xemu/target/arm/cpu64.c
Richard Henderson 3c93dfa42c target/arm: Enable BFloat16 extensions
Disable BF16 again for !have_neon and !have_vfp during realize.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210525225817.400336-13-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-06-03 16:43:26 +01:00

904 lines
33 KiB
C

/*
* QEMU AArch64 CPU
*
* Copyright (c) 2013 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#ifdef CONFIG_TCG
#include "hw/core/tcg-cpu-ops.h"
#endif /* CONFIG_TCG */
#include "qemu/module.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "qapi/visitor.h"
#include "hw/qdev-properties.h"
#ifndef CONFIG_USER_ONLY
static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = env_archcpu(env);
/* Number of cores is in [25:24]; otherwise we RAZ */
return (cpu->core_count - 1) << 24;
}
#endif
static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
#ifndef CONFIG_USER_ONLY
{ .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
.access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
.writefn = arm_cp_write_ignore },
{ .name = "L2CTLR",
.cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
.access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
.writefn = arm_cp_write_ignore },
#endif
{ .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "L2ECTLR",
.cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUACTLR",
.cp = 15, .opc1 = 0, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUECTLR",
.cp = 15, .opc1 = 1, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUMERRSR",
.cp = 15, .opc1 = 2, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "L2MERRSR",
.cp = 15, .opc1 = 3, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void aarch64_a57_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a57";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
cpu->midr = 0x411fd070;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034070;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50838;
cpu->isar.id_pfr0 = 0x00000131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_mmfr0 = 0x10101105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_isar6 = 0;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->isar.id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64mmfr0 = 0x00001124;
cpu->isar.dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
}
static void aarch64_a53_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a53";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
cpu->midr = 0x410fd034;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034070;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
cpu->ctr = 0x84448004; /* L1Ip = VIPT */
cpu->reset_sctlr = 0x00c50838;
cpu->isar.id_pfr0 = 0x00000131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_mmfr0 = 0x10101105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_isar6 = 0;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->isar.id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
cpu->isar.dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
}
static void aarch64_a72_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a72";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->midr = 0x410fd083;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034080;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50838;
cpu->isar.id_pfr0 = 0x00000131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->isar.id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64mmfr0 = 0x00001124;
cpu->isar.dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
}
void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
{
/*
* If any vector lengths are explicitly enabled with sve<N> properties,
* then all other lengths are implicitly disabled. If sve-max-vq is
* specified then it is the same as explicitly enabling all lengths
* up to and including the specified maximum, which means all larger
* lengths will be implicitly disabled. If no sve<N> properties
* are enabled and sve-max-vq is not specified, then all lengths not
* explicitly disabled will be enabled. Additionally, all power-of-two
* vector lengths less than the maximum enabled length will be
* automatically enabled and all vector lengths larger than the largest
* disabled power-of-two vector length will be automatically disabled.
* Errors are generated if the user provided input that interferes with
* any of the above. Finally, if SVE is not disabled, then at least one
* vector length must be enabled.
*/
DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
DECLARE_BITMAP(tmp, ARM_MAX_VQ);
uint32_t vq, max_vq = 0;
/* Collect the set of vector lengths supported by KVM. */
bitmap_zero(kvm_supported, ARM_MAX_VQ);
if (kvm_enabled() && kvm_arm_sve_supported()) {
kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
} else if (kvm_enabled()) {
assert(!cpu_isar_feature(aa64_sve, cpu));
}
/*
* Process explicit sve<N> properties.
* From the properties, sve_vq_map<N> implies sve_vq_init<N>.
* Check first for any sve<N> enabled.
*/
if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
error_setg(errp, "cannot enable sve%d", max_vq * 128);
error_append_hint(errp, "sve%d is larger than the maximum vector "
"length, sve-max-vq=%d (%d bits)\n",
max_vq * 128, cpu->sve_max_vq,
cpu->sve_max_vq * 128);
return;
}
if (kvm_enabled()) {
/*
* For KVM we have to automatically enable all supported unitialized
* lengths, even when the smaller lengths are not all powers-of-two.
*/
bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
} else {
/* Propagate enabled bits down through required powers-of-two. */
for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
if (!test_bit(vq - 1, cpu->sve_vq_init)) {
set_bit(vq - 1, cpu->sve_vq_map);
}
}
}
} else if (cpu->sve_max_vq == 0) {
/*
* No explicit bits enabled, and no implicit bits from sve-max-vq.
*/
if (!cpu_isar_feature(aa64_sve, cpu)) {
/* SVE is disabled and so are all vector lengths. Good. */
return;
}
if (kvm_enabled()) {
/* Disabling a supported length disables all larger lengths. */
for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
if (test_bit(vq - 1, cpu->sve_vq_init) &&
test_bit(vq - 1, kvm_supported)) {
break;
}
}
max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
bitmap_andnot(cpu->sve_vq_map, kvm_supported,
cpu->sve_vq_init, max_vq);
if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
error_setg(errp, "cannot disable sve%d", vq * 128);
error_append_hint(errp, "Disabling sve%d results in all "
"vector lengths being disabled.\n",
vq * 128);
error_append_hint(errp, "With SVE enabled, at least one "
"vector length must be enabled.\n");
return;
}
} else {
/* Disabling a power-of-two disables all larger lengths. */
if (test_bit(0, cpu->sve_vq_init)) {
error_setg(errp, "cannot disable sve128");
error_append_hint(errp, "Disabling sve128 results in all "
"vector lengths being disabled.\n");
error_append_hint(errp, "With SVE enabled, at least one "
"vector length must be enabled.\n");
return;
}
for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
if (test_bit(vq - 1, cpu->sve_vq_init)) {
break;
}
}
max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
}
max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
}
/*
* Process the sve-max-vq property.
* Note that we know from the above that no bit above
* sve-max-vq is currently set.
*/
if (cpu->sve_max_vq != 0) {
max_vq = cpu->sve_max_vq;
if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
test_bit(max_vq - 1, cpu->sve_vq_init)) {
error_setg(errp, "cannot disable sve%d", max_vq * 128);
error_append_hint(errp, "The maximum vector length must be "
"enabled, sve-max-vq=%d (%d bits)\n",
max_vq, max_vq * 128);
return;
}
/* Set all bits not explicitly set within sve-max-vq. */
bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
}
/*
* We should know what max-vq is now. Also, as we're done
* manipulating sve-vq-map, we ensure any bits above max-vq
* are clear, just in case anybody looks.
*/
assert(max_vq != 0);
bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
if (kvm_enabled()) {
/* Ensure the set of lengths matches what KVM supports. */
bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
if (!bitmap_empty(tmp, max_vq)) {
vq = find_last_bit(tmp, max_vq) + 1;
if (test_bit(vq - 1, cpu->sve_vq_map)) {
if (cpu->sve_max_vq) {
error_setg(errp, "cannot set sve-max-vq=%d",
cpu->sve_max_vq);
error_append_hint(errp, "This KVM host does not support "
"the vector length %d-bits.\n",
vq * 128);
error_append_hint(errp, "It may not be possible to use "
"sve-max-vq with this KVM host. Try "
"using only sve<N> properties.\n");
} else {
error_setg(errp, "cannot enable sve%d", vq * 128);
error_append_hint(errp, "This KVM host does not support "
"the vector length %d-bits.\n",
vq * 128);
}
} else {
error_setg(errp, "cannot disable sve%d", vq * 128);
error_append_hint(errp, "The KVM host requires all "
"supported vector lengths smaller "
"than %d bits to also be enabled.\n",
max_vq * 128);
}
return;
}
} else {
/* Ensure all required powers-of-two are enabled. */
for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
if (!test_bit(vq - 1, cpu->sve_vq_map)) {
error_setg(errp, "cannot disable sve%d", vq * 128);
error_append_hint(errp, "sve%d is required as it "
"is a power-of-two length smaller than "
"the maximum, sve%d\n",
vq * 128, max_vq * 128);
return;
}
}
}
/*
* Now that we validated all our vector lengths, the only question
* left to answer is if we even want SVE at all.
*/
if (!cpu_isar_feature(aa64_sve, cpu)) {
error_setg(errp, "cannot enable sve%d", max_vq * 128);
error_append_hint(errp, "SVE must be enabled to enable vector "
"lengths.\n");
error_append_hint(errp, "Add sve=on to the CPU property list.\n");
return;
}
/* From now on sve_max_vq is the actual maximum supported length. */
cpu->sve_max_vq = max_vq;
}
static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t value;
/* All vector lengths are disabled when SVE is off. */
if (!cpu_isar_feature(aa64_sve, cpu)) {
value = 0;
} else {
value = cpu->sve_max_vq;
}
visit_type_uint32(v, name, &value, errp);
}
static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t max_vq;
if (!visit_type_uint32(v, name, &max_vq, errp)) {
return;
}
if (kvm_enabled() && !kvm_arm_sve_supported()) {
error_setg(errp, "cannot set sve-max-vq");
error_append_hint(errp, "SVE not supported by KVM on this host\n");
return;
}
if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
error_setg(errp, "unsupported SVE vector length");
error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
ARM_MAX_VQ);
return;
}
cpu->sve_max_vq = max_vq;
}
/*
* Note that cpu_arm_get/set_sve_vq cannot use the simpler
* object_property_add_bool interface because they make use
* of the contents of "name" to determine which bit on which
* to operate.
*/
static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t vq = atoi(&name[3]) / 128;
bool value;
/* All vector lengths are disabled when SVE is off. */
if (!cpu_isar_feature(aa64_sve, cpu)) {
value = false;
} else {
value = test_bit(vq - 1, cpu->sve_vq_map);
}
visit_type_bool(v, name, &value, errp);
}
static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t vq = atoi(&name[3]) / 128;
bool value;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
error_setg(errp, "cannot enable %s", name);
error_append_hint(errp, "SVE not supported by KVM on this host\n");
return;
}
if (value) {
set_bit(vq - 1, cpu->sve_vq_map);
} else {
clear_bit(vq - 1, cpu->sve_vq_map);
}
set_bit(vq - 1, cpu->sve_vq_init);
}
static bool cpu_arm_get_sve(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return cpu_isar_feature(aa64_sve, cpu);
}
static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint64_t t;
if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
error_setg(errp, "'sve' feature not supported by KVM on this host");
return;
}
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
cpu->isar.id_aa64pfr0 = t;
}
void aarch64_add_sve_properties(Object *obj)
{
uint32_t vq;
object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
char name[8];
sprintf(name, "sve%d", vq * 128);
object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
cpu_arm_set_sve_vq, NULL, NULL);
}
}
void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
{
int arch_val = 0, impdef_val = 0;
uint64_t t;
/* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
if (cpu->prop_pauth) {
if (cpu->prop_pauth_impdef) {
impdef_val = 1;
} else {
arch_val = 1;
}
} else if (cpu->prop_pauth_impdef) {
error_setg(errp, "cannot enable pauth-impdef without pauth");
error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
}
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
cpu->isar.id_aa64isar1 = t;
}
static Property arm_cpu_pauth_property =
DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
static Property arm_cpu_pauth_impdef_property =
DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
* otherwise, a CPU with as many features enabled as our emulation supports.
* The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
* this only needs to handle 64 bits.
*/
static void aarch64_max_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
if (kvm_enabled()) {
kvm_arm_set_cpu_features_from_host(cpu);
} else {
uint64_t t;
uint32_t u;
aarch64_a57_initfn(obj);
/*
* Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
* one and try to apply errata workarounds or use impdef features we
* don't provide.
* An IMPLEMENTER field of 0 means "reserved for software use";
* ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
* to see which features are present";
* the VARIANT, PARTNUM and REVISION fields are all implementation
* defined and we choose to define PARTNUM just in case guest
* code needs to distinguish this QEMU CPU from other software
* implementations, though this shouldn't be needed.
*/
t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
cpu->midr = t;
t = cpu->isar.id_aa64isar0;
t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
cpu->isar.id_aa64isar0 = t;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);
t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);
cpu->isar.id_aa64isar1 = t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);
cpu->isar.id_aa64pfr0 = t;
t = cpu->isar.id_aa64pfr1;
t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);
/*
* Begin with full support for MTE. This will be downgraded to MTE=0
* during realize if the board provides no tag memory, much like
* we do for EL2 with the virtualization=on property.
*/
t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2);
cpu->isar.id_aa64pfr1 = t;
t = cpu->isar.id_aa64mmfr0;
t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */
cpu->isar.id_aa64mmfr0 = t;
t = cpu->isar.id_aa64mmfr1;
t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
cpu->isar.id_aa64mmfr1 = t;
t = cpu->isar.id_aa64mmfr2;
t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
cpu->isar.id_aa64mmfr2 = t;
t = cpu->isar.id_aa64zfr0;
t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* PMULL */
t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);
t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);
t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);
t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);
t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);
t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);
t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);
cpu->isar.id_aa64zfr0 = t;
/* Replicate the same data to the 32-bit id registers. */
u = cpu->isar.id_isar5;
u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
cpu->isar.id_isar5 = u;
u = cpu->isar.id_isar6;
u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
u = FIELD_DP32(u, ID_ISAR6, DP, 1);
u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
u = FIELD_DP32(u, ID_ISAR6, SB, 1);
u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
u = FIELD_DP32(u, ID_ISAR6, BF16, 1);
u = FIELD_DP32(u, ID_ISAR6, I8MM, 1);
cpu->isar.id_isar6 = u;
u = cpu->isar.id_pfr0;
u = FIELD_DP32(u, ID_PFR0, DIT, 1);
cpu->isar.id_pfr0 = u;
u = cpu->isar.id_pfr2;
u = FIELD_DP32(u, ID_PFR2, SSBS, 1);
cpu->isar.id_pfr2 = u;
u = cpu->isar.id_mmfr3;
u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
cpu->isar.id_mmfr3 = u;
u = cpu->isar.id_mmfr4;
u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
cpu->isar.id_mmfr4 = u;
t = cpu->isar.id_aa64dfr0;
t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
cpu->isar.id_aa64dfr0 = t;
u = cpu->isar.id_dfr0;
u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
cpu->isar.id_dfr0 = u;
u = cpu->isar.mvfr1;
u = FIELD_DP32(u, MVFR1, FPHP, 3); /* v8.2-FP16 */
u = FIELD_DP32(u, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
cpu->isar.mvfr1 = u;
#ifdef CONFIG_USER_ONLY
/* For usermode -cpu max we can use a larger and more efficient DCZ
* blocksize since we don't have to follow what the hardware does.
*/
cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
cpu->dcz_blocksize = 7; /* 512 bytes */
#endif
/* Default to PAUTH on, with the architected algorithm. */
qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
}
aarch64_add_sve_properties(obj);
object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
cpu_max_set_sve_max_vq, NULL, NULL);
}
static const ARMCPUInfo aarch64_cpus[] = {
{ .name = "cortex-a57", .initfn = aarch64_a57_initfn },
{ .name = "cortex-a53", .initfn = aarch64_a53_initfn },
{ .name = "cortex-a72", .initfn = aarch64_a72_initfn },
{ .name = "max", .initfn = aarch64_max_initfn },
};
static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
}
static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
/* At this time, this property is only allowed if KVM is enabled. This
* restriction allows us to avoid fixing up functionality that assumes a
* uniform execution state like do_interrupt.
*/
if (value == false) {
if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
error_setg(errp, "'aarch64' feature cannot be disabled "
"unless KVM is enabled and 32-bit EL1 "
"is supported");
return;
}
unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
} else {
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
}
}
static void aarch64_cpu_finalizefn(Object *obj)
{
}
static gchar *aarch64_gdb_arch_name(CPUState *cs)
{
return g_strdup("aarch64");
}
static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
{
CPUClass *cc = CPU_CLASS(oc);
cc->gdb_read_register = aarch64_cpu_gdb_read_register;
cc->gdb_write_register = aarch64_cpu_gdb_write_register;
cc->gdb_num_core_regs = 34;
cc->gdb_core_xml_file = "aarch64-core.xml";
cc->gdb_arch_name = aarch64_gdb_arch_name;
object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
aarch64_cpu_set_aarch64);
object_class_property_set_description(oc, "aarch64",
"Set on/off to enable/disable aarch64 "
"execution state ");
}
static void aarch64_cpu_instance_init(Object *obj)
{
ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
acc->info->initfn(obj);
arm_cpu_post_init(obj);
}
static void cpu_register_class_init(ObjectClass *oc, void *data)
{
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
acc->info = data;
}
void aarch64_cpu_register(const ARMCPUInfo *info)
{
TypeInfo type_info = {
.parent = TYPE_AARCH64_CPU,
.instance_size = sizeof(ARMCPU),
.instance_init = aarch64_cpu_instance_init,
.class_size = sizeof(ARMCPUClass),
.class_init = info->class_init ?: cpu_register_class_init,
.class_data = (void *)info,
};
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
type_register(&type_info);
g_free((void *)type_info.name);
}
static const TypeInfo aarch64_cpu_type_info = {
.name = TYPE_AARCH64_CPU,
.parent = TYPE_ARM_CPU,
.instance_size = sizeof(ARMCPU),
.instance_finalize = aarch64_cpu_finalizefn,
.abstract = true,
.class_size = sizeof(AArch64CPUClass),
.class_init = aarch64_cpu_class_init,
};
static void aarch64_cpu_register_types(void)
{
size_t i;
type_register_static(&aarch64_cpu_type_info);
for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
aarch64_cpu_register(&aarch64_cpus[i]);
}
}
type_init(aarch64_cpu_register_types)