mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-30 23:10:38 +00:00
2e256c04c1
By using the TYPE_* definitions for devices, we can: - quickly find where devices are used with 'git-grep' - easily rename a device (one-line change). Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-id: 20200428154650.21991-1-f4bug@amsat.org Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
717 lines
28 KiB
C
717 lines
28 KiB
C
/*
|
|
* ARM V2M MPS2 board emulation, trustzone aware FPGA images
|
|
*
|
|
* Copyright (c) 2017 Linaro Limited
|
|
* Written by Peter Maydell
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
/* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
|
|
* FPGA but is otherwise the same as the 2). Since the CPU itself
|
|
* and most of the devices are in the FPGA, the details of the board
|
|
* as seen by the guest depend significantly on the FPGA image.
|
|
* This source file covers the following FPGA images, for TrustZone cores:
|
|
* "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
|
|
* "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
|
|
*
|
|
* Links to the TRM for the board itself and to the various Application
|
|
* Notes which document the FPGA images can be found here:
|
|
* https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
|
|
*
|
|
* Board TRM:
|
|
* http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
|
|
* Application Note AN505:
|
|
* http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
|
|
* Application Note AN521:
|
|
* http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
|
|
*
|
|
* The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
|
|
* (ARM ECM0601256) for the details of some of the device layout:
|
|
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
|
|
* Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
|
|
* most of the device layout:
|
|
* http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/error-report.h"
|
|
#include "hw/arm/boot.h"
|
|
#include "hw/arm/armv7m.h"
|
|
#include "hw/or-irq.h"
|
|
#include "hw/boards.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "hw/misc/unimp.h"
|
|
#include "hw/char/cmsdk-apb-uart.h"
|
|
#include "hw/timer/cmsdk-apb-timer.h"
|
|
#include "hw/misc/mps2-scc.h"
|
|
#include "hw/misc/mps2-fpgaio.h"
|
|
#include "hw/misc/tz-mpc.h"
|
|
#include "hw/misc/tz-msc.h"
|
|
#include "hw/arm/armsse.h"
|
|
#include "hw/dma/pl080.h"
|
|
#include "hw/ssi/pl022.h"
|
|
#include "hw/net/lan9118.h"
|
|
#include "net/net.h"
|
|
#include "hw/core/split-irq.h"
|
|
|
|
#define MPS2TZ_NUMIRQ 92
|
|
|
|
typedef enum MPS2TZFPGAType {
|
|
FPGA_AN505,
|
|
FPGA_AN521,
|
|
} MPS2TZFPGAType;
|
|
|
|
typedef struct {
|
|
MachineClass parent;
|
|
MPS2TZFPGAType fpga_type;
|
|
uint32_t scc_id;
|
|
const char *armsse_type;
|
|
} MPS2TZMachineClass;
|
|
|
|
typedef struct {
|
|
MachineState parent;
|
|
|
|
ARMSSE iotkit;
|
|
MemoryRegion ssram[3];
|
|
MemoryRegion ssram1_m;
|
|
MPS2SCC scc;
|
|
MPS2FPGAIO fpgaio;
|
|
TZPPC ppc[5];
|
|
TZMPC ssram_mpc[3];
|
|
PL022State spi[5];
|
|
UnimplementedDeviceState i2c[4];
|
|
UnimplementedDeviceState i2s_audio;
|
|
UnimplementedDeviceState gpio[4];
|
|
UnimplementedDeviceState gfx;
|
|
PL080State dma[4];
|
|
TZMSC msc[4];
|
|
CMSDKAPBUART uart[5];
|
|
SplitIRQ sec_resp_splitter;
|
|
qemu_or_irq uart_irq_orgate;
|
|
DeviceState *lan9118;
|
|
SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
|
|
} MPS2TZMachineState;
|
|
|
|
#define TYPE_MPS2TZ_MACHINE "mps2tz"
|
|
#define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
|
|
#define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
|
|
|
|
#define MPS2TZ_MACHINE(obj) \
|
|
OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
|
|
#define MPS2TZ_MACHINE_GET_CLASS(obj) \
|
|
OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
|
|
#define MPS2TZ_MACHINE_CLASS(klass) \
|
|
OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
|
|
|
|
/* Main SYSCLK frequency in Hz */
|
|
#define SYSCLK_FRQ 20000000
|
|
|
|
/* Create an alias of an entire original MemoryRegion @orig
|
|
* located at @base in the memory map.
|
|
*/
|
|
static void make_ram_alias(MemoryRegion *mr, const char *name,
|
|
MemoryRegion *orig, hwaddr base)
|
|
{
|
|
memory_region_init_alias(mr, NULL, name, orig, 0,
|
|
memory_region_size(orig));
|
|
memory_region_add_subregion(get_system_memory(), base, mr);
|
|
}
|
|
|
|
static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
|
|
{
|
|
/* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
|
|
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
|
|
|
|
assert(irqno < MPS2TZ_NUMIRQ);
|
|
|
|
switch (mmc->fpga_type) {
|
|
case FPGA_AN505:
|
|
return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
|
|
case FPGA_AN521:
|
|
return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Most of the devices in the AN505 FPGA image sit behind
|
|
* Peripheral Protection Controllers. These data structures
|
|
* define the layout of which devices sit behind which PPCs.
|
|
* The devfn for each port is a function which creates, configures
|
|
* and initializes the device, returning the MemoryRegion which
|
|
* needs to be plugged into the downstream end of the PPC port.
|
|
*/
|
|
typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
|
|
const char *name, hwaddr size);
|
|
|
|
typedef struct PPCPortInfo {
|
|
const char *name;
|
|
MakeDevFn *devfn;
|
|
void *opaque;
|
|
hwaddr addr;
|
|
hwaddr size;
|
|
} PPCPortInfo;
|
|
|
|
typedef struct PPCInfo {
|
|
const char *name;
|
|
PPCPortInfo ports[TZ_NUM_PORTS];
|
|
} PPCInfo;
|
|
|
|
static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
|
|
void *opaque,
|
|
const char *name, hwaddr size)
|
|
{
|
|
/* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
|
|
* and return a pointer to its MemoryRegion.
|
|
*/
|
|
UnimplementedDeviceState *uds = opaque;
|
|
|
|
sysbus_init_child_obj(OBJECT(mms), name, uds,
|
|
sizeof(UnimplementedDeviceState),
|
|
TYPE_UNIMPLEMENTED_DEVICE);
|
|
qdev_prop_set_string(DEVICE(uds), "name", name);
|
|
qdev_prop_set_uint64(DEVICE(uds), "size", size);
|
|
object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
|
|
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
|
|
}
|
|
|
|
static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
|
|
const char *name, hwaddr size)
|
|
{
|
|
CMSDKAPBUART *uart = opaque;
|
|
int i = uart - &mms->uart[0];
|
|
int rxirqno = i * 2;
|
|
int txirqno = i * 2 + 1;
|
|
int combirqno = i + 10;
|
|
SysBusDevice *s;
|
|
DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
|
|
|
|
sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
|
|
TYPE_CMSDK_APB_UART);
|
|
qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
|
|
qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
|
|
object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
|
|
s = SYS_BUS_DEVICE(uart);
|
|
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
|
|
sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
|
|
sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
|
|
sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
|
|
sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
|
|
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
|
|
}
|
|
|
|
static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
|
|
const char *name, hwaddr size)
|
|
{
|
|
MPS2SCC *scc = opaque;
|
|
DeviceState *sccdev;
|
|
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
|
|
|
|
sysbus_init_child_obj(OBJECT(mms), "scc", scc,
|
|
sizeof(mms->scc), TYPE_MPS2_SCC);
|
|
sccdev = DEVICE(scc);
|
|
qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
|
|
qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
|
|
qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
|
|
object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
|
|
return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
|
|
}
|
|
|
|
static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
|
|
const char *name, hwaddr size)
|
|
{
|
|
MPS2FPGAIO *fpgaio = opaque;
|
|
|
|
sysbus_init_child_obj(OBJECT(mms), "fpgaio", fpgaio,
|
|
sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
|
|
object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
|
|
return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
|
|
}
|
|
|
|
static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
|
|
const char *name, hwaddr size)
|
|
{
|
|
SysBusDevice *s;
|
|
NICInfo *nd = &nd_table[0];
|
|
|
|
/* In hardware this is a LAN9220; the LAN9118 is software compatible
|
|
* except that it doesn't support the checksum-offload feature.
|
|
*/
|
|
qemu_check_nic_model(nd, "lan9118");
|
|
mms->lan9118 = qdev_create(NULL, TYPE_LAN9118);
|
|
qdev_set_nic_properties(mms->lan9118, nd);
|
|
qdev_init_nofail(mms->lan9118);
|
|
|
|
s = SYS_BUS_DEVICE(mms->lan9118);
|
|
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
|
|
return sysbus_mmio_get_region(s, 0);
|
|
}
|
|
|
|
static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
|
|
const char *name, hwaddr size)
|
|
{
|
|
TZMPC *mpc = opaque;
|
|
int i = mpc - &mms->ssram_mpc[0];
|
|
MemoryRegion *ssram = &mms->ssram[i];
|
|
MemoryRegion *upstream;
|
|
char *mpcname = g_strdup_printf("%s-mpc", name);
|
|
static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
|
|
static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
|
|
|
|
memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
|
|
|
|
sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]),
|
|
TYPE_TZ_MPC);
|
|
object_property_set_link(OBJECT(mpc), OBJECT(ssram),
|
|
"downstream", &error_fatal);
|
|
object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
|
|
/* Map the upstream end of the MPC into system memory */
|
|
upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
|
|
memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
|
|
/* and connect its interrupt to the IoTKit */
|
|
qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
|
|
qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
|
|
"mpcexp_status", i));
|
|
|
|
/* The first SSRAM is a special case as it has an alias; accesses to
|
|
* the alias region at 0x00400000 must also go to the MPC upstream.
|
|
*/
|
|
if (i == 0) {
|
|
make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
|
|
}
|
|
|
|
g_free(mpcname);
|
|
/* Return the register interface MR for our caller to map behind the PPC */
|
|
return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
|
|
}
|
|
|
|
static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
|
|
const char *name, hwaddr size)
|
|
{
|
|
PL080State *dma = opaque;
|
|
int i = dma - &mms->dma[0];
|
|
SysBusDevice *s;
|
|
char *mscname = g_strdup_printf("%s-msc", name);
|
|
TZMSC *msc = &mms->msc[i];
|
|
DeviceState *iotkitdev = DEVICE(&mms->iotkit);
|
|
MemoryRegion *msc_upstream;
|
|
MemoryRegion *msc_downstream;
|
|
|
|
/*
|
|
* Each DMA device is a PL081 whose transaction master interface
|
|
* is guarded by a Master Security Controller. The downstream end of
|
|
* the MSC connects to the IoTKit AHB Slave Expansion port, so the
|
|
* DMA devices can see all devices and memory that the CPU does.
|
|
*/
|
|
sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
|
|
msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
|
|
object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
|
|
"downstream", &error_fatal);
|
|
object_property_set_link(OBJECT(msc), OBJECT(mms),
|
|
"idau", &error_fatal);
|
|
object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);
|
|
|
|
qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
|
|
qdev_get_gpio_in_named(iotkitdev,
|
|
"mscexp_status", i));
|
|
qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
|
|
qdev_get_gpio_in_named(DEVICE(msc),
|
|
"irq_clear", 0));
|
|
qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
|
|
qdev_get_gpio_in_named(DEVICE(msc),
|
|
"cfg_nonsec", 0));
|
|
qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
|
|
ARRAY_SIZE(mms->ppc) + i,
|
|
qdev_get_gpio_in_named(DEVICE(msc),
|
|
"cfg_sec_resp", 0));
|
|
msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
|
|
|
|
sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
|
|
object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
|
|
"downstream", &error_fatal);
|
|
object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);
|
|
|
|
s = SYS_BUS_DEVICE(dma);
|
|
/* Wire up DMACINTR, DMACINTERR, DMACINTTC */
|
|
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
|
|
sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
|
|
sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
|
|
|
|
g_free(mscname);
|
|
return sysbus_mmio_get_region(s, 0);
|
|
}
|
|
|
|
static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
|
|
const char *name, hwaddr size)
|
|
{
|
|
/*
|
|
* The AN505 has five PL022 SPI controllers.
|
|
* One of these should have the LCD controller behind it; the others
|
|
* are connected only to the FPGA's "general purpose SPI connector"
|
|
* or "shield" expansion connectors.
|
|
* Note that if we do implement devices behind SPI, the chip select
|
|
* lines are set via the "MISC" register in the MPS2 FPGAIO device.
|
|
*/
|
|
PL022State *spi = opaque;
|
|
int i = spi - &mms->spi[0];
|
|
SysBusDevice *s;
|
|
|
|
sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(mms->spi[0]),
|
|
TYPE_PL022);
|
|
object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal);
|
|
s = SYS_BUS_DEVICE(spi);
|
|
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
|
|
return sysbus_mmio_get_region(s, 0);
|
|
}
|
|
|
|
static void mps2tz_common_init(MachineState *machine)
|
|
{
|
|
MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
|
|
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
MemoryRegion *system_memory = get_system_memory();
|
|
DeviceState *iotkitdev;
|
|
DeviceState *dev_splitter;
|
|
int i;
|
|
|
|
if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
|
|
error_report("This board can only be used with CPU %s",
|
|
mc->default_cpu_type);
|
|
exit(1);
|
|
}
|
|
|
|
if (machine->ram_size != mc->default_ram_size) {
|
|
char *sz = size_to_str(mc->default_ram_size);
|
|
error_report("Invalid RAM size, should be %s", sz);
|
|
g_free(sz);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
sysbus_init_child_obj(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
|
|
sizeof(mms->iotkit), mmc->armsse_type);
|
|
iotkitdev = DEVICE(&mms->iotkit);
|
|
object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
|
|
"memory", &error_abort);
|
|
qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
|
|
qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
|
|
object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
|
|
&error_fatal);
|
|
|
|
/*
|
|
* The AN521 needs us to create splitters to feed the IRQ inputs
|
|
* for each CPU in the SSE-200 from each device in the board.
|
|
*/
|
|
if (mmc->fpga_type == FPGA_AN521) {
|
|
for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
|
|
char *name = g_strdup_printf("mps2-irq-splitter%d", i);
|
|
SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
|
|
|
|
object_initialize_child(OBJECT(machine), name,
|
|
splitter, sizeof(*splitter),
|
|
TYPE_SPLIT_IRQ, &error_fatal, NULL);
|
|
g_free(name);
|
|
|
|
object_property_set_int(OBJECT(splitter), 2, "num-lines",
|
|
&error_fatal);
|
|
object_property_set_bool(OBJECT(splitter), true, "realized",
|
|
&error_fatal);
|
|
qdev_connect_gpio_out(DEVICE(splitter), 0,
|
|
qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
|
|
"EXP_IRQ", i));
|
|
qdev_connect_gpio_out(DEVICE(splitter), 1,
|
|
qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
|
|
"EXP_CPU1_IRQ", i));
|
|
}
|
|
}
|
|
|
|
/* The sec_resp_cfg output from the IoTKit must be split into multiple
|
|
* lines, one for each of the PPCs we create here, plus one per MSC.
|
|
*/
|
|
object_initialize_child(OBJECT(machine), "sec-resp-splitter",
|
|
&mms->sec_resp_splitter,
|
|
sizeof(mms->sec_resp_splitter),
|
|
TYPE_SPLIT_IRQ, &error_abort, NULL);
|
|
object_property_set_int(OBJECT(&mms->sec_resp_splitter),
|
|
ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
|
|
"num-lines", &error_fatal);
|
|
object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
|
|
"realized", &error_fatal);
|
|
dev_splitter = DEVICE(&mms->sec_resp_splitter);
|
|
qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
|
|
qdev_get_gpio_in(dev_splitter, 0));
|
|
|
|
/* The IoTKit sets up much of the memory layout, including
|
|
* the aliases between secure and non-secure regions in the
|
|
* address space. The FPGA itself contains:
|
|
*
|
|
* 0x00000000..0x003fffff SSRAM1
|
|
* 0x00400000..0x007fffff alias of SSRAM1
|
|
* 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
|
|
* 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
|
|
* 0x80000000..0x80ffffff 16MB PSRAM
|
|
*/
|
|
|
|
/* The FPGA images have an odd combination of different RAMs,
|
|
* because in hardware they are different implementations and
|
|
* connected to different buses, giving varying performance/size
|
|
* tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
|
|
* call the 16MB our "system memory", as it's the largest lump.
|
|
*/
|
|
memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
|
|
|
|
/* The overflow IRQs for all UARTs are ORed together.
|
|
* Tx, Rx and "combined" IRQs are sent to the NVIC separately.
|
|
* Create the OR gate for this.
|
|
*/
|
|
object_initialize_child(OBJECT(mms), "uart-irq-orgate",
|
|
&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
|
|
TYPE_OR_IRQ, &error_abort, NULL);
|
|
object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
|
|
&error_fatal);
|
|
object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
|
|
"realized", &error_fatal);
|
|
qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
|
|
get_sse_irq_in(mms, 15));
|
|
|
|
/* Most of the devices in the FPGA are behind Peripheral Protection
|
|
* Controllers. The required order for initializing things is:
|
|
* + initialize the PPC
|
|
* + initialize, configure and realize downstream devices
|
|
* + connect downstream device MemoryRegions to the PPC
|
|
* + realize the PPC
|
|
* + map the PPC's MemoryRegions to the places in the address map
|
|
* where the downstream devices should appear
|
|
* + wire up the PPC's control lines to the IoTKit object
|
|
*/
|
|
|
|
const PPCInfo ppcs[] = { {
|
|
.name = "apb_ppcexp0",
|
|
.ports = {
|
|
{ "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
|
|
{ "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
|
|
{ "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
|
|
},
|
|
}, {
|
|
.name = "apb_ppcexp1",
|
|
.ports = {
|
|
{ "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
|
|
{ "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
|
|
{ "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
|
|
{ "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
|
|
{ "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
|
|
{ "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
|
|
{ "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
|
|
{ "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
|
|
{ "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
|
|
{ "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
|
|
{ "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
|
|
{ "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
|
|
{ "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
|
|
{ "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
|
|
},
|
|
}, {
|
|
.name = "apb_ppcexp2",
|
|
.ports = {
|
|
{ "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
|
|
{ "i2s-audio", make_unimp_dev, &mms->i2s_audio,
|
|
0x40301000, 0x1000 },
|
|
{ "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
|
|
},
|
|
}, {
|
|
.name = "ahb_ppcexp0",
|
|
.ports = {
|
|
{ "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
|
|
{ "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
|
|
{ "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
|
|
{ "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
|
|
{ "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
|
|
{ "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
|
|
},
|
|
}, {
|
|
.name = "ahb_ppcexp1",
|
|
.ports = {
|
|
{ "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
|
|
{ "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
|
|
{ "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
|
|
{ "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
|
|
},
|
|
},
|
|
};
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
|
|
const PPCInfo *ppcinfo = &ppcs[i];
|
|
TZPPC *ppc = &mms->ppc[i];
|
|
DeviceState *ppcdev;
|
|
int port;
|
|
char *gpioname;
|
|
|
|
sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
|
|
sizeof(TZPPC), TYPE_TZ_PPC);
|
|
ppcdev = DEVICE(ppc);
|
|
|
|
for (port = 0; port < TZ_NUM_PORTS; port++) {
|
|
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
|
|
MemoryRegion *mr;
|
|
char *portname;
|
|
|
|
if (!pinfo->devfn) {
|
|
continue;
|
|
}
|
|
|
|
mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
|
|
portname = g_strdup_printf("port[%d]", port);
|
|
object_property_set_link(OBJECT(ppc), OBJECT(mr),
|
|
portname, &error_fatal);
|
|
g_free(portname);
|
|
}
|
|
|
|
object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
|
|
|
|
for (port = 0; port < TZ_NUM_PORTS; port++) {
|
|
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
|
|
|
|
if (!pinfo->devfn) {
|
|
continue;
|
|
}
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
|
|
|
|
gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
|
|
qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
|
|
qdev_get_gpio_in_named(ppcdev,
|
|
"cfg_nonsec",
|
|
port));
|
|
g_free(gpioname);
|
|
gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
|
|
qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
|
|
qdev_get_gpio_in_named(ppcdev,
|
|
"cfg_ap", port));
|
|
g_free(gpioname);
|
|
}
|
|
|
|
gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
|
|
qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
|
|
qdev_get_gpio_in_named(ppcdev,
|
|
"irq_enable", 0));
|
|
g_free(gpioname);
|
|
gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
|
|
qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
|
|
qdev_get_gpio_in_named(ppcdev,
|
|
"irq_clear", 0));
|
|
g_free(gpioname);
|
|
gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
|
|
qdev_connect_gpio_out_named(ppcdev, "irq", 0,
|
|
qdev_get_gpio_in_named(iotkitdev,
|
|
gpioname, 0));
|
|
g_free(gpioname);
|
|
|
|
qdev_connect_gpio_out(dev_splitter, i,
|
|
qdev_get_gpio_in_named(ppcdev,
|
|
"cfg_sec_resp", 0));
|
|
}
|
|
|
|
create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
|
|
|
|
armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
|
|
}
|
|
|
|
static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
|
|
int *iregion, bool *exempt, bool *ns, bool *nsc)
|
|
{
|
|
/*
|
|
* The MPS2 TZ FPGA images have IDAUs in them which are connected to
|
|
* the Master Security Controllers. Thes have the same logic as
|
|
* is used by the IoTKit for the IDAU connected to the CPU, except
|
|
* that MSCs don't care about the NSC attribute.
|
|
*/
|
|
int region = extract32(address, 28, 4);
|
|
|
|
*ns = !(region & 1);
|
|
*nsc = false;
|
|
/* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
|
|
*exempt = (address & 0xeff00000) == 0xe0000000;
|
|
*iregion = region;
|
|
}
|
|
|
|
static void mps2tz_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
|
|
|
|
mc->init = mps2tz_common_init;
|
|
iic->check = mps2_tz_idau_check;
|
|
mc->default_ram_size = 16 * MiB;
|
|
mc->default_ram_id = "mps.ram";
|
|
}
|
|
|
|
static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
|
|
|
|
mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
|
|
mc->default_cpus = 1;
|
|
mc->min_cpus = mc->default_cpus;
|
|
mc->max_cpus = mc->default_cpus;
|
|
mmc->fpga_type = FPGA_AN505;
|
|
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
|
|
mmc->scc_id = 0x41045050;
|
|
mmc->armsse_type = TYPE_IOTKIT;
|
|
}
|
|
|
|
static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
|
|
|
|
mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
|
|
mc->default_cpus = 2;
|
|
mc->min_cpus = mc->default_cpus;
|
|
mc->max_cpus = mc->default_cpus;
|
|
mmc->fpga_type = FPGA_AN521;
|
|
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
|
|
mmc->scc_id = 0x41045210;
|
|
mmc->armsse_type = TYPE_SSE200;
|
|
}
|
|
|
|
static const TypeInfo mps2tz_info = {
|
|
.name = TYPE_MPS2TZ_MACHINE,
|
|
.parent = TYPE_MACHINE,
|
|
.abstract = true,
|
|
.instance_size = sizeof(MPS2TZMachineState),
|
|
.class_size = sizeof(MPS2TZMachineClass),
|
|
.class_init = mps2tz_class_init,
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ TYPE_IDAU_INTERFACE },
|
|
{ }
|
|
},
|
|
};
|
|
|
|
static const TypeInfo mps2tz_an505_info = {
|
|
.name = TYPE_MPS2TZ_AN505_MACHINE,
|
|
.parent = TYPE_MPS2TZ_MACHINE,
|
|
.class_init = mps2tz_an505_class_init,
|
|
};
|
|
|
|
static const TypeInfo mps2tz_an521_info = {
|
|
.name = TYPE_MPS2TZ_AN521_MACHINE,
|
|
.parent = TYPE_MPS2TZ_MACHINE,
|
|
.class_init = mps2tz_an521_class_init,
|
|
};
|
|
|
|
static void mps2tz_machine_init(void)
|
|
{
|
|
type_register_static(&mps2tz_info);
|
|
type_register_static(&mps2tz_an505_info);
|
|
type_register_static(&mps2tz_an521_info);
|
|
}
|
|
|
|
type_init(mps2tz_machine_init);
|