2009-01-30 20:15:48 +00:00
|
|
|
/*
|
|
|
|
* (I)RDFT transforms
|
|
|
|
* Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "dsputil.h"
|
|
|
|
|
|
|
|
/**
|
2009-02-01 02:00:19 +00:00
|
|
|
* @file libavcodec/rdft.c
|
2009-01-30 20:15:48 +00:00
|
|
|
* (Inverse) Real Discrete Fourier Transforms.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_16[8]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_32[16]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_64[32]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_128[64]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_256[128]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_512[256]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_1024[512]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_2048[1024]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_4096[2048]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_8192[4096]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_16384[8192]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_32768[16384]);
|
|
|
|
DECLARE_ALIGNED_16(FFTSample, ff_sin_65536[32768]);
|
2009-09-06 08:50:20 +00:00
|
|
|
FFTSample * const ff_sin_tabs[] = {
|
2009-01-30 20:15:48 +00:00
|
|
|
ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024,
|
|
|
|
ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536,
|
|
|
|
};
|
|
|
|
|
|
|
|
av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
|
|
|
|
{
|
|
|
|
int n = 1 << nbits;
|
|
|
|
int i;
|
|
|
|
const double theta = (trans == RDFT || trans == IRIDFT ? -1 : 1)*2*M_PI/n;
|
|
|
|
|
|
|
|
s->nbits = nbits;
|
|
|
|
s->inverse = trans == IRDFT || trans == IRIDFT;
|
|
|
|
s->sign_convention = trans == RIDFT || trans == IRIDFT ? 1 : -1;
|
|
|
|
|
|
|
|
if (nbits < 4 || nbits > 16)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
if (ff_fft_init(&s->fft, nbits-1, trans == IRDFT || trans == RIDFT) < 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
s->tcos = ff_cos_tabs[nbits-4];
|
|
|
|
s->tsin = ff_sin_tabs[nbits-4]+(trans == RDFT || trans == IRIDFT)*(n>>2);
|
|
|
|
for (i = 0; i < (n>>2); i++) {
|
|
|
|
s->tsin[i] = sin(i*theta);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Map one real FFT into two parallel real even and odd FFTs. Then interleave
|
|
|
|
* the two real FFTs into one complex FFT. Unmangle the results.
|
|
|
|
* ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
|
|
|
|
*/
|
|
|
|
void ff_rdft_calc_c(RDFTContext* s, FFTSample* data)
|
|
|
|
{
|
|
|
|
int i, i1, i2;
|
|
|
|
FFTComplex ev, od;
|
|
|
|
const int n = 1 << s->nbits;
|
|
|
|
const float k1 = 0.5;
|
|
|
|
const float k2 = 0.5 - s->inverse;
|
|
|
|
const FFTSample *tcos = s->tcos;
|
|
|
|
const FFTSample *tsin = s->tsin;
|
|
|
|
|
|
|
|
if (!s->inverse) {
|
|
|
|
ff_fft_permute(&s->fft, (FFTComplex*)data);
|
|
|
|
ff_fft_calc(&s->fft, (FFTComplex*)data);
|
|
|
|
}
|
|
|
|
/* i=0 is a special case because of packing, the DC term is real, so we
|
|
|
|
are going to throw the N/2 term (also real) in with it. */
|
|
|
|
ev.re = data[0];
|
|
|
|
data[0] = ev.re+data[1];
|
|
|
|
data[1] = ev.re-data[1];
|
|
|
|
for (i = 1; i < (n>>2); i++) {
|
|
|
|
i1 = 2*i;
|
|
|
|
i2 = n-i1;
|
|
|
|
/* Separate even and odd FFTs */
|
|
|
|
ev.re = k1*(data[i1 ]+data[i2 ]);
|
|
|
|
od.im = -k2*(data[i1 ]-data[i2 ]);
|
|
|
|
ev.im = k1*(data[i1+1]-data[i2+1]);
|
|
|
|
od.re = k2*(data[i1+1]+data[i2+1]);
|
|
|
|
/* Apply twiddle factors to the odd FFT and add to the even FFT */
|
|
|
|
data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i];
|
|
|
|
data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i];
|
|
|
|
data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i];
|
|
|
|
data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i];
|
|
|
|
}
|
|
|
|
data[2*i+1]=s->sign_convention*data[2*i+1];
|
|
|
|
if (s->inverse) {
|
|
|
|
data[0] *= k1;
|
|
|
|
data[1] *= k1;
|
|
|
|
ff_fft_permute(&s->fft, (FFTComplex*)data);
|
|
|
|
ff_fft_calc(&s->fft, (FFTComplex*)data);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_rdft_calc(RDFTContext *s, FFTSample *data)
|
|
|
|
{
|
|
|
|
ff_rdft_calc_c(s, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
av_cold void ff_rdft_end(RDFTContext *s)
|
|
|
|
{
|
|
|
|
ff_fft_end(&s->fft);
|
|
|
|
}
|