_usleep(30*1000);
|
|
qemu_mutex_lock_iothread();
|
|
}
|
|
|
|
/* To reduce the dirty rate explicitly disallow the VCPUs from spending
|
|
much time in the VM. The migration thread will try to catchup.
|
|
Workload will experience a performance drop.
|
|
*/
|
|
static void mig_throttle_guest_down(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
qemu_mutex_lock_iothread();
|
|
CPU_FOREACH(cpu) {
|
|
async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
|
|
}
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
|
|
static void check_guest_throttling(void)
|
|
{
|
|
static int64_t t0;
|
|
int64_t t1;
|
|
|
|
if (!mig_throttle_on) {
|
|
return;
|
|
}
|
|
|
|
if (!t0) {
|
|
t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
|
|
return;
|
|
}
|
|
|
|
t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
|
|
|
|
/* If it has been more than 40 ms since the last time the guest
|
|
* was throttled then do it again.
|
|
*/
|
|
if (40 < (t1-t0)/1000000) {
|
|
mig_throttle_guest_down();
|
|
t0 = t1;
|
|
}
|
|
}
|