Snow Slicing patch by (Yartrebo) yartrebo earthlink net

Originally committed as revision 4101 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
Yartrebo 2005-04-03 15:43:57 +00:00 committed by Michael Niedermayer
parent d13eef3d3d
commit a0d1931c0e

View File

@ -371,6 +371,11 @@ typedef struct BlockNode{
#define LOG2_MB_SIZE 4 #define LOG2_MB_SIZE 4
#define MB_SIZE (1<<LOG2_MB_SIZE) #define MB_SIZE (1<<LOG2_MB_SIZE)
typedef struct x_and_coeff{
int16_t x;
int16_t coeff;
} x_and_coeff;
typedef struct SubBand{ typedef struct SubBand{
int level; int level;
int stride; int stride;
@ -378,8 +383,10 @@ typedef struct SubBand{
int height; int height;
int qlog; ///< log(qscale)/log[2^(1/6)] int qlog; ///< log(qscale)/log[2^(1/6)]
DWTELEM *buf; DWTELEM *buf;
int16_t *x; int buf_x_offset;
DWTELEM *coeff; int buf_y_offset;
int stride_line; ///< Stride measured in lines, not pixels.
x_and_coeff * x_coeff;
struct SubBand *parent; struct SubBand *parent;
uint8_t state[/*7*2*/ 7 + 512][32]; uint8_t state[/*7*2*/ 7 + 512][32];
}SubBand; }SubBand;
@ -390,6 +397,17 @@ typedef struct Plane{
SubBand band[MAX_DECOMPOSITIONS][4]; SubBand band[MAX_DECOMPOSITIONS][4];
}Plane; }Plane;
/** Used to minimize the amount of memory used in order to optimize cache performance. **/
typedef struct {
DWTELEM * * line; ///< For use by idwt and predict_slices.
DWTELEM * * data_stack; ///< Used for internal purposes.
int data_stack_top;
int line_count;
int line_width;
int data_count;
DWTELEM * base_buffer; ///< Buffer that this structure is caching.
} slice_buffer;
typedef struct SnowContext{ typedef struct SnowContext{
// MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independant of MpegEncContext, so this will be removed then (FIXME/XXX) // MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independant of MpegEncContext, so this will be removed then (FIXME/XXX)
@ -426,6 +444,7 @@ typedef struct SnowContext{
int block_max_depth; int block_max_depth;
Plane plane[MAX_PLANES]; Plane plane[MAX_PLANES];
BlockNode *block; BlockNode *block;
slice_buffer sb;
MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independant of MpegEncContext, so this will be removed then (FIXME/XXX) MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independant of MpegEncContext, so this will be removed then (FIXME/XXX)
}SnowContext; }SnowContext;
@ -438,6 +457,98 @@ typedef struct {
int y; int y;
} dwt_compose_t; } dwt_compose_t;
#define slice_buffer_get_line(slice_buf, line_num) ((slice_buf)->line[line_num] ? (slice_buf)->line[line_num] : slice_buffer_load_line((slice_buf), (line_num)))
//#define slice_buffer_get_line(slice_buf, line_num) (slice_buffer_load_line((slice_buf), (line_num)))
static void slice_buffer_init(slice_buffer * buf, int line_count, int max_allocated_lines, int line_width, DWTELEM * base_buffer)
{
int i;
buf->base_buffer = base_buffer;
buf->line_count = line_count;
buf->line_width = line_width;
buf->data_count = max_allocated_lines;
buf->line = (DWTELEM * *) av_mallocz (sizeof(DWTELEM *) * line_count);
buf->data_stack = (DWTELEM * *) av_malloc (sizeof(DWTELEM *) * max_allocated_lines);
for (i = 0; i < max_allocated_lines; i++)
{
buf->data_stack[i] = (DWTELEM *) av_malloc (sizeof(DWTELEM) * line_width);
}
buf->data_stack_top = max_allocated_lines - 1;
}
static DWTELEM * slice_buffer_load_line(slice_buffer * buf, int line)
{
int i;
int offset;
DWTELEM * buffer;
// av_log(NULL, AV_LOG_DEBUG, "Cache hit: %d\n", line);
assert(buf->data_stack_top >= 0);
// assert(!buf->line[line]);
if (buf->line[line])
return buf->line[line];
offset = buf->line_width * line;
buffer = buf->data_stack[buf->data_stack_top];
buf->data_stack_top--;
buf->line[line] = buffer;
// av_log(NULL, AV_LOG_DEBUG, "slice_buffer_load_line: line: %d remaining: %d\n", line, buf->data_stack_top + 1);
return buffer;
}
static void slice_buffer_release(slice_buffer * buf, int line)
{
int i;
int offset;
DWTELEM * buffer;
assert(line >= 0 && line < buf->line_count);
assert(buf->line[line]);
offset = buf->line_width * line;
buffer = buf->line[line];
buf->data_stack_top++;
buf->data_stack[buf->data_stack_top] = buffer;
buf->line[line] = NULL;
// av_log(NULL, AV_LOG_DEBUG, "slice_buffer_release: line: %d remaining: %d\n", line, buf->data_stack_top + 1);
}
static void slice_buffer_flush(slice_buffer * buf)
{
int i;
for (i = 0; i < buf->line_count; i++)
{
if (buf->line[i])
{
// av_log(NULL, AV_LOG_DEBUG, "slice_buffer_flush: line: %d \n", i);
slice_buffer_release(buf, i);
}
}
}
static void slice_buffer_destroy(slice_buffer * buf)
{
int i;
slice_buffer_flush(buf);
for (i = buf->data_count - 1; i >= 0; i--)
{
assert(buf->data_stack[i]);
av_free(buf->data_stack[i]);
}
assert(buf->data_stack);
av_free(buf->data_stack);
assert(buf->line);
av_free(buf->line);
}
#ifdef __sgi #ifdef __sgi
// Avoid a name clash on SGI IRIX // Avoid a name clash on SGI IRIX
#undef qexp #undef qexp
@ -1174,12 +1285,45 @@ static void vertical_compose53iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int wid
} }
} }
static void spatial_compose53i_buffered_init(dwt_compose_t *cs, slice_buffer * sb, int height, int stride_line){
cs->b0 = slice_buffer_get_line(sb, mirror(-1-1, height-1) * stride_line);
cs->b1 = slice_buffer_get_line(sb, mirror(-1 , height-1) * stride_line);
cs->y = -1;
}
static void spatial_compose53i_init(dwt_compose_t *cs, DWTELEM *buffer, int height, int stride){ static void spatial_compose53i_init(dwt_compose_t *cs, DWTELEM *buffer, int height, int stride){
cs->b0 = buffer + mirror(-1-1, height-1)*stride; cs->b0 = buffer + mirror(-1-1, height-1)*stride;
cs->b1 = buffer + mirror(-1 , height-1)*stride; cs->b1 = buffer + mirror(-1 , height-1)*stride;
cs->y = -1; cs->y = -1;
} }
static void spatial_compose53i_dy_buffered(dwt_compose_t *cs, slice_buffer * sb, int width, int height, int stride_line){
int y= cs->y;
int mirror0 = mirror(y-1, height-1);
int mirror1 = mirror(y , height-1);
int mirror2 = mirror(y+1, height-1);
int mirror3 = mirror(y+2, height-1);
DWTELEM *b0= cs->b0;
DWTELEM *b1= cs->b1;
DWTELEM *b2= slice_buffer_get_line(sb, mirror2 * stride_line);
DWTELEM *b3= slice_buffer_get_line(sb, mirror3 * stride_line);
{START_TIMER
if(mirror1 <= mirror3) vertical_compose53iL0(b1, b2, b3, width);
if(mirror0 <= mirror2) vertical_compose53iH0(b0, b1, b2, width);
STOP_TIMER("vertical_compose53i*")}
{START_TIMER
if(y-1 >= 0) horizontal_compose53i(b0, width);
if(mirror0 <= mirror2) horizontal_compose53i(b1, width);
STOP_TIMER("horizontal_compose53i")}
cs->b0 = b2;
cs->b1 = b3;
cs->y += 2;
}
static void spatial_compose53i_dy(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride){ static void spatial_compose53i_dy(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride){
int y= cs->y; int y= cs->y;
DWTELEM *b0= cs->b0; DWTELEM *b0= cs->b0;
@ -1259,6 +1403,14 @@ static void vertical_compose97iL1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int wid
} }
} }
static void spatial_compose97i_buffered_init(dwt_compose_t *cs, slice_buffer * sb, int height, int stride_line){
cs->b0 = slice_buffer_get_line(sb, mirror(-3-1, height-1) * stride_line);
cs->b1 = slice_buffer_get_line(sb, mirror(-3 , height-1) * stride_line);
cs->b2 = slice_buffer_get_line(sb, mirror(-3+1, height-1) * stride_line);
cs->b3 = slice_buffer_get_line(sb, mirror(-3+2, height-1) * stride_line);
cs->y = -3;
}
static void spatial_compose97i_init(dwt_compose_t *cs, DWTELEM *buffer, int height, int stride){ static void spatial_compose97i_init(dwt_compose_t *cs, DWTELEM *buffer, int height, int stride){
cs->b0 = buffer + mirror(-3-1, height-1)*stride; cs->b0 = buffer + mirror(-3-1, height-1)*stride;
cs->b1 = buffer + mirror(-3 , height-1)*stride; cs->b1 = buffer + mirror(-3 , height-1)*stride;
@ -1267,6 +1419,61 @@ static void spatial_compose97i_init(dwt_compose_t *cs, DWTELEM *buffer, int heig
cs->y = -3; cs->y = -3;
} }
static void spatial_compose97i_dy_buffered(dwt_compose_t *cs, slice_buffer * sb, int width, int height, int stride_line){
int y = cs->y;
int mirror0 = mirror(y - 1, height - 1);
int mirror1 = mirror(y + 0, height - 1);
int mirror2 = mirror(y + 1, height - 1);
int mirror3 = mirror(y + 2, height - 1);
int mirror4 = mirror(y + 3, height - 1);
int mirror5 = mirror(y + 4, height - 1);
DWTELEM *b0= cs->b0;
DWTELEM *b1= cs->b1;
DWTELEM *b2= cs->b2;
DWTELEM *b3= cs->b3;
DWTELEM *b4= slice_buffer_get_line(sb, mirror4 * stride_line);
DWTELEM *b5= slice_buffer_get_line(sb, mirror5 * stride_line);
if(stride_line == 1 && y+4 < height && 0){
int x;
for(x=0; x<width/2; x++)
b5[x] += 64*2;
for(; x<width; x++)
b5[x] += 169*2;
}
// if(mirror3 <= mirror5 && mirror2 <= mirror4 && mirror1 <= mirror3 && mirror0 <= mirror2)
// {
//{START_TIMER
// vertical_compose97_complete(b0, b1, b2, b3, b4, b5, width);
//if(width>400){
//STOP_TIMER("vertical_compose97i-NEW")}}
// }
// else
// {
{START_TIMER
if(mirror3 <= mirror5) vertical_compose97iL1(b3, b4, b5, width);
if(mirror2 <= mirror4) vertical_compose97iH1(b2, b3, b4, width);
if(mirror1 <= mirror3) vertical_compose97iL0(b1, b2, b3, width);
if(mirror0 <= mirror2) vertical_compose97iH0(b0, b1, b2, width);
if(width>400){
STOP_TIMER("vertical_compose97i")}}
// }
{START_TIMER
if(y-1>= 0) horizontal_compose97i(b0, width);
if(mirror0 <= mirror2) horizontal_compose97i(b1, width);
if(width>400 && mirror0 <= mirror2){
STOP_TIMER("horizontal_compose97i")}}
cs->b0=b2;
cs->b1=b3;
cs->b2=b4;
cs->b3=b5;
cs->y += 2;
}
static void spatial_compose97i_dy(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride){ static void spatial_compose97i_dy(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride){
int y = cs->y; int y = cs->y;
DWTELEM *b0= cs->b0; DWTELEM *b0= cs->b0;
@ -1312,6 +1519,19 @@ static void spatial_compose97i(DWTELEM *buffer, int width, int height, int strid
spatial_compose97i_dy(&cs, buffer, width, height, stride); spatial_compose97i_dy(&cs, buffer, width, height, stride);
} }
void ff_spatial_idwt_buffered_init(dwt_compose_t *cs, slice_buffer * sb, int width, int height, int stride_line, int type, int decomposition_count){
int level;
for(level=decomposition_count-1; level>=0; level--){
switch(type){
case 0: spatial_compose97i_buffered_init(cs+level, sb, height>>level, stride_line<<level); break;
case 1: spatial_compose53i_buffered_init(cs+level, sb, height>>level, stride_line<<level); break;
/* not slicified yet */
case 2: /*spatial_composeX(buffer, width>>level, height>>level, stride<<level); break;*/
av_log(NULL, AV_LOG_ERROR, "spatial_composeX neither buffered nor slicified yet.\n"); break;
}
}
}
void ff_spatial_idwt_init(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){ void ff_spatial_idwt_init(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){
int level; int level;
for(level=decomposition_count-1; level>=0; level--){ for(level=decomposition_count-1; level>=0; level--){
@ -1342,6 +1562,24 @@ void ff_spatial_idwt_slice(dwt_compose_t *cs, DWTELEM *buffer, int width, int he
} }
} }
void ff_spatial_idwt_buffered_slice(dwt_compose_t *cs, slice_buffer * slice_buf, int width, int height, int stride_line, int type, int decomposition_count, int y){
const int support = type==1 ? 3 : 5;
int level;
if(type==2) return;
for(level=decomposition_count-1; level>=0; level--){
while(cs[level].y <= FFMIN((y>>level)+support, height>>level)){
switch(type){
case 0: spatial_compose97i_dy_buffered(cs+level, slice_buf, width>>level, height>>level, stride_line<<level);
break;
case 1: spatial_compose53i_dy_buffered(cs+level, slice_buf, width>>level, height>>level, stride_line<<level);
break;
case 2: break;
}
}
}
}
void ff_spatial_idwt(DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){ void ff_spatial_idwt(DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){
if(type==2){ if(type==2){
int level; int level;
@ -1476,20 +1714,10 @@ static int encode_subband(SnowContext *s, SubBand *b, DWTELEM *src, DWTELEM *par
// encode_subband_dzr(s, b, src, parent, stride, orientation); // encode_subband_dzr(s, b, src, parent, stride, orientation);
} }
static inline void decode_subband(SnowContext *s, SubBand *b, DWTELEM *src, DWTELEM *parent, int stride, int orientation){ static inline void unpack_coeffs(SnowContext *s, SubBand *b, SubBand * parent, int orientation){
const int w= b->width; const int w= b->width;
const int h= b->height; const int h= b->height;
int x,y; int x,y;
const int qlog= clip(s->qlog + b->qlog, 0, 128);
int qmul= qexp[qlog&7]<<(qlog>>3);
int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
START_TIMER
if(b->buf == s->spatial_dwt_buffer || s->qlog == LOSSLESS_QLOG){
qadd= 0;
qmul= 1<<QEXPSHIFT;
}
if(1){ if(1){
int run; int run;
@ -1499,16 +1727,13 @@ static inline void decode_subband(SnowContext *s, SubBand *b, DWTELEM *src, DWTE
int parent_index= 0; int parent_index= 0;
int prev_parent_index= 0; int prev_parent_index= 0;
for(y=0; y<b->height; y++)
memset(&src[y*stride], 0, b->width*sizeof(DWTELEM));
run= get_symbol2(&s->c, b->state[1], 3); run= get_symbol2(&s->c, b->state[1], 3);
for(y=0; y<h; y++){ for(y=0; y<h; y++){
int v=0; int v=0;
int lt=0, t=0, rt=0; int lt=0, t=0, rt=0;
if(y && b->x[prev_index] == 0){ if(y && b->x_coeff[prev_index].x == 0){
rt= b->coeff[prev_index]; rt= b->x_coeff[prev_index].coeff;
} }
for(x=0; x<w; x++){ for(x=0; x<w; x++){
int p=0; int p=0;
@ -1517,19 +1742,19 @@ static inline void decode_subband(SnowContext *s, SubBand *b, DWTELEM *src, DWTE
lt= t; t= rt; lt= t; t= rt;
if(y){ if(y){
if(b->x[prev_index] <= x) if(b->x_coeff[prev_index].x <= x)
prev_index++; prev_index++;
if(b->x[prev_index] == x + 1) if(b->x_coeff[prev_index].x == x + 1)
rt= b->coeff[prev_index]; rt= b->x_coeff[prev_index].coeff;
else else
rt=0; rt=0;
} }
if(parent){ if(parent){
if(x>>1 > b->parent->x[parent_index]){ if(x>>1 > parent->x_coeff[parent_index].x){
parent_index++; parent_index++;
} }
if(x>>1 == b->parent->x[parent_index]){ if(x>>1 == parent->x_coeff[parent_index].x){
p= b->parent->coeff[parent_index]; p= parent->x_coeff[parent_index].coeff;
} }
} }
if(/*ll|*/l|lt|t|rt|p){ if(/*ll|*/l|lt|t|rt|p){
@ -1547,8 +1772,8 @@ static inline void decode_subband(SnowContext *s, SubBand *b, DWTELEM *src, DWTE
if(y && parent){ if(y && parent){
int max_run; int max_run;
max_run= FFMIN(run, b->x[prev_index] - x - 2); max_run= FFMIN(run, b->x_coeff[prev_index].x - x - 2);
max_run= FFMIN(max_run, 2*b->parent->x[parent_index] - x - 1); max_run= FFMIN(max_run, 2*parent->x_coeff[parent_index].x - x - 1);
x+= max_run; x+= max_run;
run-= max_run; run-= max_run;
} }
@ -1557,39 +1782,78 @@ static inline void decode_subband(SnowContext *s, SubBand *b, DWTELEM *src, DWTE
if(v){ if(v){
int context= av_log2(/*ABS(ll) + */3*ABS(l) + ABS(lt) + 2*ABS(t) + ABS(rt) + ABS(p)); int context= av_log2(/*ABS(ll) + */3*ABS(l) + ABS(lt) + 2*ABS(t) + ABS(rt) + ABS(p));
v= get_symbol2(&s->c, b->state[context + 2], context-4) + 1; v= get_symbol2(&s->c, b->state[context + 2], context-4) + 1;
if(get_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3b[l&0xFF] + 3*quant3b[t&0xFF]])){ if(get_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3b[l&0xFF] + 3*quant3b[t&0xFF]]))
src[x + y*stride]=-(( v*qmul + qadd)>>(QEXPSHIFT)); v *= -1;
v= -v; b->x_coeff[index].x=x;
}else{ b->x_coeff[index++].coeff= v;
src[x + y*stride]= (( v*qmul + qadd)>>(QEXPSHIFT));
}
b->x[index]=x; //FIXME interleave x/coeff
b->coeff[index++]= v;
} }
} }
b->x[index++]= w+1; //end marker b->x_coeff[index++].x= w+1; //end marker
prev_index= prev2_index; prev_index= prev2_index;
prev2_index= index; prev2_index= index;
if(parent){ if(parent){
while(b->parent->x[parent_index] != b->parent->width+1)
parent_index++;
parent_index++;
if(y&1){ if(y&1){
while(parent->x_coeff[parent_index].x != parent->width+1)
parent_index++;
parent_index++;
prev_parent_index= parent_index; prev_parent_index= parent_index;
}else{ }else{
parent_index= prev_parent_index; parent_index= prev_parent_index;
} }
} }
} }
b->x[index++]= w+1; //end marker
if(w > 200 /*level+1 == s->spatial_decomposition_count*/){ b->x_coeff[index++].x= w+1; //end marker
}
}
static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
const int w= b->width;
int x,y;
const int qlog= clip(s->qlog + b->qlog, 0, 128);
int qmul= qexp[qlog&7]<<(qlog>>3);
int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
int new_index = 0;
START_TIMER
if(b->buf == s->spatial_dwt_buffer || s->qlog == LOSSLESS_QLOG){
qadd= 0;
qmul= 1<<QEXPSHIFT;
}
/* If we are on the second or later slice, restore our index. */
if (start_y != 0)
new_index = save_state[0];
for(y=start_y; y<h; y++){
int x = 0;
int v;
DWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset;
memset(line, 0, b->width*sizeof(DWTELEM));
v = b->x_coeff[new_index].coeff;
x = b->x_coeff[new_index++].x;
while(x < w)
{
if (v < 0)
line[x] = -(( -v*qmul + qadd)>>(QEXPSHIFT));
else
line[x] = (( v*qmul + qadd)>>(QEXPSHIFT));
v = b->x_coeff[new_index].coeff;
x = b->x_coeff[new_index++].x;
}
}
if(w > 200 && start_y != 0/*level+1 == s->spatial_decomposition_count*/){
STOP_TIMER("decode_subband") STOP_TIMER("decode_subband")
} }
/* Save our variables for the next slice. */
save_state[0] = new_index;
return; return;
} }
}
static void reset_contexts(SnowContext *s){ static void reset_contexts(SnowContext *s){
int plane_index, level, orientation; int plane_index, level, orientation;
@ -2120,6 +2384,160 @@ static always_inline int same_block(BlockNode *a, BlockNode *b){
return !((a->mx - b->mx) | (a->my - b->my) | a->type | b->type); return !((a->mx - b->mx) | (a->my - b->my) | a->type | b->type);
} }
//FIXME name clenup (b_w, block_w, b_width stuff)
static always_inline void add_yblock_buffered(SnowContext *s, slice_buffer * sb, DWTELEM *old_dst, uint8_t *dst8, uint8_t *src, uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int plane_index){
DWTELEM * dst = NULL;
const int b_width = s->b_width << s->block_max_depth;
const int b_height= s->b_height << s->block_max_depth;
const int b_stride= b_width;
BlockNode *lt= &s->block[b_x + b_y*b_stride];
BlockNode *rt= lt+1;
BlockNode *lb= lt+b_stride;
BlockNode *rb= lb+1;
uint8_t *block[4];
uint8_t tmp[src_stride*(b_h+5)]; //FIXME align
int x,y;
if(b_x<0){
lt= rt;
lb= rb;
}else if(b_x + 1 >= b_width){
rt= lt;
rb= lb;
}
if(b_y<0){
lt= lb;
rt= rb;
}else if(b_y + 1 >= b_height){
lb= lt;
rb= rt;
}
if(src_x<0){ //FIXME merge with prev & always round internal width upto *16
obmc -= src_x;
b_w += src_x;
src_x=0;
}else if(src_x + b_w > w){
b_w = w - src_x;
}
if(src_y<0){
obmc -= src_y*obmc_stride;
b_h += src_y;
src_y=0;
}else if(src_y + b_h> h){
b_h = h - src_y;
}
if(b_w<=0 || b_h<=0) return;
assert(src_stride > 7*MB_SIZE);
// old_dst += src_x + src_y*dst_stride;
dst8+= src_x + src_y*src_stride;
// src += src_x + src_y*src_stride;
block[0]= tmp+3*MB_SIZE;
pred_block(s, block[0], src, tmp, src_stride, src_x, src_y, b_w, b_h, lt, plane_index, w, h);
if(same_block(lt, rt)){
block[1]= block[0];
}else{
block[1]= tmp + 4*MB_SIZE;
pred_block(s, block[1], src, tmp, src_stride, src_x, src_y, b_w, b_h, rt, plane_index, w, h);
}
if(same_block(lt, lb)){
block[2]= block[0];
}else if(same_block(rt, lb)){
block[2]= block[1];
}else{
block[2]= tmp+5*MB_SIZE;
pred_block(s, block[2], src, tmp, src_stride, src_x, src_y, b_w, b_h, lb, plane_index, w, h);
}
if(same_block(lt, rb) ){
block[3]= block[0];
}else if(same_block(rt, rb)){
block[3]= block[1];
}else if(same_block(lb, rb)){
block[3]= block[2];
}else{
block[3]= tmp+6*MB_SIZE;
pred_block(s, block[3], src, tmp, src_stride, src_x, src_y, b_w, b_h, rb, plane_index, w, h);
}
#if 0
for(y=0; y<b_h; y++){
for(x=0; x<b_w; x++){
int v= obmc [x + y*obmc_stride] * block[3][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc2= obmc + (obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc2[x + y*obmc_stride] * block[2][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc3= obmc + obmc_stride*(obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc3[x + y*obmc_stride] * block[1][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc3= obmc + obmc_stride*(obmc_stride>>1);
uint8_t *obmc4= obmc3+ (obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc4[x + y*obmc_stride] * block[0][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
#else
{
START_TIMER
int block_index = 0;
for(y=0; y<b_h; y++){
//FIXME ugly missue of obmc_stride
uint8_t *obmc1= obmc + y*obmc_stride;
uint8_t *obmc2= obmc1+ (obmc_stride>>1);
uint8_t *obmc3= obmc1+ obmc_stride*(obmc_stride>>1);
uint8_t *obmc4= obmc3+ (obmc_stride>>1);
dst = slice_buffer_get_line(sb, src_y + y);
for(x=0; x<b_w; x++){
int v= obmc1[x] * block[3][x + y*src_stride]
+obmc2[x] * block[2][x + y*src_stride]
+obmc3[x] * block[1][x + y*src_stride]
+obmc4[x] * block[0][x + y*src_stride];
v <<= 8 - LOG2_OBMC_MAX;
if(FRAC_BITS != 8){
v += 1<<(7 - FRAC_BITS);
v >>= 8 - FRAC_BITS;
}
if(add){
// v += old_dst[x + y*dst_stride];
v += dst[x + src_x];
v = (v + (1<<(FRAC_BITS-1))) >> FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*src_stride] = v;
}else{
// old_dst[x + y*dst_stride] -= v;
dst[x + src_x] -= v;
}
}
}
STOP_TIMER("Inner add y block")
}
#endif
}
//FIXME name clenup (b_w, block_w, b_width stuff) //FIXME name clenup (b_w, block_w, b_width stuff)
static always_inline void add_yblock(SnowContext *s, DWTELEM *dst, uint8_t *dst8, uint8_t *src, uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int plane_index){ static always_inline void add_yblock(SnowContext *s, DWTELEM *dst, uint8_t *dst8, uint8_t *src, uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int plane_index){
const int b_width = s->b_width << s->block_max_depth; const int b_width = s->b_width << s->block_max_depth;
@ -2263,6 +2681,74 @@ assert(src_stride > 7*MB_SIZE);
#endif #endif
} }
static always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, DWTELEM * old_buffer, int plane_index, int add, int mb_y){
Plane *p= &s->plane[plane_index];
const int mb_w= s->b_width << s->block_max_depth;
const int mb_h= s->b_height << s->block_max_depth;
int x, y, mb_x;
int block_size = MB_SIZE >> s->block_max_depth;
int block_w = plane_index ? block_size/2 : block_size;
const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
int obmc_stride= plane_index ? block_size : 2*block_size;
int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *ref = s->last_picture.data[plane_index];
uint8_t *dst8= s->current_picture.data[plane_index];
int w= p->width;
int h= p->height;
START_TIMER
if(s->keyframe || (s->avctx->debug&512)){
if(mb_y==mb_h)
return;
if(add){
for(y=block_w*mb_y; y<block_w*(mb_y+1); y++)
{
// DWTELEM * line = slice_buffer_get_line(sb, y);
DWTELEM * line = sb->line[y];
for(x=0; x<w; x++)
{
// int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
v >>= FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*ref_stride]= v;
}
}
}else{
for(y=block_w*mb_y; y<block_w*(mb_y+1); y++)
{
// DWTELEM * line = slice_buffer_get_line(sb, y);
DWTELEM * line = sb->line[y];
for(x=0; x<w; x++)
{
line[x] -= 128 << FRAC_BITS;
// buf[x + y*w]-= 128<<FRAC_BITS;
}
}
}
return;
}
for(mb_x=0; mb_x<=mb_w; mb_x++){
START_TIMER
add_yblock_buffered(s, sb, old_buffer, dst8, ref, obmc,
block_w*mb_x - block_w/2,
block_w*mb_y - block_w/2,
block_w, block_w,
w, h,
w, ref_stride, obmc_stride,
mb_x - 1, mb_y - 1,
add, plane_index);
STOP_TIMER("add_yblock")
}
STOP_TIMER("predict_slice")
}
static always_inline void predict_slice(SnowContext *s, DWTELEM *buf, int plane_index, int add, int mb_y){ static always_inline void predict_slice(SnowContext *s, DWTELEM *buf, int plane_index, int add, int mb_y){
Plane *p= &s->plane[plane_index]; Plane *p= &s->plane[plane_index];
const int mb_w= s->b_width << s->block_max_depth; const int mb_w= s->b_width << s->block_max_depth;
@ -2391,6 +2877,36 @@ static void quantize(SnowContext *s, SubBand *b, DWTELEM *src, int stride, int b
} }
} }
static void dequantize_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, DWTELEM *src, int stride){
const int w= b->width;
const int h= b->height;
const int qlog= clip(s->qlog + b->qlog, 0, 128);
const int qmul= qexp[qlog&7]<<(qlog>>3);
const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
int x,y;
START_TIMER
if(s->qlog == LOSSLESS_QLOG) return;
assert(QROOT==8);
for(y=0; y<h; y++){
// DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
DWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
for(x=0; x<w; x++){
int i= line[x];
if(i<0){
line[x]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
}else if(i>0){
line[x]= (( i*qmul + qadd)>>(QEXPSHIFT));
}
}
}
if(w > 200 /*level+1 == s->spatial_decomposition_count*/){
STOP_TIMER("dquant")
}
}
static void dequantize(SnowContext *s, SubBand *b, DWTELEM *src, int stride){ static void dequantize(SnowContext *s, SubBand *b, DWTELEM *src, int stride){
const int w= b->width; const int w= b->width;
const int h= b->height; const int h= b->height;
@ -2443,6 +2959,38 @@ static void decorrelate(SnowContext *s, SubBand *b, DWTELEM *src, int stride, in
} }
} }
static void correlate_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, DWTELEM *src, int stride, int inverse, int use_median){
const int w= b->width;
const int h= b->height;
int x,y;
// START_TIMER
DWTELEM * line;
DWTELEM * prev;
for(y=0; y<h; y++){
prev = line;
// line = slice_buffer_get_line_from_address(sb, src + (y * stride));
line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
for(x=0; x<w; x++){
if(x){
if(use_median){
if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
else line[x] += line[x - 1];
}else{
if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
else line[x] += line[x - 1];
}
}else{
if(y) line[x] += prev[x];
}
}
}
// STOP_TIMER("correlate")
}
static void correlate(SnowContext *s, SubBand *b, DWTELEM *src, int stride, int inverse, int use_median){ static void correlate(SnowContext *s, SubBand *b, DWTELEM *src, int stride, int inverse, int use_median){
const int w= b->width; const int w= b->width;
const int h= b->height; const int h= b->height;
@ -2640,13 +3188,22 @@ static int common_init(AVCodecContext *avctx){
b->width = (w + !(orientation&1))>>1; b->width = (w + !(orientation&1))>>1;
b->height= (h + !(orientation>1))>>1; b->height= (h + !(orientation>1))>>1;
if(orientation&1) b->buf += (w+1)>>1; b->stride_line = 1 << (s->spatial_decomposition_count - level);
if(orientation>1) b->buf += b->stride>>1; b->buf_x_offset = 0;
b->buf_y_offset = 0;
if(orientation&1){
b->buf += (w+1)>>1;
b->buf_x_offset = (w+1)>>1;
}
if(orientation>1){
b->buf += b->stride>>1;
b->buf_y_offset = b->stride_line >> 1;
}
if(level) if(level)
b->parent= &s->plane[plane_index].band[level-1][orientation]; b->parent= &s->plane[plane_index].band[level-1][orientation];
b->x = av_mallocz(((b->width+1) * b->height+1)*sizeof(int16_t)); b->x_coeff=av_mallocz(((b->width+1) * b->height+1)*sizeof(x_and_coeff));
b->coeff= av_mallocz(((b->width+1) * b->height+1)*sizeof(DWTELEM));
} }
w= (w+1)>>1; w= (w+1)>>1;
h= (h+1)>>1; h= (h+1)>>1;
@ -2952,8 +3509,7 @@ static void common_end(SnowContext *s){
for(orientation=level ? 1 : 0; orientation<4; orientation++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &s->plane[plane_index].band[level][orientation]; SubBand *b= &s->plane[plane_index].band[level][orientation];
av_freep(&b->x); av_freep(&b->x_coeff);
av_freep(&b->coeff);
} }
} }
} }
@ -2970,10 +3526,18 @@ static int encode_end(AVCodecContext *avctx)
static int decode_init(AVCodecContext *avctx) static int decode_init(AVCodecContext *avctx)
{ {
// SnowContext *s = avctx->priv_data; SnowContext *s = avctx->priv_data;
int block_size;
common_init(avctx); common_init(avctx);
block_size = MB_SIZE >> s->block_max_depth;
/* FIXME block_size * 2 is determined empirically. block_size * 1.5 is definitely needed, but I (Robert) cannot figure out why more than that is needed. Perhaps there is a bug, or perhaps I overlooked some demands that are placed on the buffer. */
/* FIXME The formula is WRONG. For height > 480, the buffer will overflow. */
/* FIXME For now, I will use a full frame of lines. Fortunately, this should not materially effect cache performance because lines are allocated using a stack, so if in fact only 50 out of 496 lines are needed at a time, the other 446 will sit allocated but never accessed. */
// slice_buffer_init(s->plane[0].sb, s->plane[0].height, (block_size * 2) + (s->spatial_decomposition_count * s->spatial_decomposition_count), s->plane[0].width, s->spatial_dwt_buffer);
slice_buffer_init(&s->sb, s->plane[0].height, s->plane[0].height, s->plane[0].width, s->spatial_dwt_buffer);
return 0; return 0;
} }
@ -3003,6 +3567,8 @@ static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8
int w= p->width; int w= p->width;
int h= p->height; int h= p->height;
int x, y; int x, y;
int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */
SubBand * correlate_band;
if(s->avctx->debug&2048){ if(s->avctx->debug&2048){
memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h); memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
@ -3015,18 +3581,22 @@ if(s->avctx->debug&2048){
} }
} }
} }
{ START_TIMER
for(level=0; level<s->spatial_decomposition_count; level++){ for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation]; SubBand *b= &p->band[level][orientation];
unpack_coeffs(s, b, b->parent, orientation);
}
}
STOP_TIMER("unpack coeffs");
}
decode_subband(s, b, b->buf, b->parent ? b->parent->buf : NULL, b->stride, orientation); /* Handle level 0, orientation 0 specially. It is particularly resistant to slicing but fortunately quite small, so process it in one pass. */
if(orientation==0){ correlate_band = &p->band[0][0];
correlate(s, b, b->buf, b->stride, 1, 0); decode_subband_slice_buffered(s, correlate_band, &s->sb, 0, correlate_band->height, decode_state[0][0]);
dequantize(s, b, b->buf, b->stride); correlate_buffered(s, &s->sb, correlate_band, correlate_band->buf, correlate_band->stride, 1, 0);
assert(b->buf == s->spatial_dwt_buffer); dequantize_buffered(s, &s->sb, correlate_band, correlate_band->buf, correlate_band->stride);
}
}
}
{START_TIMER {START_TIMER
const int mb_h= s->b_height << s->block_max_depth; const int mb_h= s->b_height << s->block_max_depth;
@ -3035,23 +3605,68 @@ if(s->avctx->debug&2048){
int mb_y; int mb_y;
dwt_compose_t cs[MAX_DECOMPOSITIONS]; dwt_compose_t cs[MAX_DECOMPOSITIONS];
int yd=0, yq=0; int yd=0, yq=0;
int y;
int end_y;
ff_spatial_idwt_init(cs, s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count);
for(mb_y=0; mb_y<=mb_h; mb_y++){ for(mb_y=0; mb_y<=mb_h; mb_y++){
const int slice_starty = block_w*mb_y;
const int slice_h = block_w*(mb_y+1); const int slice_h = block_w*(mb_y+1);
for(; yd<slice_h; yd+=4)
ff_spatial_idwt_slice(cs, s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count, yd); {
START_TIMER
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 1; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
int start_y;
int end_y;
int our_mb_start = mb_y;
int our_mb_end = (mb_y + 1);
start_y = FFMIN(b->height, (mb_y ? ((block_w * our_mb_start - 4) >> (s->spatial_decomposition_count - level)) + 5 : 0));
end_y = FFMIN(b->height, (((block_w * our_mb_end - 4) >> (s->spatial_decomposition_count - level)) + 5));
if (start_y != end_y)
decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
}
}
STOP_TIMER("decode_subband_slice");
}
{ START_TIMER
for(; yd<slice_h; yd+=4){
ff_spatial_idwt_buffered_slice(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd);
}
STOP_TIMER("idwt slice");}
if(s->qlog == LOSSLESS_QLOG){ if(s->qlog == LOSSLESS_QLOG){
for(; yq<slice_h && yq<h; yq++){ for(; yq<slice_h && yq<h; yq++){
DWTELEM * line = slice_buffer_get_line(&s->sb, yq);
for(x=0; x<w; x++){ for(x=0; x<w; x++){
s->spatial_dwt_buffer[yq*w + x]<<=FRAC_BITS; line[x] <<= FRAC_BITS;
} }
} }
} }
predict_slice(s, s->spatial_dwt_buffer, plane_index, 1, mb_y); predict_slice_buffered(s, &s->sb, s->spatial_dwt_buffer, plane_index, 1, mb_y);
/* Nasty hack based empirically on how predict_slice_buffered() hits the buffer. */
/* FIXME If possible, make predict_slice fit into the slice. As of now, it works on some previous lines (up to slice_height / 2) if the condition on the next line is false. */
if (s->keyframe || (s->avctx->debug&512)){
y = FFMIN(p->height, slice_starty);
end_y = FFMIN(p->height, slice_h);
} }
else{
y = FFMAX(0, FFMIN(p->height, slice_starty - (block_w >> 1)));
end_y = FFMAX(0, FFMIN(p->height, slice_h - (block_w >> 1)));
}
while(y < end_y)
slice_buffer_release(&s->sb, y++);
}
slice_buffer_flush(&s->sb);
STOP_TIMER("idwt + predict_slices")} STOP_TIMER("idwt + predict_slices")}
} }
@ -3077,6 +3692,8 @@ static int decode_end(AVCodecContext *avctx)
{ {
SnowContext *s = avctx->priv_data; SnowContext *s = avctx->priv_data;
slice_buffer_destroy(&s->sb);
common_end(s); common_end(s);
return 0; return 0;