dcadec: reorganise context data

place primary audio coding header data into DCAAudioHeader
structure to make DCAContext clearer
and move channel related data to DCAChan structure to make
them easier to use by extensions

Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
This commit is contained in:
Alexandra Khirnova 2015-10-02 17:53:26 +02:00 committed by Luca Barbato
parent 3a4d369ea4
commit 58b42345b3
2 changed files with 187 additions and 159 deletions

View File

@ -130,6 +130,47 @@ typedef struct QMF64_table {
float rsin[32];
} QMF64_table;
/* Primary audio coding header */
typedef struct DCAAudioHeader {
int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
int subframes; ///< number of subframes
int total_channels; ///< number of channels including extensions
int prim_channels; ///< number of primary audio channels
} DCAAudioHeader;
typedef struct DCAChan {
DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_SUBBANDS][8];
/* Subband samples history (for ADPCM) */
DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_SUBBANDS][4];
int hist_index;
/* Half size is sufficient for core decoding, but for 96 kHz data
* we need QMF with 64 subbands and 1024 samples. */
DECLARE_ALIGNED(32, float, subband_fir_hist)[1024];
DECLARE_ALIGNED(32, float, subband_fir_noidea)[64];
/* Primary audio coding side information */
int prediction_mode[DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
int prediction_vq[DCA_SUBBANDS]; ///< prediction VQ coefs
int bitalloc[DCA_SUBBANDS]; ///< bit allocation index
int transition_mode[DCA_SUBBANDS]; ///< transition mode (transients)
int32_t scale_factor[DCA_SUBBANDS][2];///< scale factors (2 if transient)
int joint_huff; ///< joint subband scale factors codebook
int joint_scale_factor[DCA_SUBBANDS]; ///< joint subband scale factors
int32_t high_freq_vq[DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
} DCAChan;
typedef struct DCAContext {
AVClass *class; ///< class for AVOptions
AVCodecContext *avctx;
@ -163,28 +204,11 @@ typedef struct DCAContext {
int dialog_norm; ///< dialog normalisation parameter
/* Primary audio coding header */
int subframes; ///< number of subframes
int total_channels; ///< number of channels including extensions
int prim_channels; ///< number of primary audio channels
int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
DCAAudioHeader audio_header;
/* Primary audio coding side information */
int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
int32_t scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2];///< scale factors (2 if transient)
int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
float downmix_coef[DCA_PRIM_CHANNELS_MAX + 1][2]; ///< stereo downmix coefficients
int dynrange_coef; ///< dynamic range coefficient
@ -195,23 +219,17 @@ typedef struct DCAContext {
uint8_t core_downmix_amode; ///< audio channel arrangement of embedded downmix
uint16_t core_downmix_codes[DCA_PRIM_CHANNELS_MAX + 1][4]; ///< embedded downmix coefficients (9-bit codes)
int32_t high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
int lfe_scale_factor;
/* Subband samples history (for ADPCM) */
DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
/* Half size is sufficient for core decoding, but for 96 kHz data
* we need QMF with 64 subbands and 1024 samples. */
DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][1024];
DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][64];
int hist_index[DCA_PRIM_CHANNELS_MAX];
DECLARE_ALIGNED(32, float, raXin)[32];
DCAChan dca_chan[DCA_PRIM_CHANNELS_MAX];
int output; ///< type of output
DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1];
uint8_t *extra_channels_buffer;

View File

@ -229,43 +229,47 @@ static int dca_parse_audio_coding_header(DCAContext *s, int base_channel)
static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
s->prim_channels = s->total_channels;
s->audio_header.total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
s->audio_header.prim_channels = s->audio_header.total_channels;
if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
s->prim_channels = DCA_PRIM_CHANNELS_MAX;
if (s->audio_header.prim_channels > DCA_PRIM_CHANNELS_MAX)
s->audio_header.prim_channels = DCA_PRIM_CHANNELS_MAX;
for (i = base_channel; i < s->prim_channels; i++) {
s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
if (s->subband_activity[i] > DCA_SUBBANDS)
s->subband_activity[i] = DCA_SUBBANDS;
for (i = base_channel; i < s->audio_header.prim_channels; i++) {
s->audio_header.subband_activity[i] = get_bits(&s->gb, 5) + 2;
if (s->audio_header.subband_activity[i] > DCA_SUBBANDS)
s->audio_header.subband_activity[i] = DCA_SUBBANDS;
}
for (i = base_channel; i < s->prim_channels; i++) {
s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
if (s->vq_start_subband[i] > DCA_SUBBANDS)
s->vq_start_subband[i] = DCA_SUBBANDS;
for (i = base_channel; i < s->audio_header.prim_channels; i++) {
s->audio_header.vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
if (s->audio_header.vq_start_subband[i] > DCA_SUBBANDS)
s->audio_header.vq_start_subband[i] = DCA_SUBBANDS;
}
get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
get_array(&s->gb, s->audio_header.joint_intensity + base_channel,
s->audio_header.prim_channels - base_channel, 3);
get_array(&s->gb, s->audio_header.transient_huffman + base_channel,
s->audio_header.prim_channels - base_channel, 2);
get_array(&s->gb, s->audio_header.scalefactor_huffman + base_channel,
s->audio_header.prim_channels - base_channel, 3);
get_array(&s->gb, s->audio_header.bitalloc_huffman + base_channel,
s->audio_header.prim_channels - base_channel, 3);
/* Get codebooks quantization indexes */
if (!base_channel)
memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
memset(s->audio_header.quant_index_huffman, 0, sizeof(s->audio_header.quant_index_huffman));
for (j = 1; j < 11; j++)
for (i = base_channel; i < s->prim_channels; i++)
s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
for (i = base_channel; i < s->audio_header.prim_channels; i++)
s->audio_header.quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
/* Get scale factor adjustment */
for (j = 0; j < 11; j++)
for (i = base_channel; i < s->prim_channels; i++)
s->scalefactor_adj[i][j] = 1;
for (i = base_channel; i < s->audio_header.prim_channels; i++)
s->audio_header.scalefactor_adj[i][j] = 1;
for (j = 1; j < 11; j++)
for (i = base_channel; i < s->prim_channels; i++)
if (s->quant_index_huffman[i][j] < thr[j])
s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
for (i = base_channel; i < s->audio_header.prim_channels; i++)
if (s->audio_header.quant_index_huffman[i][j] < thr[j])
s->audio_header.scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
if (s->crc_present) {
/* Audio header CRC check */
@ -336,7 +340,7 @@ static int dca_parse_frame_header(DCAContext *s)
s->output |= DCA_LFE;
/* Primary audio coding header */
s->subframes = get_bits(&s->gb, 4) + 1;
s->audio_header.subframes = get_bits(&s->gb, 4) + 1;
return dca_parse_audio_coding_header(s, 0);
}
@ -371,53 +375,53 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
}
for (j = base_channel; j < s->prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++)
s->prediction_mode[j][k] = get_bits(&s->gb, 1);
for (j = base_channel; j < s->audio_header.prim_channels; j++) {
for (k = 0; k < s->audio_header.subband_activity[j]; k++)
s->dca_chan[j].prediction_mode[k] = get_bits(&s->gb, 1);
}
/* Get prediction codebook */
for (j = base_channel; j < s->prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++) {
if (s->prediction_mode[j][k] > 0) {
for (j = base_channel; j < s->audio_header.prim_channels; j++) {
for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
if (s->dca_chan[j].prediction_mode[k] > 0) {
/* (Prediction coefficient VQ address) */
s->prediction_vq[j][k] = get_bits(&s->gb, 12);
s->dca_chan[j].prediction_vq[k] = get_bits(&s->gb, 12);
}
}
}
/* Bit allocation index */
for (j = base_channel; j < s->prim_channels; j++) {
for (k = 0; k < s->vq_start_subband[j]; k++) {
if (s->bitalloc_huffman[j] == 6)
s->bitalloc[j][k] = get_bits(&s->gb, 5);
else if (s->bitalloc_huffman[j] == 5)
s->bitalloc[j][k] = get_bits(&s->gb, 4);
else if (s->bitalloc_huffman[j] == 7) {
for (j = base_channel; j < s->audio_header.prim_channels; j++) {
for (k = 0; k < s->audio_header.vq_start_subband[j]; k++) {
if (s->audio_header.bitalloc_huffman[j] == 6)
s->dca_chan[j].bitalloc[k] = get_bits(&s->gb, 5);
else if (s->audio_header.bitalloc_huffman[j] == 5)
s->dca_chan[j].bitalloc[k] = get_bits(&s->gb, 4);
else if (s->audio_header.bitalloc_huffman[j] == 7) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid bit allocation index\n");
return AVERROR_INVALIDDATA;
} else {
s->bitalloc[j][k] =
get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
s->dca_chan[j].bitalloc[k] =
get_bitalloc(&s->gb, &dca_bitalloc_index, s->audio_header.bitalloc_huffman[j]);
}
if (s->bitalloc[j][k] > 26) {
if (s->dca_chan[j].bitalloc[k] > 26) {
ff_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
j, k, s->bitalloc[j][k]);
j, k, s->dca_chan[j].bitalloc[k]);
return AVERROR_INVALIDDATA;
}
}
}
/* Transition mode */
for (j = base_channel; j < s->prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++) {
s->transition_mode[j][k] = 0;
for (j = base_channel; j < s->audio_header.prim_channels; j++) {
for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
s->dca_chan[j].transition_mode[k] = 0;
if (s->subsubframes[s->current_subframe] > 1 &&
k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
s->transition_mode[j][k] =
get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
k < s->audio_header.vq_start_subband[j] && s->dca_chan[j].bitalloc[k] > 0) {
s->dca_chan[j].transition_mode[k] =
get_bitalloc(&s->gb, &dca_tmode, s->audio_header.transient_huffman[j]);
}
}
}
@ -425,14 +429,14 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
for (j = base_channel; j < s->prim_channels; j++) {
for (j = base_channel; j < s->audio_header.prim_channels; j++) {
const uint32_t *scale_table;
int scale_sum, log_size;
memset(s->scale_factor[j], 0,
s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
memset(s->dca_chan[j].scale_factor, 0,
s->audio_header.subband_activity[j] * sizeof(s->dca_chan[j].scale_factor[0][0]) * 2);
if (s->scalefactor_huffman[j] == 6) {
if (s->audio_header.scalefactor_huffman[j] == 6) {
scale_table = ff_dca_scale_factor_quant7;
log_size = 7;
} else {
@ -443,45 +447,46 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
/* When huffman coded, only the difference is encoded */
scale_sum = 0;
for (k = 0; k < s->subband_activity[j]; k++) {
if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
s->scale_factor[j][k][0] = scale_table[scale_sum];
for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
if (k >= s->audio_header.vq_start_subband[j] || s->dca_chan[j].bitalloc[k] > 0) {
scale_sum = get_scale(&s->gb, s->audio_header.scalefactor_huffman[j], scale_sum, log_size);
s->dca_chan[j].scale_factor[k][0] = scale_table[scale_sum];
}
if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
if (k < s->audio_header.vq_start_subband[j] && s->dca_chan[j].transition_mode[k]) {
/* Get second scale factor */
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
s->scale_factor[j][k][1] = scale_table[scale_sum];
scale_sum = get_scale(&s->gb, s->audio_header.scalefactor_huffman[j], scale_sum, log_size);
s->dca_chan[j].scale_factor[k][1] = scale_table[scale_sum];
}
}
}
/* Joint subband scale factor codebook select */
for (j = base_channel; j < s->prim_channels; j++) {
for (j = base_channel; j < s->audio_header.prim_channels; j++) {
/* Transmitted only if joint subband coding enabled */
if (s->joint_intensity[j] > 0)
s->joint_huff[j] = get_bits(&s->gb, 3);
if (s->audio_header.joint_intensity[j] > 0)
s->dca_chan[j].joint_huff = get_bits(&s->gb, 3);
}
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
/* Scale factors for joint subband coding */
for (j = base_channel; j < s->prim_channels; j++) {
for (j = base_channel; j < s->audio_header.prim_channels; j++) {
int source_channel;
/* Transmitted only if joint subband coding enabled */
if (s->joint_intensity[j] > 0) {
if (s->audio_header.joint_intensity[j] > 0) {
int scale = 0;
source_channel = s->joint_intensity[j] - 1;
source_channel = s->audio_header.joint_intensity[j] - 1;
/* When huffman coded, only the difference is encoded
* (is this valid as well for joint scales ???) */
for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
for (k = s->audio_header.subband_activity[j];
k < s->audio_header.subband_activity[source_channel]; k++) {
scale = get_scale(&s->gb, s->dca_chan[j].joint_huff, 64 /* bias */, 7);
s->dca_chan[j].joint_scale_factor[k] = scale; /*joint_scale_table[scale]; */
}
if (!(s->debug_flag & 0x02)) {
@ -506,10 +511,10 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
*/
/* VQ encoded high frequency subbands */
for (j = base_channel; j < s->prim_channels; j++)
for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
for (j = base_channel; j < s->audio_header.prim_channels; j++)
for (k = s->audio_header.vq_start_subband[j]; k < s->audio_header.subband_activity[j]; k++)
/* 1 vector -> 32 samples */
s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
s->dca_chan[j].high_freq_vq[k] = get_bits(&s->gb, 10);
/* Low frequency effect data */
if (!base_channel && s->lfe) {
@ -543,7 +548,7 @@ static void qmf_32_subbands(DCAContext *s, int chans,
{
const float *prCoeff;
int sb_act = s->subband_activity[chans];
int sb_act = s->audio_header.subband_activity[chans];
scale *= sqrt(1 / 8.0);
@ -554,9 +559,9 @@ static void qmf_32_subbands(DCAContext *s, int chans,
prCoeff = ff_dca_fir_32bands_perfect;
s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
s->subband_fir_hist[chans],
&s->hist_index[chans],
s->subband_fir_noidea[chans], prCoeff,
s->dca_chan[chans].subband_fir_hist,
&s->dca_chan[chans].hist_index,
s->dca_chan[chans].subband_fir_noidea, prCoeff,
samples_out, s->raXin, scale);
}
@ -591,14 +596,14 @@ static void qmf_64_subbands(DCAContext *s, int chans, float samples_in[64][SAMPL
{
float raXin[64];
float A[32], B[32];
float *raX = s->subband_fir_hist[chans];
float *raZ = s->subband_fir_noidea[chans];
float *raX = s->dca_chan[chans].subband_fir_hist;
float *raZ = s->dca_chan[chans].subband_fir_noidea;
unsigned i, j, k, subindex;
for (i = s->subband_activity[chans]; i < 64; i++)
for (i = s->audio_header.subband_activity[chans]; i < 64; i++)
raXin[i] = 0.0;
for (subindex = 0; subindex < SAMPLES_PER_SUBBAND; subindex++) {
for (i = 0; i < s->subband_activity[chans]; i++)
for (i = 0; i < s->audio_header.subband_activity[chans]; i++)
raXin[i] = samples_in[i][subindex];
for (k = 0; k < 32; k++) {
@ -787,8 +792,6 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
const float *quant_step_table;
/* FIXME */
float (*subband_samples)[DCA_SUBBANDS][SAMPLES_PER_SUBBAND] = s->subband_samples[block_index];
LOCAL_ALIGNED_16(int32_t, block, [SAMPLES_PER_SUBBAND * DCA_SUBBANDS]);
/*
@ -801,17 +804,18 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
else
quant_step_table = ff_dca_lossy_quant_d;
for (k = base_channel; k < s->prim_channels; k++) {
for (k = base_channel; k < s->audio_header.prim_channels; k++) {
float (*subband_samples)[8] = s->dca_chan[k].subband_samples[block_index];
float rscale[DCA_SUBBANDS];
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
for (l = 0; l < s->vq_start_subband[k]; l++) {
for (l = 0; l < s->audio_header.vq_start_subband[k]; l++) {
int m;
/* Select the mid-tread linear quantizer */
int abits = s->bitalloc[k][l];
int abits = s->dca_chan[k].bitalloc[l];
float quant_step_size = quant_step_table[abits];
@ -820,7 +824,7 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
*/
/* Select quantization index code book */
int sel = s->quant_index_huffman[k][abits];
int sel = s->audio_header.quant_index_huffman[k][abits];
/*
* Extract bits from the bit stream
@ -830,9 +834,10 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
memset(block + SAMPLES_PER_SUBBAND * l, 0, SAMPLES_PER_SUBBAND * sizeof(block[0]));
} else {
/* Deal with transients */
int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
s->scalefactor_adj[k][sel];
int sfi = s->dca_chan[k].transition_mode[l] &&
subsubframe >= s->dca_chan[k].transition_mode[l];
rscale[l] = quant_step_size * s->dca_chan[k].scale_factor[l][sfi] *
s->audio_header.scalefactor_adj[k][sel];
if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
if (abits <= 7) {
@ -865,54 +870,61 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
}
}
s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
block, rscale, SAMPLES_PER_SUBBAND * s->vq_start_subband[k]);
s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[0],
block, rscale, SAMPLES_PER_SUBBAND * s->audio_header.vq_start_subband[k]);
for (l = 0; l < s->vq_start_subband[k]; l++) {
for (l = 0; l < s->audio_header.vq_start_subband[k]; l++) {
int m;
/*
* Inverse ADPCM if in prediction mode
*/
if (s->prediction_mode[k][l]) {
if (s->dca_chan[k].prediction_mode[l]) {
int n;
if (s->predictor_history)
subband_samples[k][l][0] += (ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] *
s->subband_samples_hist[k][l][3] +
ff_dca_adpcm_vb[s->prediction_vq[k][l]][1] *
s->subband_samples_hist[k][l][2] +
ff_dca_adpcm_vb[s->prediction_vq[k][l]][2] *
s->subband_samples_hist[k][l][1] +
ff_dca_adpcm_vb[s->prediction_vq[k][l]][3] *
s->subband_samples_hist[k][l][0]) *
subband_samples[l][0] += (ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][0] *
s->dca_chan[k].subband_samples_hist[l][3] +
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][1] *
s->dca_chan[k].subband_samples_hist[l][2] +
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][2] *
s->dca_chan[k].subband_samples_hist[l][1] +
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][3] *
s->dca_chan[k].subband_samples_hist[l][0]) *
(1.0f / 8192);
for (m = 1; m < SAMPLES_PER_SUBBAND; m++) {
float sum = ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] *
subband_samples[k][l][m - 1];
float sum = ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][0] *
subband_samples[l][m - 1];
for (n = 2; n <= 4; n++)
if (m >= n)
sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 1] *
subband_samples[k][l][m - n];
sum += ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][n - 1] *
subband_samples[l][m - n];
else if (s->predictor_history)
sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 1] *
s->subband_samples_hist[k][l][m - n + 4];
subband_samples[k][l][m] += sum * 1.0f / 8192;
sum += ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][n - 1] *
s->dca_chan[k].subband_samples_hist[l][m - n + 4];
subband_samples[l][m] += sum * 1.0f / 8192;
}
}
}
/* Backup predictor history for adpcm */
for (l = 0; l < DCA_SUBBANDS; l++)
AV_COPY128(s->dca_chan[k].subband_samples_hist[l], &subband_samples[l][4]);
/*
* Decode VQ encoded high frequencies
*/
if (s->subband_activity[k] > s->vq_start_subband[k]) {
if (s->audio_header.subband_activity[k] > s->audio_header.vq_start_subband[k]) {
if (!s->debug_flag & 0x01) {
av_log(s->avctx, AV_LOG_DEBUG,
"Stream with high frequencies VQ coding\n");
s->debug_flag |= 0x01;
}
s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
s->dcadsp.decode_hf(subband_samples, s->dca_chan[k].high_freq_vq,
ff_dca_high_freq_vq, subsubframe * SAMPLES_PER_SUBBAND,
s->scale_factor[k], s->vq_start_subband[k],
s->subband_activity[k]);
s->dca_chan[k].scale_factor,
s->audio_header.vq_start_subband[k],
s->audio_header.subband_activity[k]);
}
}
@ -924,17 +936,11 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
}
}
/* Backup predictor history for adpcm */
for (k = base_channel; k < s->prim_channels; k++)
for (l = 0; l < s->vq_start_subband[k]; l++)
AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
return 0;
}
static int dca_filter_channels(DCAContext *s, int block_index, int upsample)
{
float (*subband_samples)[DCA_SUBBANDS][SAMPLES_PER_SUBBAND] = s->subband_samples[block_index];
int k;
if (upsample) {
@ -945,18 +951,22 @@ static int dca_filter_channels(DCAContext *s, int block_index, int upsample)
}
/* 64 subbands QMF */
for (k = 0; k < s->prim_channels; k++) {
for (k = 0; k < s->audio_header.prim_channels; k++) {
float (*subband_samples)[SAMPLES_PER_SUBBAND] = s->dca_chan[k].subband_samples[block_index];
if (s->channel_order_tab[k] >= 0)
qmf_64_subbands(s, k, subband_samples[k],
qmf_64_subbands(s, k, subband_samples,
s->samples_chanptr[s->channel_order_tab[k]],
/* Upsampling needs a factor 2 here. */
M_SQRT2 / 32768.0);
}
} else {
/* 32 subbands QMF */
for (k = 0; k < s->prim_channels; k++) {
for (k = 0; k < s->audio_header.prim_channels; k++) {
float (*subband_samples)[SAMPLES_PER_SUBBAND] = s->dca_chan[k].subband_samples[block_index];
if (s->channel_order_tab[k] >= 0)
qmf_32_subbands(s, k, subband_samples[k],
qmf_32_subbands(s, k, subband_samples,
s->samples_chanptr[s->channel_order_tab[k]],
M_SQRT1_2 / 32768.0);
}
@ -983,7 +993,7 @@ static int dca_filter_channels(DCAContext *s, int block_index, int upsample)
/* FIXME: This downmixing is probably broken with upsample.
* Probably totally broken also with XLL in general. */
/* Downmixing to Stereo */
if (s->prim_channels + !!s->lfe > 2 &&
if (s->audio_header.prim_channels + !!s->lfe > 2 &&
s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
s->channel_order_tab);
@ -1060,7 +1070,7 @@ static int dca_subframe_footer(DCAContext *s, int base_channel)
return AVERROR_INVALIDDATA;
}
for (out = 0; out < ff_dca_channels[s->core_downmix_amode]; out++) {
for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
for (in = 0; in < s->audio_header.prim_channels + !!s->lfe; in++) {
uint16_t tmp = get_bits(&s->gb, 9);
if ((tmp & 0xFF) > 241) {
av_log(s->avctx, AV_LOG_ERROR,
@ -1106,9 +1116,9 @@ static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
int ret;
/* Sanity check */
if (s->current_subframe >= s->subframes) {
if (s->current_subframe >= s->audio_header.subframes) {
av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
s->current_subframe, s->subframes);
s->current_subframe, s->audio_header.subframes);
return AVERROR_INVALIDDATA;
}
@ -1128,7 +1138,7 @@ static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
s->current_subsubframe = 0;
s->current_subframe++;
}
if (s->current_subframe >= s->subframes) {
if (s->current_subframe >= s->audio_header.subframes) {
/* Read subframe footer */
if ((ret = dca_subframe_footer(s, base_channel)))
return ret;
@ -1169,7 +1179,7 @@ static int scan_for_extensions(AVCodecContext *avctx)
case DCA_SYNCWORD_XCH: {
int ext_amode, xch_fsize;
s->xch_base_channel = s->prim_channels;
s->xch_base_channel = s->audio_header.prim_channels;
/* validate sync word using XCHFSIZE field */
xch_fsize = show_bits(&s->gb, 10);
@ -1254,7 +1264,7 @@ static int set_channel_layout(AVCodecContext *avctx, int channels, int num_core_
if (s->amode < 16) {
avctx->channel_layout = dca_core_channel_layout[s->amode];
if (s->prim_channels + !!s->lfe > 2 &&
if (s->audio_header.prim_channels + !!s->lfe > 2 &&
avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
/*
* Neither the core's auxiliary data nor our default tables contain
@ -1289,7 +1299,7 @@ static int set_channel_layout(AVCodecContext *avctx, int channels, int num_core_
if (num_core_channels + !!s->lfe > 2 &&
avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
channels = 2;
s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
s->output = s->audio_header.prim_channels == 2 ? s->amode : DCA_STEREO;
avctx->channel_layout = AV_CH_LAYOUT_STEREO;
/* Stereo downmix coefficients
@ -1315,7 +1325,7 @@ static int set_channel_layout(AVCodecContext *avctx, int channels, int num_core_
if (num_core_channels + !!s->lfe >
FF_ARRAY_ELEMS(ff_dca_default_coeffs[0])) {
avpriv_request_sample(s->avctx, "Downmixing %d channels",
s->prim_channels + !!s->lfe);
s->audio_header.prim_channels + !!s->lfe);
return AVERROR_PATCHWELCOME;
}
for (i = 0; i < num_core_channels + !!s->lfe; i++) {
@ -1387,7 +1397,7 @@ static int dca_decode_frame(AVCodecContext *avctx, void *data,
}
/* record number of core channels incase less than max channels are requested */
num_core_channels = s->prim_channels;
num_core_channels = s->audio_header.prim_channels;
if (s->ext_coding)
s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
@ -1398,7 +1408,7 @@ static int dca_decode_frame(AVCodecContext *avctx, void *data,
avctx->profile = s->profile;
full_channels = channels = s->prim_channels + !!s->lfe;
full_channels = channels = s->audio_header.prim_channels + !!s->lfe;
ret = set_channel_layout(avctx, channels, num_core_channels);
if (ret < 0)