avfilter/dnn: unify the layer execution function in native mode

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
Guo, Yejun 2019-10-09 22:08:11 +08:00 committed by Pedro Arthur
parent b78dc27bba
commit 3fd5ac7e92
15 changed files with 102 additions and 42 deletions

View File

@ -1,5 +1,6 @@
OBJS-$(CONFIG_DNN) += dnn/dnn_interface.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o

View File

@ -29,6 +29,7 @@
#include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layer_depth2space.h"
#include "dnn_backend_native_layer_maximum.h"
#include "dnn_backend_native_layers.h"
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
{
@ -331,10 +332,6 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
{
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model;
int32_t layer;
ConvolutionalParams *conv_params;
DepthToSpaceParams *depth_to_space_params;
LayerPadParams *pad_params;
DnnLayerMaximumParams *maximum_params;
uint32_t nb = FFMIN(nb_output, network->nb_output);
if (network->layers_num <= 0 || network->operands_num <= 0)
@ -343,30 +340,11 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
return DNN_ERROR;
for (layer = 0; layer < network->layers_num; ++layer){
switch (network->layers[layer].type){
case DLT_CONV2D:
conv_params = (ConvolutionalParams *)network->layers[layer].params;
convolve(network->operands, network->layers[layer].input_operand_indexes,
network->layers[layer].output_operand_index, conv_params);
break;
case DLT_DEPTH_TO_SPACE:
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
depth_to_space(network->operands, network->layers[layer].input_operand_indexes,
network->layers[layer].output_operand_index, depth_to_space_params->block_size);
break;
case DLT_MIRROR_PAD:
pad_params = (LayerPadParams *)network->layers[layer].params;
dnn_execute_layer_pad(network->operands, network->layers[layer].input_operand_indexes,
network->layers[layer].output_operand_index, pad_params);
break;
case DLT_MAXIMUM:
maximum_params = (DnnLayerMaximumParams *)network->layers[layer].params;
dnn_execute_layer_maximum(network->operands, network->layers[layer].input_operand_indexes,
network->layers[layer].output_operand_index, maximum_params);
break;
case DLT_INPUT:
return DNN_ERROR;
}
DNNLayerType layer_type = network->layers[layer].type;
layer_funcs[layer_type](network->operands,
network->layers[layer].input_operand_indexes,
network->layers[layer].output_operand_index,
network->layers[layer].params);
}
for (uint32_t i = 0; i < nb; ++i) {

View File

@ -33,13 +33,15 @@
/**
* the enum value of DNNLayerType should not be changed,
* the same values are used in convert_from_tensorflow.py
* and, it is used to index the layer execution function pointer.
*/
typedef enum {
DLT_INPUT = 0,
DLT_CONV2D = 1,
DLT_DEPTH_TO_SPACE = 2,
DLT_MIRROR_PAD = 3,
DLT_MAXIMUM = 4
DLT_MAXIMUM = 4,
DLT_COUNT
} DNNLayerType;
typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_INPUT} DNNOperandType;

View File

@ -23,7 +23,8 @@
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params)
int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters)
{
float *output;
int32_t input_operand_index = input_operand_indexes[0];
@ -32,6 +33,7 @@ int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t
int width = operands[input_operand_index].dims[2];
int channel = operands[input_operand_index].dims[3];
const float *input = operands[input_operand_index].data;
const ConvolutionalParams *conv_params = (const ConvolutionalParams *)parameters;
int radius = conv_params->kernel_size >> 1;
int src_linesize = width * conv_params->input_num;

View File

@ -35,5 +35,6 @@ typedef struct ConvolutionalParams{
float *biases;
} ConvolutionalParams;
int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params);
int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters);
#endif

View File

@ -27,9 +27,12 @@
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_depth2space.h"
int depth_to_space(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, int block_size)
int dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters)
{
float *output;
const DepthToSpaceParams *params = (const DepthToSpaceParams *)parameters;
int block_size = params->block_size;
int32_t input_operand_index = input_operand_indexes[0];
int number = operands[input_operand_index].dims[0];
int height = operands[input_operand_index].dims[1];

View File

@ -34,6 +34,7 @@ typedef struct DepthToSpaceParams{
int block_size;
} DepthToSpaceParams;
int depth_to_space(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, int block_size);
int dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters);
#endif

View File

@ -27,10 +27,12 @@
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_maximum.h"
int dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const DnnLayerMaximumParams *params)
int dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters)
{
const DnnOperand *input = &operands[input_operand_indexes[0]];
DnnOperand *output = &operands[output_operand_index];
const DnnLayerMaximumParams *params = (const DnnLayerMaximumParams *)parameters;
int dims_count;
const float *src;
float *dst;

View File

@ -37,6 +37,7 @@ typedef struct DnnLayerMaximumParams{
}val;
} DnnLayerMaximumParams;
int dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const DnnLayerMaximumParams *params);
int dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters);
#endif

View File

@ -48,12 +48,13 @@ static int after_get_buddy(int given, int border, LayerPadModeParam mode)
}
}
int dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index,
const LayerPadParams *params)
int dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters)
{
int32_t before_paddings;
int32_t after_paddings;
float* output;
const LayerPadParams *params = (const LayerPadParams *)parameters;
// suppose format is <N, H, W, C>
int32_t input_operand_index = input_operand_indexes[0];

View File

@ -36,7 +36,7 @@ typedef struct LayerPadParams{
float constant_values;
} LayerPadParams;
int dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index,
const LayerPadParams *params);
int dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters);
#endif

View File

@ -0,0 +1,34 @@
/*
* Copyright (c) 2019 Guo Yejun
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#include "dnn_backend_native_layers.h"
#include "dnn_backend_native_layer_pad.h"
#include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layer_depth2space.h"
#include "dnn_backend_native_layer_maximum.h"
LAYER_EXEC_FUNC layer_funcs[DLT_COUNT] = {
NULL,
dnn_execute_layer_conv2d,
dnn_execute_layer_depth2space,
dnn_execute_layer_pad,
dnn_execute_layer_maximum,
};

View File

@ -0,0 +1,32 @@
/*
* Copyright (c) 2019 Guo Yejun
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H
#include <stdint.h>
#include "dnn_backend_native.h"
typedef int (*LAYER_EXEC_FUNC)(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters);
extern LAYER_EXEC_FUNC layer_funcs[DLT_COUNT];
#endif

View File

@ -113,7 +113,7 @@ static int test_with_same_dilate(void)
operands[1].data = NULL;
input_indexes[0] = 0;
convolve(operands, input_indexes, 1, &params);
dnn_execute_layer_conv2d(operands, input_indexes, 1, &params);
output = operands[1].data;
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
@ -212,7 +212,7 @@ static int test_with_valid(void)
operands[1].data = NULL;
input_indexes[0] = 0;
convolve(operands, input_indexes, 1, &params);
dnn_execute_layer_conv2d(operands, input_indexes, 1, &params);
output = operands[1].data;
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {

View File

@ -48,6 +48,7 @@ static int test(void)
print(list(output.flatten()))
*/
DepthToSpaceParams params;
DnnOperand operands[2];
int32_t input_indexes[1];
float input[1*5*3*4] = {
@ -79,7 +80,8 @@ static int test(void)
operands[1].data = NULL;
input_indexes[0] = 0;
depth_to_space(operands, input_indexes, 1, 2);
params.block_size = 2;
dnn_execute_layer_depth2space(operands, input_indexes, 1, &params);
output = operands[1].data;
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {