aaccoder: move the quantization functions to a separate file

This commit moves the quantizer to a separate header file.
This allows the quantizer to be used from a separate files outside
of aaccoder without having to put another function pointer and will
result in a slight speedup as the compiler can do more optimizations.

This is required for commits following.

Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
This commit is contained in:
Rostislav Pehlivanov 2015-08-21 18:53:14 +01:00
parent b47a1e5c5f
commit 43b378a0d3
5 changed files with 263 additions and 220 deletions

View File

@ -254,6 +254,7 @@ typedef struct SingleChannelElement {
DECLARE_ALIGNED(32, INTFLOAT, saved)[1536]; ///< overlap
DECLARE_ALIGNED(32, INTFLOAT, ret_buf)[2048]; ///< PCM output buffer
DECLARE_ALIGNED(16, INTFLOAT, ltp_state)[3072]; ///< time signal for LTP
DECLARE_ALIGNED(32, AAC_FLOAT, pqcoeffs)[1024]; ///< quantization error of coefs (used by encoder)
PredictorState predictor_state[MAX_PREDICTORS];
INTFLOAT *ret; ///< PCM output
} SingleChannelElement;

View File

@ -41,6 +41,7 @@
#include "aactab.h"
#include "aacenctab.h"
#include "aacenc_utils.h"
#include "aacenc_quantization.h"
#include "aac_tablegen_decl.h"
/** Frequency in Hz for lower limit of noise substitution **/
@ -55,223 +56,6 @@
* excessive PNS and little PNS usage. */
#define NOISE_LAMBDA_NUMERATOR 252.1f
/** Frequency in Hz for lower limit of intensity stereo **/
#define INT_STEREO_LOW_LIMIT 6100
/**
* Calculate rate distortion cost for quantizing with given codebook
*
* @return quantization distortion
*/
static av_always_inline float quantize_and_encode_band_cost_template(
struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits, int BT_ZERO, int BT_UNSIGNED,
int BT_PAIR, int BT_ESC, int BT_NOISE, int BT_STEREO,
const float ROUNDING)
{
const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512;
const float Q = ff_aac_pow2sf_tab [q_idx];
const float Q34 = ff_aac_pow34sf_tab[q_idx];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
const float CLIPPED_ESCAPE = 165140.0f*IQ;
int i, j;
float cost = 0;
const int dim = BT_PAIR ? 2 : 4;
int resbits = 0;
int off;
if (BT_ZERO || BT_NOISE || BT_STEREO) {
for (i = 0; i < size; i++)
cost += in[i]*in[i];
if (bits)
*bits = 0;
return cost * lambda;
}
if (!scaled) {
abs_pow34_v(s->scoefs, in, size);
scaled = s->scoefs;
}
quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, aac_cb_maxval[cb], ROUNDING);
if (BT_UNSIGNED) {
off = 0;
} else {
off = aac_cb_maxval[cb];
}
for (i = 0; i < size; i += dim) {
const float *vec;
int *quants = s->qcoefs + i;
int curidx = 0;
int curbits;
float rd = 0.0f;
for (j = 0; j < dim; j++) {
curidx *= aac_cb_range[cb];
curidx += quants[j] + off;
}
curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
if (BT_UNSIGNED) {
for (j = 0; j < dim; j++) {
float t = fabsf(in[i+j]);
float di;
if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
if (t >= CLIPPED_ESCAPE) {
di = t - CLIPPED_ESCAPE;
curbits += 21;
} else {
int c = av_clip_uintp2(quant(t, Q, ROUNDING), 13);
di = t - c*cbrtf(c)*IQ;
curbits += av_log2(c)*2 - 4 + 1;
}
} else {
di = t - vec[j]*IQ;
}
if (vec[j] != 0.0f)
curbits++;
rd += di*di;
}
} else {
for (j = 0; j < dim; j++) {
float di = in[i+j] - vec[j]*IQ;
rd += di*di;
}
}
cost += rd * lambda + curbits;
resbits += curbits;
if (cost >= uplim)
return uplim;
if (pb) {
put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
if (BT_UNSIGNED)
for (j = 0; j < dim; j++)
if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
put_bits(pb, 1, in[i+j] < 0.0f);
if (BT_ESC) {
for (j = 0; j < 2; j++) {
if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
int coef = av_clip_uintp2(quant(fabsf(in[i+j]), Q, ROUNDING), 13);
int len = av_log2(coef);
put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
put_sbits(pb, len, coef);
}
}
}
}
}
if (bits)
*bits = resbits;
return cost;
}
static float quantize_and_encode_band_cost_NONE(struct AACEncContext *s, PutBitContext *pb,
const float *in, const float *scaled,
int size, int scale_idx, int cb,
const float lambda, const float uplim,
int *bits) {
av_assert0(0);
return 0.0f;
}
#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC, BT_NOISE, BT_STEREO, ROUNDING) \
static float quantize_and_encode_band_cost_ ## NAME( \
struct AACEncContext *s, \
PutBitContext *pb, const float *in, \
const float *scaled, int size, int scale_idx, \
int cb, const float lambda, const float uplim, \
int *bits) { \
return quantize_and_encode_band_cost_template( \
s, pb, in, scaled, size, scale_idx, \
BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \
BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC, BT_NOISE, BT_STEREO, \
ROUNDING); \
}
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC_RTZ, 0, 1, 1, 1, 0, 0, ROUND_TO_ZERO)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NOISE, 0, 0, 0, 0, 1, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(STEREO,0, 0, 0, 0, 0, 1, ROUND_STANDARD)
static float (*const quantize_and_encode_band_cost_arr[])(
struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits) = {
quantize_and_encode_band_cost_ZERO,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_ESC,
quantize_and_encode_band_cost_NONE, /* CB 12 doesn't exist */
quantize_and_encode_band_cost_NOISE,
quantize_and_encode_band_cost_STEREO,
quantize_and_encode_band_cost_STEREO,
};
static float (*const quantize_and_encode_band_cost_rtz_arr[])(
struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits) = {
quantize_and_encode_band_cost_ZERO,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_ESC_RTZ,
quantize_and_encode_band_cost_NONE, /* CB 12 doesn't exist */
quantize_and_encode_band_cost_NOISE,
quantize_and_encode_band_cost_STEREO,
quantize_and_encode_band_cost_STEREO,
};
#define quantize_and_encode_band_cost( \
s, pb, in, scaled, size, scale_idx, cb, \
lambda, uplim, bits, rtz) \
((rtz) ? quantize_and_encode_band_cost_rtz_arr : quantize_and_encode_band_cost_arr)[cb]( \
s, pb, in, scaled, size, scale_idx, cb, \
lambda, uplim, bits)
static float quantize_band_cost(struct AACEncContext *s, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits, int rtz)
{
return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
cb, lambda, uplim, bits, rtz);
}
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
const float *in, int size, int scale_idx,
int cb, const float lambda, int rtz)
{
quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
INFINITY, NULL, rtz);
}
/**
* structure used in optimal codebook search
*/

View File

@ -355,11 +355,14 @@ static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
continue;
}
for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++)
s->coder->quantize_and_encode_band(s, &s->pb, sce->coeffs + start + w2*128,
s->coder->quantize_and_encode_band(s, &s->pb,
&sce->coeffs[start + w2*128],
&sce->pqcoeffs[start + w2*128],
sce->ics.swb_sizes[i],
sce->sf_idx[w*16 + i],
sce->band_type[w*16 + i],
s->lambda, sce->ics.window_clipping[w]);
s->lambda,
sce->ics.window_clipping[w]);
start += sce->ics.swb_sizes[i];
}
}

View File

@ -55,7 +55,7 @@ typedef struct AACCoefficientsEncoder {
SingleChannelElement *sce, const float lambda);
void (*encode_window_bands_info)(struct AACEncContext *s, SingleChannelElement *sce,
int win, int group_len, const float lambda);
void (*quantize_and_encode_band)(struct AACEncContext *s, PutBitContext *pb, const float *in, int size,
void (*quantize_and_encode_band)(struct AACEncContext *s, PutBitContext *pb, const float *in, float *out, int size,
int scale_idx, int cb, const float lambda, int rtz);
void (*set_special_band_scalefactors)(struct AACEncContext *s, SingleChannelElement *sce);
void (*search_for_pns)(struct AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce);

View File

@ -0,0 +1,255 @@
/*
* AAC encoder intensity stereo
* Copyright (C) 2015 Rostislav Pehlivanov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder quantizer
* @author Rostislav Pehlivanov ( atomnuker gmail com )
*/
#include "aactab.h"
#include "aacenc.h"
#include "aacenctab.h"
#include "aacenc_utils.h"
/**
* Calculate rate distortion cost for quantizing with given codebook
*
* @return quantization distortion
*/
static av_always_inline float quantize_and_encode_band_cost_template(
struct AACEncContext *s,
PutBitContext *pb, const float *in, float *out,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits, int BT_ZERO, int BT_UNSIGNED,
int BT_PAIR, int BT_ESC, int BT_NOISE, int BT_STEREO,
const float ROUNDING)
{
const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512;
const float Q = ff_aac_pow2sf_tab [q_idx];
const float Q34 = ff_aac_pow34sf_tab[q_idx];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
const float CLIPPED_ESCAPE = 165140.0f*IQ;
int i, j;
float cost = 0;
const int dim = BT_PAIR ? 2 : 4;
int resbits = 0;
int off;
if (BT_ZERO || BT_NOISE || BT_STEREO) {
for (i = 0; i < size; i++)
cost += in[i]*in[i];
if (bits)
*bits = 0;
if (out) {
for (i = 0; i < size; i += dim)
for (j = 0; j < dim; j++)
out[i+j] = 0.0f;
}
return cost * lambda;
}
if (!scaled) {
abs_pow34_v(s->scoefs, in, size);
scaled = s->scoefs;
}
quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, aac_cb_maxval[cb], ROUNDING);
if (BT_UNSIGNED) {
off = 0;
} else {
off = aac_cb_maxval[cb];
}
for (i = 0; i < size; i += dim) {
const float *vec;
int *quants = s->qcoefs + i;
int curidx = 0;
int curbits;
float quantized, rd = 0.0f;
for (j = 0; j < dim; j++) {
curidx *= aac_cb_range[cb];
curidx += quants[j] + off;
}
curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
if (BT_UNSIGNED) {
for (j = 0; j < dim; j++) {
float t = fabsf(in[i+j]);
float di;
if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
if (t >= CLIPPED_ESCAPE) {
quantized = CLIPPED_ESCAPE;
curbits += 21;
} else {
int c = av_clip_uintp2(quant(t, Q, ROUNDING), 13);
quantized = c*cbrtf(c)*IQ;
curbits += av_log2(c)*2 - 4 + 1;
}
} else {
quantized = vec[j]*IQ;
}
di = t - quantized;
if (out)
out[i+j] = copysignf(quantized, in[i+j]);
if (vec[j] != 0.0f)
curbits++;
rd += di*di;
}
} else {
for (j = 0; j < dim; j++) {
quantized = vec[j]*IQ;
if (out)
out[i+j] = quantized;
rd += (in[i+j] - quantized)*(in[i+j] - quantized);
}
}
cost += rd * lambda + curbits;
resbits += curbits;
if (cost >= uplim)
return uplim;
if (pb) {
put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
if (BT_UNSIGNED)
for (j = 0; j < dim; j++)
if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
put_bits(pb, 1, in[i+j] < 0.0f);
if (BT_ESC) {
for (j = 0; j < 2; j++) {
if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
int coef = av_clip_uintp2(quant(fabsf(in[i+j]), Q, ROUNDING), 13);
int len = av_log2(coef);
put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
put_sbits(pb, len, coef);
}
}
}
}
}
if (bits)
*bits = resbits;
return cost;
}
static inline float quantize_and_encode_band_cost_NONE(struct AACEncContext *s, PutBitContext *pb,
const float *in, float *quant, const float *scaled,
int size, int scale_idx, int cb,
const float lambda, const float uplim,
int *bits) {
av_assert0(0);
return 0.0f;
}
#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC, BT_NOISE, BT_STEREO, ROUNDING) \
static float quantize_and_encode_band_cost_ ## NAME( \
struct AACEncContext *s, \
PutBitContext *pb, const float *in, float *quant, \
const float *scaled, int size, int scale_idx, \
int cb, const float lambda, const float uplim, \
int *bits) { \
return quantize_and_encode_band_cost_template( \
s, pb, in, quant, scaled, size, scale_idx, \
BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \
BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC, BT_NOISE, BT_STEREO, \
ROUNDING); \
}
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC_RTZ, 0, 1, 1, 1, 0, 0, ROUND_TO_ZERO)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NOISE, 0, 0, 0, 0, 1, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(STEREO,0, 0, 0, 0, 0, 1, ROUND_STANDARD)
static float (*const quantize_and_encode_band_cost_arr[])(
struct AACEncContext *s,
PutBitContext *pb, const float *in, float *quant,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits) = {
quantize_and_encode_band_cost_ZERO,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_ESC,
quantize_and_encode_band_cost_NONE, /* CB 12 doesn't exist */
quantize_and_encode_band_cost_NOISE,
quantize_and_encode_band_cost_STEREO,
quantize_and_encode_band_cost_STEREO,
};
static float (*const quantize_and_encode_band_cost_rtz_arr[])(
struct AACEncContext *s,
PutBitContext *pb, const float *in, float *quant,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits) = {
quantize_and_encode_band_cost_ZERO,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_ESC_RTZ,
quantize_and_encode_band_cost_NONE, /* CB 12 doesn't exist */
quantize_and_encode_band_cost_NOISE,
quantize_and_encode_band_cost_STEREO,
quantize_and_encode_band_cost_STEREO,
};
#define quantize_and_encode_band_cost( \
s, pb, in, quant, scaled, size, scale_idx, cb, \
lambda, uplim, bits, rtz) \
((rtz) ? quantize_and_encode_band_cost_rtz_arr : quantize_and_encode_band_cost_arr)[cb]( \
s, pb, in, quant, scaled, size, scale_idx, cb, \
lambda, uplim, bits)
static inline float quantize_band_cost(struct AACEncContext *s, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits, int rtz)
{
return quantize_and_encode_band_cost(s, NULL, in, NULL, scaled, size, scale_idx,
cb, lambda, uplim, bits, rtz);
}
static inline void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
const float *in, float *out, int size, int scale_idx,
int cb, const float lambda, int rtz)
{
quantize_and_encode_band_cost(s, pb, in, out, NULL, size, scale_idx, cb, lambda,
INFINITY, NULL, rtz);
}