/* * Copyright (C) 2004 Michael Niedermayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "avcodec.h" #include "common.h" #include "dsputil.h" #include "rangecoder.h" #define MID_STATE 128 #include "mpegvideo.h" #undef NDEBUG #include #define MAX_DECOMPOSITIONS 8 #define MAX_PLANES 4 #define DWTELEM int #define QSHIFT 5 #define QROOT (1<line[line_num] ? (slice_buf)->line[line_num] : slice_buffer_load_line((slice_buf), (line_num))) //#define slice_buffer_get_line(slice_buf, line_num) (slice_buffer_load_line((slice_buf), (line_num))) static void iterative_me(SnowContext *s); static void slice_buffer_init(slice_buffer * buf, int line_count, int max_allocated_lines, int line_width, DWTELEM * base_buffer) { int i; buf->base_buffer = base_buffer; buf->line_count = line_count; buf->line_width = line_width; buf->data_count = max_allocated_lines; buf->line = (DWTELEM * *) av_mallocz (sizeof(DWTELEM *) * line_count); buf->data_stack = (DWTELEM * *) av_malloc (sizeof(DWTELEM *) * max_allocated_lines); for (i = 0; i < max_allocated_lines; i++) { buf->data_stack[i] = (DWTELEM *) av_malloc (sizeof(DWTELEM) * line_width); } buf->data_stack_top = max_allocated_lines - 1; } static DWTELEM * slice_buffer_load_line(slice_buffer * buf, int line) { int offset; DWTELEM * buffer; // av_log(NULL, AV_LOG_DEBUG, "Cache hit: %d\n", line); assert(buf->data_stack_top >= 0); // assert(!buf->line[line]); if (buf->line[line]) return buf->line[line]; offset = buf->line_width * line; buffer = buf->data_stack[buf->data_stack_top]; buf->data_stack_top--; buf->line[line] = buffer; // av_log(NULL, AV_LOG_DEBUG, "slice_buffer_load_line: line: %d remaining: %d\n", line, buf->data_stack_top + 1); return buffer; } static void slice_buffer_release(slice_buffer * buf, int line) { int offset; DWTELEM * buffer; assert(line >= 0 && line < buf->line_count); assert(buf->line[line]); offset = buf->line_width * line; buffer = buf->line[line]; buf->data_stack_top++; buf->data_stack[buf->data_stack_top] = buffer; buf->line[line] = NULL; // av_log(NULL, AV_LOG_DEBUG, "slice_buffer_release: line: %d remaining: %d\n", line, buf->data_stack_top + 1); } static void slice_buffer_flush(slice_buffer * buf) { int i; for (i = 0; i < buf->line_count; i++) { if (buf->line[i]) { // av_log(NULL, AV_LOG_DEBUG, "slice_buffer_flush: line: %d \n", i); slice_buffer_release(buf, i); } } } static void slice_buffer_destroy(slice_buffer * buf) { int i; slice_buffer_flush(buf); for (i = buf->data_count - 1; i >= 0; i--) { assert(buf->data_stack[i]); av_free(buf->data_stack[i]); } assert(buf->data_stack); av_free(buf->data_stack); assert(buf->line); av_free(buf->line); } #ifdef __sgi // Avoid a name clash on SGI IRIX #undef qexp #endif #define QEXPSHIFT (7-FRAC_BITS+8) //FIXME try to change this to 0 static uint8_t qexp[QROOT]; static inline int mirror(int v, int m){ if (v<0) return -v; else if(v>m) return 2*m-v; else return v; } static inline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){ int i; if(v){ const int a= ABS(v); const int e= av_log2(a); #if 1 const int el= FFMIN(e, 10); put_rac(c, state+0, 0); for(i=0; i=el; i--){ put_rac(c, state+22+9, (a>>i)&1); //22..31 } for(; i>=0; i--){ put_rac(c, state+22+i, (a>>i)&1); //22..31 } if(is_signed) put_rac(c, state+11 + el, v < 0); //11..21 #else put_rac(c, state+0, 0); if(e<=9){ for(i=0; i=0; i--){ put_rac(c, state+22+i, (a>>i)&1); //22..31 } if(is_signed) put_rac(c, state+11 + e, v < 0); //11..21 }else{ for(i=0; i=0; i--){ put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31 } if(is_signed) put_rac(c, state+11 + FFMIN(e,10), v < 0); //11..21 } #endif }else{ put_rac(c, state+0, 1); } } static inline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){ if(get_rac(c, state+0)) return 0; else{ int i, e, a; e= 0; while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10 e++; } a= 1; for(i=e-1; i>=0; i--){ a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31 } if(is_signed && get_rac(c, state+11 + FFMIN(e,10))) //11..21 return -a; else return a; } } static inline void put_symbol2(RangeCoder *c, uint8_t *state, int v, int log2){ int i; int r= log2>=0 ? 1<=0); assert(log2>=-4); while(v >= r){ put_rac(c, state+4+log2, 1); v -= r; log2++; if(log2>0) r+=r; } put_rac(c, state+4+log2, 0); for(i=log2-1; i>=0; i--){ put_rac(c, state+31-i, (v>>i)&1); } } static inline int get_symbol2(RangeCoder *c, uint8_t *state, int log2){ int i; int r= log2>=0 ? 1<=-4); while(get_rac(c, state+4+log2)){ v+= r; log2++; if(log2>0) r+=r; } for(i=log2-1; i>=0; i--){ v+= get_rac(c, state+31-i)<>1) - 1 + (highpass & width); int i; #define LIFT(src, ref, inv) ((src) + ((inv) ? - (ref) : + (ref))) if(mirror_left){ dst[0] = LIFT(src[0], ((mul*2*ref[0]+add)>>shift), inverse); dst += dst_step; src += src_step; } for(i=0; i>shift), inverse); } if(mirror_right){ dst[w*dst_step] = LIFT(src[w*src_step], ((mul*2*ref[w*ref_step]+add)>>shift), inverse); } } static always_inline void lift5(DWTELEM *dst, DWTELEM *src, DWTELEM *ref, int dst_step, int src_step, int ref_step, int width, int mul, int add, int shift, int highpass, int inverse){ const int mirror_left= !highpass; const int mirror_right= (width&1) ^ highpass; const int w= (width>>1) - 1 + (highpass & width); int i; if(mirror_left){ int r= 3*2*ref[0]; r += r>>4; r += r>>8; dst[0] = LIFT(src[0], ((r+add)>>shift), inverse); dst += dst_step; src += src_step; } for(i=0; i>4; r += r>>8; dst[i*dst_step] = LIFT(src[i*src_step], ((r+add)>>shift), inverse); } if(mirror_right){ int r= 3*2*ref[w*ref_step]; r += r>>4; r += r>>8; dst[w*dst_step] = LIFT(src[w*src_step], ((r+add)>>shift), inverse); } } static always_inline void liftS(DWTELEM *dst, DWTELEM *src, DWTELEM *ref, int dst_step, int src_step, int ref_step, int width, int mul, int add, int shift, int highpass, int inverse){ const int mirror_left= !highpass; const int mirror_right= (width&1) ^ highpass; const int w= (width>>1) - 1 + (highpass & width); int i; assert(shift == 4); #define LIFTS(src, ref, inv) ((inv) ? (src) - (((ref) - 4*(src))>>shift): (16*4*(src) + 4*(ref) + 8 + (5<<27))/(5*16) - (1<<23)) if(mirror_left){ dst[0] = LIFTS(src[0], mul*2*ref[0]+add, inverse); dst += dst_step; src += src_step; } for(i=0; i=width) x2= 2*width-x2-2; sum += coeffs[i]*(int64_t)dst[x2]; } if(inverse) dst[x] -= (sum + (1<>shift; else dst[x] += (sum + (1<>shift; } } static void inplace_liftV(DWTELEM *dst, int width, int height, int stride, int *coeffs, int n, int shift, int start, int inverse){ int x, y, i; for(y=start; y=height) y2= 2*height-y2-2; sum += coeffs[i]*(int64_t)dst[x + y2*stride]; } if(inverse) dst[x + y*stride] -= (sum + (1<>shift; else dst[x + y*stride] += (sum + (1<>shift; } } } #define SCALEX 1 #define LX0 0 #define LX1 1 #if 0 // more accurate 9/7 #define N1 2 #define SHIFT1 14 #define COEFFS1 (int[]){-25987,-25987} #define N2 2 #define SHIFT2 19 #define COEFFS2 (int[]){-27777,-27777} #define N3 2 #define SHIFT3 15 #define COEFFS3 (int[]){28931,28931} #define N4 2 #define SHIFT4 15 #define COEFFS4 (int[]){14533,14533} #elif 1 // 13/7 CRF #define N1 4 #define SHIFT1 4 #define COEFFS1 (int[]){1,-9,-9,1} #define N2 4 #define SHIFT2 4 #define COEFFS2 (int[]){-1,5,5,-1} #define N3 0 #define SHIFT3 1 #define COEFFS3 NULL #define N4 0 #define SHIFT4 1 #define COEFFS4 NULL #elif 1 // 3/5 #define LX0 1 #define LX1 0 #define SCALEX 0.5 #define N1 2 #define SHIFT1 1 #define COEFFS1 (int[]){1,1} #define N2 2 #define SHIFT2 2 #define COEFFS2 (int[]){-1,-1} #define N3 0 #define SHIFT3 0 #define COEFFS3 NULL #define N4 0 #define SHIFT4 0 #define COEFFS4 NULL #elif 1 // 11/5 #define N1 0 #define SHIFT1 1 #define COEFFS1 NULL #define N2 2 #define SHIFT2 2 #define COEFFS2 (int[]){-1,-1} #define N3 2 #define SHIFT3 0 #define COEFFS3 (int[]){-1,-1} #define N4 4 #define SHIFT4 7 #define COEFFS4 (int[]){-5,29,29,-5} #define SCALEX 4 #elif 1 // 9/7 CDF #define N1 2 #define SHIFT1 7 #define COEFFS1 (int[]){-203,-203} #define N2 2 #define SHIFT2 12 #define COEFFS2 (int[]){-217,-217} #define N3 2 #define SHIFT3 7 #define COEFFS3 (int[]){113,113} #define N4 2 #define SHIFT4 9 #define COEFFS4 (int[]){227,227} #define SCALEX 1 #elif 1 // 7/5 CDF #define N1 0 #define SHIFT1 1 #define COEFFS1 NULL #define N2 2 #define SHIFT2 2 #define COEFFS2 (int[]){-1,-1} #define N3 2 #define SHIFT3 0 #define COEFFS3 (int[]){-1,-1} #define N4 2 #define SHIFT4 4 #define COEFFS4 (int[]){3,3} #elif 1 // 9/7 MN #define N1 4 #define SHIFT1 4 #define COEFFS1 (int[]){1,-9,-9,1} #define N2 2 #define SHIFT2 2 #define COEFFS2 (int[]){1,1} #define N3 0 #define SHIFT3 1 #define COEFFS3 NULL #define N4 0 #define SHIFT4 1 #define COEFFS4 NULL #else // 13/7 CRF #define N1 4 #define SHIFT1 4 #define COEFFS1 (int[]){1,-9,-9,1} #define N2 4 #define SHIFT2 4 #define COEFFS2 (int[]){-1,5,5,-1} #define N3 0 #define SHIFT3 1 #define COEFFS3 NULL #define N4 0 #define SHIFT4 1 #define COEFFS4 NULL #endif static void horizontal_decomposeX(DWTELEM *b, int width){ DWTELEM temp[width]; const int width2= width>>1; const int w2= (width+1)>>1; int x; inplace_lift(b, width, COEFFS1, N1, SHIFT1, LX1, 0); inplace_lift(b, width, COEFFS2, N2, SHIFT2, LX0, 0); inplace_lift(b, width, COEFFS3, N3, SHIFT3, LX1, 0); inplace_lift(b, width, COEFFS4, N4, SHIFT4, LX0, 0); for(x=0; x>1; int x; const int w2= (width+1)>>1; memcpy(temp, b, width*sizeof(int)); for(x=0; x>1; int x; const int w2= (width+1)>>1; for(x=0; x>1; A4 += (A1 + 1)>>1; b[0+width2] = A1; b[0 ] = A4; for(x=1; x+1>1; A2 += (A1 + A3 + 2)>>2; b[x+width2] = A3; b[x ] = A2; A1= temp[x+1+width2]; A2= temp[x+2 ]; A1 -= (A2 + A4)>>1; A4 += (A1 + A3 + 2)>>2; b[x+1+width2] = A1; b[x+1 ] = A4; } A3= temp[width-1]; A3 -= A2; A2 += (A1 + A3 + 2)>>2; b[width -1] = A3; b[width2-1] = A2; } #else lift(b+w2, temp+w2, temp, 1, 1, 1, width, -1, 0, 1, 1, 0); lift(b , temp , b+w2, 1, 1, 1, width, 1, 2, 2, 0, 0); #endif } static void vertical_decompose53iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i>1; } } static void vertical_decompose53iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i>2; } } static void spatial_decompose53i(DWTELEM *buffer, int width, int height, int stride){ int y; DWTELEM *b0= buffer + mirror(-2-1, height-1)*stride; DWTELEM *b1= buffer + mirror(-2 , height-1)*stride; for(y=-2; y>1; lift (temp+w2, b +1, b , 1, 2, 2, width, -W_AM, W_AO, W_AS, 1, 0); liftS(temp , b , temp+w2, 1, 2, 1, width, -W_BM, W_BO, W_BS, 0, 0); lift5(b +w2, temp+w2, temp , 1, 1, 1, width, W_CM, W_CO, W_CS, 1, 0); lift (b , temp , b +w2, 1, 1, 1, width, W_DM, W_DO, W_DS, 0, 0); } static void vertical_decompose97iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i>W_AS; } } static void vertical_decompose97iH1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i>W_CS; #else int r= 3*(b0[i] + b2[i]); r+= r>>4; r+= r>>8; b1[i] += (r+W_CO)>>W_CS; #endif } } static void vertical_decompose97iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i>W_BS; #else b1[i] = (16*4*b1[i] - 4*(b0[i] + b2[i]) + 8*5 + (5<<27)) / (5*16) - (1<<23); #endif } } static void vertical_decompose97iL1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i>W_DS; } } static void spatial_decompose97i(DWTELEM *buffer, int width, int height, int stride){ int y; DWTELEM *b0= buffer + mirror(-4-1, height-1)*stride; DWTELEM *b1= buffer + mirror(-4 , height-1)*stride; DWTELEM *b2= buffer + mirror(-4+1, height-1)*stride; DWTELEM *b3= buffer + mirror(-4+2, height-1)*stride; for(y=-4; y400){ STOP_TIMER("horizontal_decompose97i") }} {START_TIMER if(b3 <= b5) vertical_decompose97iH0(b3, b4, b5, width); if(b2 <= b4) vertical_decompose97iL0(b2, b3, b4, width); if(b1 <= b3) vertical_decompose97iH1(b1, b2, b3, width); if(b0 <= b2) vertical_decompose97iL1(b0, b1, b2, width); if(width>400){ STOP_TIMER("vertical_decompose97i") }} b0=b2; b1=b3; b2=b4; b3=b5; } } void ff_spatial_dwt(DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){ int level; for(level=0; level>level, height>>level, stride<>level, height>>level, stride<>level, height>>level, stride<>1; const int w2= (width+1)>>1; int x; #if 0 int A1,A2,A3,A4; A2= temp[1 ]; A4= temp[0 ]; A1= temp[0+width2]; A1 -= (A2 + A4)>>1; A4 += (A1 + 1)>>1; b[0+width2] = A1; b[0 ] = A4; for(x=1; x+1>1; A2 += (A1 + A3 + 2)>>2; b[x+width2] = A3; b[x ] = A2; A1= temp[x+1+width2]; A2= temp[x+2 ]; A1 -= (A2 + A4)>>1; A4 += (A1 + A3 + 2)>>2; b[x+1+width2] = A1; b[x+1 ] = A4; } A3= temp[width-1]; A3 -= A2; A2 += (A1 + A3 + 2)>>2; b[width -1] = A3; b[width2-1] = A2; #else lift(temp , b , b+w2, 1, 1, 1, width, 1, 2, 2, 0, 1); lift(temp+w2, b+w2, temp, 1, 1, 1, width, -1, 0, 1, 1, 1); #endif for(x=0; x>1; } } static void vertical_compose53iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i>2; } } static void spatial_compose53i_buffered_init(dwt_compose_t *cs, slice_buffer * sb, int height, int stride_line){ cs->b0 = slice_buffer_get_line(sb, mirror(-1-1, height-1) * stride_line); cs->b1 = slice_buffer_get_line(sb, mirror(-1 , height-1) * stride_line); cs->y = -1; } static void spatial_compose53i_init(dwt_compose_t *cs, DWTELEM *buffer, int height, int stride){ cs->b0 = buffer + mirror(-1-1, height-1)*stride; cs->b1 = buffer + mirror(-1 , height-1)*stride; cs->y = -1; } static void spatial_compose53i_dy_buffered(dwt_compose_t *cs, slice_buffer * sb, int width, int height, int stride_line){ int y= cs->y; int mirror0 = mirror(y-1, height-1); int mirror1 = mirror(y , height-1); int mirror2 = mirror(y+1, height-1); int mirror3 = mirror(y+2, height-1); DWTELEM *b0= cs->b0; DWTELEM *b1= cs->b1; DWTELEM *b2= slice_buffer_get_line(sb, mirror2 * stride_line); DWTELEM *b3= slice_buffer_get_line(sb, mirror3 * stride_line); {START_TIMER if(mirror1 <= mirror3) vertical_compose53iL0(b1, b2, b3, width); if(mirror0 <= mirror2) vertical_compose53iH0(b0, b1, b2, width); STOP_TIMER("vertical_compose53i*")} {START_TIMER if(y-1 >= 0) horizontal_compose53i(b0, width); if(mirror0 <= mirror2) horizontal_compose53i(b1, width); STOP_TIMER("horizontal_compose53i")} cs->b0 = b2; cs->b1 = b3; cs->y += 2; } static void spatial_compose53i_dy(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride){ int y= cs->y; DWTELEM *b0= cs->b0; DWTELEM *b1= cs->b1; DWTELEM *b2= buffer + mirror(y+1, height-1)*stride; DWTELEM *b3= buffer + mirror(y+2, height-1)*stride; {START_TIMER if(b1 <= b3) vertical_compose53iL0(b1, b2, b3, width); if(b0 <= b2) vertical_compose53iH0(b0, b1, b2, width); STOP_TIMER("vertical_compose53i*")} {START_TIMER if(y-1 >= 0) horizontal_compose53i(b0, width); if(b0 <= b2) horizontal_compose53i(b1, width); STOP_TIMER("horizontal_compose53i")} cs->b0 = b2; cs->b1 = b3; cs->y += 2; } static void spatial_compose53i(DWTELEM *buffer, int width, int height, int stride){ dwt_compose_t cs; spatial_compose53i_init(&cs, buffer, height, stride); while(cs.y <= height) spatial_compose53i_dy(&cs, buffer, width, height, stride); } static void horizontal_compose97i(DWTELEM *b, int width){ DWTELEM temp[width]; const int w2= (width+1)>>1; lift (temp , b , b +w2, 1, 1, 1, width, W_DM, W_DO, W_DS, 0, 1); lift5(temp+w2, b +w2, temp , 1, 1, 1, width, W_CM, W_CO, W_CS, 1, 1); liftS(b , temp , temp+w2, 2, 1, 1, width, -W_BM, W_BO, W_BS, 0, 1); lift (b+1 , temp+w2, b , 2, 1, 2, width, -W_AM, W_AO, W_AS, 1, 1); } static void vertical_compose97iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i>W_AS; } } static void vertical_compose97iH1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i>W_CS; #else int r= 3*(b0[i] + b2[i]); r+= r>>4; r+= r>>8; b1[i] -= (r+W_CO)>>W_CS; #endif } } static void vertical_compose97iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i>W_BS; #else b1[i] += (W_BM*(b0[i] + b2[i])+4*b1[i]+W_BO)>>W_BS; #endif } } static void vertical_compose97iL1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i>W_DS; } } static void vertical_compose97i(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, DWTELEM *b3, DWTELEM *b4, DWTELEM *b5, int width){ int i; for(i=0; i>W_DS; #ifdef lift5 b3[i] -= (W_CM*(b2[i] + b4[i])+W_CO)>>W_CS; #else r= 3*(b2[i] + b4[i]); r+= r>>4; r+= r>>8; b3[i] -= (r+W_CO)>>W_CS; #endif #ifdef liftS b2[i] += (W_BM*(b1[i] + b3[i])+W_BO)>>W_BS; #else b2[i] += (W_BM*(b1[i] + b3[i])+4*b2[i]+W_BO)>>W_BS; #endif b1[i] += (W_AM*(b0[i] + b2[i])+W_AO)>>W_AS; } } static void spatial_compose97i_buffered_init(dwt_compose_t *cs, slice_buffer * sb, int height, int stride_line){ cs->b0 = slice_buffer_get_line(sb, mirror(-3-1, height-1) * stride_line); cs->b1 = slice_buffer_get_line(sb, mirror(-3 , height-1) * stride_line); cs->b2 = slice_buffer_get_line(sb, mirror(-3+1, height-1) * stride_line); cs->b3 = slice_buffer_get_line(sb, mirror(-3+2, height-1) * stride_line); cs->y = -3; } static void spatial_compose97i_init(dwt_compose_t *cs, DWTELEM *buffer, int height, int stride){ cs->b0 = buffer + mirror(-3-1, height-1)*stride; cs->b1 = buffer + mirror(-3 , height-1)*stride; cs->b2 = buffer + mirror(-3+1, height-1)*stride; cs->b3 = buffer + mirror(-3+2, height-1)*stride; cs->y = -3; } static void spatial_compose97i_dy_buffered(dwt_compose_t *cs, slice_buffer * sb, int width, int height, int stride_line){ int y = cs->y; int mirror0 = mirror(y - 1, height - 1); int mirror1 = mirror(y + 0, height - 1); int mirror2 = mirror(y + 1, height - 1); int mirror3 = mirror(y + 2, height - 1); int mirror4 = mirror(y + 3, height - 1); int mirror5 = mirror(y + 4, height - 1); DWTELEM *b0= cs->b0; DWTELEM *b1= cs->b1; DWTELEM *b2= cs->b2; DWTELEM *b3= cs->b3; DWTELEM *b4= slice_buffer_get_line(sb, mirror4 * stride_line); DWTELEM *b5= slice_buffer_get_line(sb, mirror5 * stride_line); {START_TIMER if(y>0 && y+4400){ STOP_TIMER("vertical_compose97i")}} {START_TIMER if(y-1>= 0) horizontal_compose97i(b0, width); if(mirror0 <= mirror2) horizontal_compose97i(b1, width); if(width>400 && mirror0 <= mirror2){ STOP_TIMER("horizontal_compose97i")}} cs->b0=b2; cs->b1=b3; cs->b2=b4; cs->b3=b5; cs->y += 2; } static void spatial_compose97i_dy(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride){ int y = cs->y; DWTELEM *b0= cs->b0; DWTELEM *b1= cs->b1; DWTELEM *b2= cs->b2; DWTELEM *b3= cs->b3; DWTELEM *b4= buffer + mirror(y+3, height-1)*stride; DWTELEM *b5= buffer + mirror(y+4, height-1)*stride; if(stride == width && y+4 < height && 0){ int x; for(x=0; x400){ STOP_TIMER("vertical_compose97i")}} {START_TIMER if(y-1>= 0) horizontal_compose97i(b0, width); if(b0 <= b2) horizontal_compose97i(b1, width); if(width>400 && b0 <= b2){ STOP_TIMER("horizontal_compose97i")}} cs->b0=b2; cs->b1=b3; cs->b2=b4; cs->b3=b5; cs->y += 2; } static void spatial_compose97i(DWTELEM *buffer, int width, int height, int stride){ dwt_compose_t cs; spatial_compose97i_init(&cs, buffer, height, stride); while(cs.y <= height) spatial_compose97i_dy(&cs, buffer, width, height, stride); } void ff_spatial_idwt_buffered_init(dwt_compose_t *cs, slice_buffer * sb, int width, int height, int stride_line, int type, int decomposition_count){ int level; for(level=decomposition_count-1; level>=0; level--){ switch(type){ case 0: spatial_compose97i_buffered_init(cs+level, sb, height>>level, stride_line<>level, stride_line<>level, height>>level, stride<=0; level--){ switch(type){ case 0: spatial_compose97i_init(cs+level, buffer, height>>level, stride<>level, stride<>level, height>>level, stride<=0; level--){ while(cs[level].y <= FFMIN((y>>level)+support, height>>level)){ switch(type){ case 0: spatial_compose97i_dy(cs+level, buffer, width>>level, height>>level, stride<>level, height>>level, stride<=0; level--){ while(cs[level].y <= FFMIN((y>>level)+support, height>>level)){ switch(type){ case 0: spatial_compose97i_dy_buffered(cs+level, slice_buf, width>>level, height>>level, stride_line<>level, height>>level, stride_line<=0; level--) spatial_composeX (buffer, width>>level, height>>level, stride<width; const int h= b->height; int x, y; if(1){ int run=0; int runs[w*h]; int run_index=0; int max_index; for(y=0; y 1){ if(orientation==1) ll= src[y + (x-2)*stride]; else ll= src[x - 2 + y*stride]; }*/ } if(parent){ int px= x>>1; int py= y>>1; if(pxparent->width && pyparent->height) p= parent[px + py*2*stride]; } if(!(/*ll|*/l|lt|t|rt|p)){ if(v){ runs[run_index++]= run; run=0; }else{ run++; } } } } max_index= run_index; runs[run_index++]= run; run_index=0; run= runs[run_index++]; put_symbol2(&s->c, b->state[30], max_index, 0); if(run_index <= max_index) put_symbol2(&s->c, b->state[1], run, 3); for(y=0; yc.bytestream_end - s->c.bytestream < w*40){ av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } for(x=0; x 1){ if(orientation==1) ll= src[y + (x-2)*stride]; else ll= src[x - 2 + y*stride]; }*/ } if(parent){ int px= x>>1; int py= y>>1; if(pxparent->width && pyparent->height) p= parent[px + py*2*stride]; } if(/*ll|*/l|lt|t|rt|p){ int context= av_log2(/*ABS(ll) + */3*ABS(l) + ABS(lt) + 2*ABS(t) + ABS(rt) + ABS(p)); put_rac(&s->c, &b->state[0][context], !!v); }else{ if(!run){ run= runs[run_index++]; if(run_index <= max_index) put_symbol2(&s->c, b->state[1], run, 3); assert(v); }else{ run--; assert(!v); } } if(v){ int context= av_log2(/*ABS(ll) + */3*ABS(l) + ABS(lt) + 2*ABS(t) + ABS(rt) + ABS(p)); int l2= 2*ABS(l) + (l<0); int t2= 2*ABS(t) + (t<0); put_symbol2(&s->c, b->state[context + 2], ABS(v)-1, context-4); put_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3bA[l2&0xFF] + 3*quant3bA[t2&0xFF]], v<0); } } } } return 0; } static int encode_subband(SnowContext *s, SubBand *b, DWTELEM *src, DWTELEM *parent, int stride, int orientation){ // encode_subband_qtree(s, b, src, parent, stride, orientation); // encode_subband_z0run(s, b, src, parent, stride, orientation); return encode_subband_c0run(s, b, src, parent, stride, orientation); // encode_subband_dzr(s, b, src, parent, stride, orientation); } static inline void unpack_coeffs(SnowContext *s, SubBand *b, SubBand * parent, int orientation){ const int w= b->width; const int h= b->height; int x,y; if(1){ int run, runs; x_and_coeff *xc= b->x_coeff; x_and_coeff *prev_xc= NULL; x_and_coeff *prev2_xc= xc; x_and_coeff *parent_xc= parent ? parent->x_coeff : NULL; x_and_coeff *prev_parent_xc= parent_xc; runs= get_symbol2(&s->c, b->state[30], 0); if(runs-- > 0) run= get_symbol2(&s->c, b->state[1], 3); else run= INT_MAX; for(y=0; yx == 0){ rt= prev_xc->coeff; } for(x=0; xx <= x) prev_xc++; if(prev_xc->x == x + 1) rt= prev_xc->coeff; else rt=0; } if(parent_xc){ if(x>>1 > parent_xc->x){ parent_xc++; } if(x>>1 == parent_xc->x){ p= parent_xc->coeff; } } if(/*ll|*/l|lt|t|rt|p){ int context= av_log2(/*ABS(ll) + */3*(l>>1) + (lt>>1) + (t&~1) + (rt>>1) + (p>>1)); v=get_rac(&s->c, &b->state[0][context]); if(v){ v= 2*(get_symbol2(&s->c, b->state[context + 2], context-4) + 1); v+=get_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3bA[l&0xFF] + 3*quant3bA[t&0xFF]]); xc->x=x; (xc++)->coeff= v; } }else{ if(!run){ if(runs-- > 0) run= get_symbol2(&s->c, b->state[1], 3); else run= INT_MAX; v= 2*(get_symbol2(&s->c, b->state[0 + 2], 0-4) + 1); v+=get_rac(&s->c, &b->state[0][16 + 1 + 3]); xc->x=x; (xc++)->coeff= v; }else{ int max_run; run--; v=0; if(y) max_run= FFMIN(run, prev_xc->x - x - 2); else max_run= FFMIN(run, w-x-1); if(parent_xc) max_run= FFMIN(max_run, 2*parent_xc->x - x - 1); x+= max_run; run-= max_run; } } } (xc++)->x= w+1; //end marker prev_xc= prev2_xc; prev2_xc= xc; if(parent_xc){ if(y&1){ while(parent_xc->x != parent->width+1) parent_xc++; parent_xc++; prev_parent_xc= parent_xc; }else{ parent_xc= prev_parent_xc; } } } (xc++)->x= w+1; //end marker } } static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){ const int w= b->width; int y; const int qlog= clip(s->qlog + b->qlog, 0, QROOT*16); int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; int new_index = 0; START_TIMER if(b->buf == s->spatial_dwt_buffer || s->qlog == LOSSLESS_QLOG){ qadd= 0; qmul= 1<stride_line + b->buf_y_offset) + b->buf_x_offset; memset(line, 0, b->width*sizeof(DWTELEM)); v = b->x_coeff[new_index].coeff; x = b->x_coeff[new_index++].x; while(x < w) { register int t= ( (v>>1)*qmul + qadd)>>QEXPSHIFT; register int u= -(v&1); line[x] = (t^u) - u; v = b->x_coeff[new_index].coeff; x = b->x_coeff[new_index++].x; } } if(w > 200 && start_y != 0/*level+1 == s->spatial_decomposition_count*/){ STOP_TIMER("decode_subband") } /* Save our variables for the next slice. */ save_state[0] = new_index; return; } static void reset_contexts(SnowContext *s){ int plane_index, level, orientation; for(plane_index=0; plane_index<3; plane_index++){ for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1:0; orientation<4; orientation++){ memset(s->plane[plane_index].band[level][orientation].state, MID_STATE, sizeof(s->plane[plane_index].band[level][orientation].state)); } } } memset(s->header_state, MID_STATE, sizeof(s->header_state)); memset(s->block_state, MID_STATE, sizeof(s->block_state)); } static int alloc_blocks(SnowContext *s){ int w= -((-s->avctx->width )>>LOG2_MB_SIZE); int h= -((-s->avctx->height)>>LOG2_MB_SIZE); s->b_width = w; s->b_height= h; s->block= av_mallocz(w * h * sizeof(BlockNode) << (s->block_max_depth*2)); return 0; } static inline void copy_rac_state(RangeCoder *d, RangeCoder *s){ uint8_t *bytestream= d->bytestream; uint8_t *bytestream_start= d->bytestream_start; *d= *s; d->bytestream= bytestream; d->bytestream_start= bytestream_start; } //near copy & paste from dsputil, FIXME static int pix_sum(uint8_t * pix, int line_size, int w) { int s, i, j; s = 0; for (i = 0; i < w; i++) { for (j = 0; j < w; j++) { s += pix[0]; pix ++; } pix += line_size - w; } return s; } //near copy & paste from dsputil, FIXME static int pix_norm1(uint8_t * pix, int line_size, int w) { int s, i, j; uint32_t *sq = squareTbl + 256; s = 0; for (i = 0; i < w; i++) { for (j = 0; j < w; j ++) { s += sq[pix[0]]; pix ++; } pix += line_size - w; } return s; } static inline void set_blocks(SnowContext *s, int level, int x, int y, int l, int cb, int cr, int mx, int my, int type){ const int w= s->b_width << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; const int block_w= 1<block[index + i + j*w]= block; } } } static inline void init_ref(MotionEstContext *c, uint8_t *src[3], uint8_t *ref[3], uint8_t *ref2[3], int x, int y, int ref_index){ const int offset[3]= { y*c-> stride + x, ((y*c->uvstride + x)>>1), ((y*c->uvstride + x)>>1), }; int i; for(i=0; i<3; i++){ c->src[0][i]= src [i]; c->ref[0][i]= ref [i] + offset[i]; } assert(!ref_index); } //FIXME copy&paste #define P_LEFT P[1] #define P_TOP P[2] #define P_TOPRIGHT P[3] #define P_MEDIAN P[4] #define P_MV1 P[9] #define FLAG_QPEL 1 //must be 1 static int encode_q_branch(SnowContext *s, int level, int x, int y){ uint8_t p_buffer[1024]; uint8_t i_buffer[1024]; uint8_t p_state[sizeof(s->block_state)]; uint8_t i_state[sizeof(s->block_state)]; RangeCoder pc, ic; uint8_t *pbbak= s->c.bytestream; uint8_t *pbbak_start= s->c.bytestream_start; int score, score2, iscore, i_len, p_len, block_s, sum; const int w= s->b_width << s->block_max_depth; const int h= s->b_height << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; const int block_w= 1<<(LOG2_MB_SIZE - level); int trx= (x+1)<block[index-1] : &null_block; BlockNode *top = y ? &s->block[index-w] : &null_block; BlockNode *right = trxblock[index+1] : &null_block; BlockNode *bottom= tryblock[index+w] : &null_block; BlockNode *tl = y && x ? &s->block[index-w-1] : left; BlockNode *tr = y && trxblock[index-w+(1<color[0]; int pcb= left->color[1]; int pcr= left->color[2]; int pmx= mid_pred(left->mx, top->mx, tr->mx); int pmy= mid_pred(left->my, top->my, tr->my); int mx=0, my=0; int l,cr,cb; const int stride= s->current_picture.linesize[0]; const int uvstride= s->current_picture.linesize[1]; uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w, s->input_picture.data[1] + (x + y*uvstride)*block_w/2, s->input_picture.data[2] + (x + y*uvstride)*block_w/2}; int P[10][2]; int16_t last_mv[3][2]; int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused const int shift= 1+qpel; MotionEstContext *c= &s->m.me; int mx_context= av_log2(2*ABS(left->mx - top->mx)); int my_context= av_log2(2*ABS(left->my - top->my)); int s_context= 2*left->level + 2*top->level + tl->level + tr->level; assert(sizeof(s->block_state) >= 256); if(s->keyframe){ set_blocks(s, level, x, y, pl, pcb, pcr, pmx, pmy, BLOCK_INTRA); return 0; } // clip predictors / edge ? P_LEFT[0]= left->mx; P_LEFT[1]= left->my; P_TOP [0]= top->mx; P_TOP [1]= top->my; P_TOPRIGHT[0]= tr->mx; P_TOPRIGHT[1]= tr->my; last_mv[0][0]= s->block[index].mx; last_mv[0][1]= s->block[index].my; last_mv[1][0]= right->mx; last_mv[1][1]= right->my; last_mv[2][0]= bottom->mx; last_mv[2][1]= bottom->my; s->m.mb_stride=2; s->m.mb_x= s->m.mb_y= 0; s->m.me.skip= 0; init_ref(c, current_data, s->last_picture.data, NULL, block_w*x, block_w*y, 0); assert(s->m.me. stride == stride); assert(s->m.me.uvstride == uvstride); c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp); c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp); c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp); c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV; c->xmin = - x*block_w - 16+2; c->ymin = - y*block_w - 16+2; c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-2; c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-2; if(P_LEFT[0] > (c->xmax<xmax< (c->ymax<ymax< (c->xmax<xmax< (c->ymax<ymax<xmin<xmin< (c->xmax<xmax< (c->ymax<ymax<pred_x= P_LEFT[0]; c->pred_y= P_LEFT[1]; } else { c->pred_x = P_MEDIAN[0]; c->pred_y = P_MEDIAN[1]; } score= ff_epzs_motion_search(&s->m, &mx, &my, P, 0, /*ref_index*/ 0, last_mv, (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w); assert(mx >= c->xmin); assert(mx <= c->xmax); assert(my >= c->ymin); assert(my <= c->ymax); score= s->m.me.sub_motion_search(&s->m, &mx, &my, score, 0, 0, level-LOG2_MB_SIZE+4, block_w); score= ff_get_mb_score(&s->m, mx, my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0); //FIXME if mb_cmp != SSE then intra cant be compared currently and mb_penalty vs. lambda2 // subpel search pc= s->c; pc.bytestream_start= pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo memcpy(p_state, s->block_state, sizeof(s->block_state)); if(level!=s->block_max_depth) put_rac(&pc, &p_state[4 + s_context], 1); put_rac(&pc, &p_state[1 + left->type + top->type], 0); put_symbol(&pc, &p_state[128 + 32*mx_context], mx - pmx, 1); put_symbol(&pc, &p_state[128 + 32*my_context], my - pmy, 1); p_len= pc.bytestream - pc.bytestream_start; score += (s->lambda2*(p_len*8 + (pc.outstanding_count - s->c.outstanding_count)*8 + (-av_log2(pc.range) + av_log2(s->c.range)) ))>>FF_LAMBDA_SHIFT; block_s= block_w*block_w; sum = pix_sum(current_data[0], stride, block_w); l= (sum + block_s/2)/block_s; iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s; block_s= block_w*block_w>>2; sum = pix_sum(current_data[1], uvstride, block_w>>1); cb= (sum + block_s/2)/block_s; // iscore += pix_norm1(¤t_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s; sum = pix_sum(current_data[2], uvstride, block_w>>1); cr= (sum + block_s/2)/block_s; // iscore += pix_norm1(¤t_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s; ic= s->c; ic.bytestream_start= ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo memcpy(i_state, s->block_state, sizeof(s->block_state)); if(level!=s->block_max_depth) put_rac(&ic, &i_state[4 + s_context], 1); put_rac(&ic, &i_state[1 + left->type + top->type], 1); put_symbol(&ic, &i_state[32], l-pl , 1); put_symbol(&ic, &i_state[64], cb-pcb, 1); put_symbol(&ic, &i_state[96], cr-pcr, 1); i_len= ic.bytestream - ic.bytestream_start; iscore += (s->lambda2*(i_len*8 + (ic.outstanding_count - s->c.outstanding_count)*8 + (-av_log2(ic.range) + av_log2(s->c.range)) ))>>FF_LAMBDA_SHIFT; // assert(score==256*256*256*64-1); assert(iscore < 255*255*256 + s->lambda2*10); assert(iscore >= 0); assert(l>=0 && l<=255); assert(pl>=0 && pl<=255); if(level==0){ int varc= iscore >> 8; int vard= score >> 8; if (vard <= 64 || vard < varc) c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc); else c->scene_change_score+= s->m.qscale; } if(level!=s->block_max_depth){ put_rac(&s->c, &s->block_state[4 + s_context], 0); score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0); score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0); score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1); score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1); score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead if(score2 < score && score2 < iscore) return score2; } if(iscore < score){ memcpy(pbbak, i_buffer, i_len); s->c= ic; s->c.bytestream_start= pbbak_start; s->c.bytestream= pbbak + i_len; set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, BLOCK_INTRA); memcpy(s->block_state, i_state, sizeof(s->block_state)); return iscore; }else{ memcpy(pbbak, p_buffer, p_len); s->c= pc; s->c.bytestream_start= pbbak_start; s->c.bytestream= pbbak + p_len; set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, 0); memcpy(s->block_state, p_state, sizeof(s->block_state)); return score; } } static always_inline int same_block(BlockNode *a, BlockNode *b){ if((a->type&BLOCK_INTRA) && (b->type&BLOCK_INTRA)){ return !((a->color[0] - b->color[0]) | (a->color[1] - b->color[1]) | (a->color[2] - b->color[2])); }else{ return !((a->mx - b->mx) | (a->my - b->my) | ((a->type ^ b->type)&BLOCK_INTRA)); } } static void encode_q_branch2(SnowContext *s, int level, int x, int y){ const int w= s->b_width << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; int trx= (x+1)<block[index]; BlockNode *left = x ? &s->block[index-1] : &null_block; BlockNode *top = y ? &s->block[index-w] : &null_block; BlockNode *tl = y && x ? &s->block[index-w-1] : left; BlockNode *tr = y && trxblock[index-w+(1<color[0]; int pcb= left->color[1]; int pcr= left->color[2]; int pmx= mid_pred(left->mx, top->mx, tr->mx); int pmy= mid_pred(left->my, top->my, tr->my); int mx_context= av_log2(2*ABS(left->mx - top->mx)); int my_context= av_log2(2*ABS(left->my - top->my)); int s_context= 2*left->level + 2*top->level + tl->level + tr->level; if(s->keyframe){ set_blocks(s, level, x, y, pl, pcb, pcr, pmx, pmy, BLOCK_INTRA); return; } if(level!=s->block_max_depth){ if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){ put_rac(&s->c, &s->block_state[4 + s_context], 0); encode_q_branch2(s, level+1, 2*x+0, 2*y+0); encode_q_branch2(s, level+1, 2*x+1, 2*y+0); encode_q_branch2(s, level+1, 2*x+0, 2*y+1); encode_q_branch2(s, level+1, 2*x+1, 2*y+1); return; }else{ put_rac(&s->c, &s->block_state[4 + s_context], 1); } } if(b->type & BLOCK_INTRA){ put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1); put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1); put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1); put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1); set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, BLOCK_INTRA); }else{ put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0); put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1); put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1); set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, 0); } } static void decode_q_branch(SnowContext *s, int level, int x, int y){ const int w= s->b_width << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; int trx= (x+1)<block[index-1] : &null_block; BlockNode *top = y ? &s->block[index-w] : &null_block; BlockNode *tl = y && x ? &s->block[index-w-1] : left; BlockNode *tr = y && trxblock[index-w+(1<level + 2*top->level + tl->level + tr->level; if(s->keyframe){ set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, BLOCK_INTRA); return; } if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){ int type; int l = left->color[0]; int cb= left->color[1]; int cr= left->color[2]; int mx= mid_pred(left->mx, top->mx, tr->mx); int my= mid_pred(left->my, top->my, tr->my); int mx_context= av_log2(2*ABS(left->mx - top->mx)) + 0*av_log2(2*ABS(tr->mx - top->mx)); int my_context= av_log2(2*ABS(left->my - top->my)) + 0*av_log2(2*ABS(tr->my - top->my)); type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0; if(type){ l += get_symbol(&s->c, &s->block_state[32], 1); cb+= get_symbol(&s->c, &s->block_state[64], 1); cr+= get_symbol(&s->c, &s->block_state[96], 1); }else{ mx+= get_symbol(&s->c, &s->block_state[128 + 32*mx_context], 1); my+= get_symbol(&s->c, &s->block_state[128 + 32*my_context], 1); } set_blocks(s, level, x, y, l, cb, cr, mx, my, type); }else{ decode_q_branch(s, level+1, 2*x+0, 2*y+0); decode_q_branch(s, level+1, 2*x+1, 2*y+0); decode_q_branch(s, level+1, 2*x+0, 2*y+1); decode_q_branch(s, level+1, 2*x+1, 2*y+1); } } static void encode_blocks(SnowContext *s){ int x, y; int w= s->b_width; int h= s->b_height; if(s->avctx->me_method == ME_ITER && !s->keyframe) iterative_me(s); for(y=0; yc.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return; } for(x=0; xavctx->me_method == ME_ITER) encode_q_branch2(s, 0, x, y); else encode_q_branch (s, 0, x, y); } } } static void decode_blocks(SnowContext *s){ int x, y; int w= s->b_width; int h= s->b_height; for(y=0; y>3; // int aR= (-7*a3 + 105*a2 + 35*a1 - 5*a0)>>3; // if(b_w==16) am= 8*(a1+a2); if(dx<8) am = (32*a2*( 8-dx) + am* dx + 128)>>8; else am = ( am*(16-dx) + 32*a3*(dx-8) + 128)>>8; /* FIXME Try increasing tmp buffer to 16 bits and not clipping here. Should give marginally better results. - Robert*/ if(am&(~255)) am= ~(am>>31); tmp[x] = am; /* if (dx< 4) tmp[x + y*stride]= (16*a1*( 4-dx) + aL* dx + 32)>>6; else if(dx< 8) tmp[x + y*stride]= ( aL*( 8-dx) + am*(dx- 4) + 32)>>6; else if(dx<12) tmp[x + y*stride]= ( am*(12-dx) + aR*(dx- 8) + 32)>>6; else tmp[x + y*stride]= ( aR*(16-dx) + 16*a2*(dx-12) + 32)>>6;*/ } tmp += stride; src += stride; } tmp -= (b_h+5)*stride; for(y=0; y < b_h; y++){ for(x=0; x < b_w; x++){ int a0= tmp[x + 0*stride]; int a1= tmp[x + 1*stride]; int a2= tmp[x + 2*stride]; int a3= tmp[x + 3*stride]; int a4= tmp[x + 4*stride]; int a5= tmp[x + 5*stride]; int am= 20*(a2+a3) - 5*(a1+a4) + (a0+a5); // int am= 18*(a2+a3) - 2*(a1+a4); /* int aL= (-7*a0 + 105*a1 + 35*a2 - 5*a3)>>3; int aR= (-7*a3 + 105*a2 + 35*a1 - 5*a0)>>3;*/ // if(b_w==16) am= 8*(a1+a2); if(dy<8) am = (32*a2*( 8-dy) + am* dy + 128)>>8; else am = ( am*(16-dy) + 32*a3*(dy-8) + 128)>>8; if(am&(~255)) am= ~(am>>31); dst[x] = am; /* if (dy< 4) tmp[x + y*stride]= (16*a1*( 4-dy) + aL* dy + 32)>>6; else if(dy< 8) tmp[x + y*stride]= ( aL*( 8-dy) + am*(dy- 4) + 32)>>6; else if(dy<12) tmp[x + y*stride]= ( am*(12-dy) + aR*(dy- 8) + 32)>>6; else tmp[x + y*stride]= ( aR*(16-dy) + 16*a2*(dy-12) + 32)>>6;*/ } dst += stride; tmp += stride; } STOP_TIMER("mc_block") } #define mca(dx,dy,b_w)\ static void mc_block_hpel ## dx ## dy ## b_w(uint8_t *dst, uint8_t *src, int stride, int h){\ uint8_t tmp[stride*(b_w+5)];\ assert(h==b_w);\ mc_block(dst, src-2-2*stride, tmp, stride, b_w, b_w, dx, dy);\ } mca( 0, 0,16) mca( 8, 0,16) mca( 0, 8,16) mca( 8, 8,16) mca( 0, 0,8) mca( 8, 0,8) mca( 0, 8,8) mca( 8, 8,8) static void pred_block(SnowContext *s, uint8_t *dst, uint8_t *src, uint8_t *tmp, int stride, int sx, int sy, int b_w, int b_h, BlockNode *block, int plane_index, int w, int h){ if(block->type & BLOCK_INTRA){ int x, y; const int color= block->color[plane_index]; for(y=0; y < b_h; y++){ for(x=0; x < b_w; x++){ dst[x + y*stride]= color; } } }else{ const int scale= plane_index ? s->mv_scale : 2*s->mv_scale; int mx= block->mx*scale; int my= block->my*scale; const int dx= mx&15; const int dy= my&15; sx += (mx>>4) - 2; sy += (my>>4) - 2; src += sx + sy*stride; if( (unsigned)sx >= w - b_w - 4 || (unsigned)sy >= h - b_h - 4){ ff_emulated_edge_mc(tmp + MB_SIZE, src, stride, b_w+5, b_h+5, sx, sy, w, h); src= tmp + MB_SIZE; } if((dx&3) || (dy&3) || b_w!=b_h || (b_w!=4 && b_w!=8 && b_w!=16)) mc_block(dst, src, tmp, stride, b_w, b_h, dx, dy); else s->dsp.put_h264_qpel_pixels_tab[2-(b_w>>3)][dy+(dx>>2)](dst,src + 2 + 2*stride,stride); } } //FIXME name clenup (b_w, block_w, b_width stuff) static always_inline void add_yblock_buffered(SnowContext *s, slice_buffer * sb, DWTELEM *old_dst, uint8_t *dst8, uint8_t *src, uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int plane_index){ DWTELEM * dst = NULL; const int b_width = s->b_width << s->block_max_depth; const int b_height= s->b_height << s->block_max_depth; const int b_stride= b_width; BlockNode *lt= &s->block[b_x + b_y*b_stride]; BlockNode *rt= lt+1; BlockNode *lb= lt+b_stride; BlockNode *rb= lb+1; uint8_t *block[4]; int tmp_step= src_stride >= 7*MB_SIZE ? MB_SIZE : MB_SIZE*src_stride; uint8_t tmp[src_stride*7*MB_SIZE]; //FIXME align uint8_t *ptmp; int x,y; if(b_x<0){ lt= rt; lb= rb; }else if(b_x + 1 >= b_width){ rt= lt; rb= lb; } if(b_y<0){ lt= lb; rt= rb; }else if(b_y + 1 >= b_height){ lb= lt; rb= rt; } if(src_x<0){ //FIXME merge with prev & always round internal width upto *16 obmc -= src_x; b_w += src_x; src_x=0; }else if(src_x + b_w > w){ b_w = w - src_x; } if(src_y<0){ obmc -= src_y*obmc_stride; b_h += src_y; src_y=0; }else if(src_y + b_h> h){ b_h = h - src_y; } if(b_w<=0 || b_h<=0) return; assert(src_stride > 2*MB_SIZE + 5); // old_dst += src_x + src_y*dst_stride; dst8+= src_x + src_y*src_stride; // src += src_x + src_y*src_stride; ptmp= tmp + 3*tmp_step; block[0]= ptmp; ptmp+=tmp_step; pred_block(s, block[0], src, tmp, src_stride, src_x, src_y, b_w, b_h, lt, plane_index, w, h); if(same_block(lt, rt)){ block[1]= block[0]; }else{ block[1]= ptmp; ptmp+=tmp_step; pred_block(s, block[1], src, tmp, src_stride, src_x, src_y, b_w, b_h, rt, plane_index, w, h); } if(same_block(lt, lb)){ block[2]= block[0]; }else if(same_block(rt, lb)){ block[2]= block[1]; }else{ block[2]= ptmp; ptmp+=tmp_step; pred_block(s, block[2], src, tmp, src_stride, src_x, src_y, b_w, b_h, lb, plane_index, w, h); } if(same_block(lt, rb) ){ block[3]= block[0]; }else if(same_block(rt, rb)){ block[3]= block[1]; }else if(same_block(lb, rb)){ block[3]= block[2]; }else{ block[3]= ptmp; pred_block(s, block[3], src, tmp, src_stride, src_x, src_y, b_w, b_h, rb, plane_index, w, h); } #if 0 for(y=0; y>1); for(x=0; x>1); for(x=0; x>1); uint8_t *obmc4= obmc3+ (obmc_stride>>1); for(x=0; x>1); uint8_t *obmc3= obmc1+ obmc_stride*(obmc_stride>>1); uint8_t *obmc4= obmc3+ (obmc_stride>>1); dst = slice_buffer_get_line(sb, src_y + y); for(x=0; x>= 8 - FRAC_BITS; } if(add){ // v += old_dst[x + y*dst_stride]; v += dst[x + src_x]; v = (v + (1<<(FRAC_BITS-1))) >> FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst8[x + y*src_stride] = v; }else{ // old_dst[x + y*dst_stride] -= v; dst[x + src_x] -= v; } } } STOP_TIMER("Inner add y block") } #endif } //FIXME name clenup (b_w, block_w, b_width stuff) static always_inline void add_yblock(SnowContext *s, DWTELEM *dst, uint8_t *dst8, uint8_t *src, uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int plane_index){ const int b_width = s->b_width << s->block_max_depth; const int b_height= s->b_height << s->block_max_depth; const int b_stride= b_width; BlockNode *lt= &s->block[b_x + b_y*b_stride]; BlockNode *rt= lt+1; BlockNode *lb= lt+b_stride; BlockNode *rb= lb+1; uint8_t *block[4]; int tmp_step= src_stride >= 7*MB_SIZE ? MB_SIZE : MB_SIZE*src_stride; uint8_t tmp[src_stride*7*MB_SIZE]; //FIXME align uint8_t *ptmp; int x,y; if(b_x<0){ lt= rt; lb= rb; }else if(b_x + 1 >= b_width){ rt= lt; rb= lb; } if(b_y<0){ lt= lb; rt= rb; }else if(b_y + 1 >= b_height){ lb= lt; rb= rt; } if(src_x<0){ //FIXME merge with prev & always round internal width upto *16 obmc -= src_x; b_w += src_x; src_x=0; }else if(src_x + b_w > w){ b_w = w - src_x; } if(src_y<0){ obmc -= src_y*obmc_stride; b_h += src_y; src_y=0; }else if(src_y + b_h> h){ b_h = h - src_y; } if(b_w<=0 || b_h<=0) return; assert(src_stride > 2*MB_SIZE + 5); dst += src_x + src_y*dst_stride; dst8+= src_x + src_y*src_stride; // src += src_x + src_y*src_stride; ptmp= tmp + 3*tmp_step; block[0]= ptmp; ptmp+=tmp_step; pred_block(s, block[0], src, tmp, src_stride, src_x, src_y, b_w, b_h, lt, plane_index, w, h); if(same_block(lt, rt)){ block[1]= block[0]; }else{ block[1]= ptmp; ptmp+=tmp_step; pred_block(s, block[1], src, tmp, src_stride, src_x, src_y, b_w, b_h, rt, plane_index, w, h); } if(same_block(lt, lb)){ block[2]= block[0]; }else if(same_block(rt, lb)){ block[2]= block[1]; }else{ block[2]= ptmp; ptmp+=tmp_step; pred_block(s, block[2], src, tmp, src_stride, src_x, src_y, b_w, b_h, lb, plane_index, w, h); } if(same_block(lt, rb) ){ block[3]= block[0]; }else if(same_block(rt, rb)){ block[3]= block[1]; }else if(same_block(lb, rb)){ block[3]= block[2]; }else{ block[3]= ptmp; pred_block(s, block[3], src, tmp, src_stride, src_x, src_y, b_w, b_h, rb, plane_index, w, h); } #if 0 for(y=0; y>1); for(x=0; x>1); for(x=0; x>1); uint8_t *obmc4= obmc3+ (obmc_stride>>1); for(x=0; x>1); uint8_t *obmc3= obmc1+ obmc_stride*(obmc_stride>>1); uint8_t *obmc4= obmc3+ (obmc_stride>>1); for(x=0; x>= 8 - FRAC_BITS; } if(add){ v += dst[x + y*dst_stride]; v = (v + (1<<(FRAC_BITS-1))) >> FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst8[x + y*src_stride] = v; }else{ dst[x + y*dst_stride] -= v; } } } #endif } static always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, DWTELEM * old_buffer, int plane_index, int add, int mb_y){ Plane *p= &s->plane[plane_index]; const int mb_w= s->b_width << s->block_max_depth; const int mb_h= s->b_height << s->block_max_depth; int x, y, mb_x; int block_size = MB_SIZE >> s->block_max_depth; int block_w = plane_index ? block_size/2 : block_size; const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth]; int obmc_stride= plane_index ? block_size : 2*block_size; int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *ref = s->last_picture.data[plane_index]; uint8_t *dst8= s->current_picture.data[plane_index]; int w= p->width; int h= p->height; START_TIMER if(s->keyframe || (s->avctx->debug&512)){ if(mb_y==mb_h) return; if(add){ for(y=block_w*mb_y; yline[y]; for(x=0; x>= FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst8[x + y*ref_stride]= v; } } }else{ for(y=block_w*mb_y; yline[y]; for(x=0; xplane[plane_index]; const int mb_w= s->b_width << s->block_max_depth; const int mb_h= s->b_height << s->block_max_depth; int x, y, mb_x; int block_size = MB_SIZE >> s->block_max_depth; int block_w = plane_index ? block_size/2 : block_size; const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth]; const int obmc_stride= plane_index ? block_size : 2*block_size; int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *ref = s->last_picture.data[plane_index]; uint8_t *dst8= s->current_picture.data[plane_index]; int w= p->width; int h= p->height; START_TIMER if(s->keyframe || (s->avctx->debug&512)){ if(mb_y==mb_h) return; if(add){ for(y=block_w*mb_y; y>= FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst8[x + y*ref_stride]= v; } } }else{ for(y=block_w*mb_y; yb_height << s->block_max_depth; int mb_y; for(mb_y=0; mb_y<=mb_h; mb_y++) predict_slice(s, buf, plane_index, add, mb_y); } static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){ int i, x2, y2; Plane *p= &s->plane[plane_index]; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size/2 : block_size; const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth]; const int obmc_stride= plane_index ? block_size : 2*block_size; const int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *ref= s-> last_picture.data[plane_index]; uint8_t *dst= s->current_picture.data[plane_index]; uint8_t *src= s-> input_picture.data[plane_index]; const static DWTELEM zero_dst[4096]; //FIXME const int b_stride = s->b_width << s->block_max_depth; const int w= p->width; const int h= p->height; int index= mb_x + mb_y*b_stride; BlockNode *b= &s->block[index]; BlockNode backup= *b; int ab=0; int aa=0; b->type|= BLOCK_INTRA; b->color[plane_index]= 0; for(i=0; i<4; i++){ int mb_x2= mb_x + (i &1) - 1; int mb_y2= mb_y + (i>>1) - 1; int x= block_w*mb_x2 + block_w/2; int y= block_w*mb_y2 + block_w/2; add_yblock(s, zero_dst, dst, ref, obmc, x, y, block_w, block_w, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, plane_index); for(y2= FFMAX(y, 0); y2h) obmc_v += obmc[index - block_w*obmc_stride]; if(x+block_w>w) obmc_v += obmc[index - block_w]; //FIXME precalc this or simplify it somehow else ab += (src[x2 + y2*ref_stride] - dst[x2 + y2*ref_stride]) * obmc_v; aa += obmc_v * obmc_v; //FIXME precalclate this } } } *b= backup; return clip(((ab<<6) + aa/2)/aa, 0, 255); //FIXME we shouldnt need cliping } static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){ int i, y2; Plane *p= &s->plane[plane_index]; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size/2 : block_size; const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth]; const int obmc_stride= plane_index ? block_size : 2*block_size; const int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *ref= s-> last_picture.data[plane_index]; uint8_t *dst= s->current_picture.data[plane_index]; uint8_t *src= s-> input_picture.data[plane_index]; const static DWTELEM zero_dst[4096]; //FIXME const int b_stride = s->b_width << s->block_max_depth; const int b_height = s->b_height<< s->block_max_depth; const int w= p->width; const int h= p->height; int distortion= 0; int rate= 0; const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp); for(i=0; i<4; i++){ int mb_x2= mb_x + (i &1) - 1; int mb_y2= mb_y + (i>>1) - 1; int x= block_w*mb_x2 + block_w/2; int y= block_w*mb_y2 + block_w/2; add_yblock(s, zero_dst, dst, ref, obmc, x, y, block_w, block_w, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, plane_index); //FIXME find a cleaner/simpler way to skip the outside stuff for(y2= y; y2<0; y2++) memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w); for(y2= h; y2 w){ for(y2= y; y2dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_w); } if(plane_index==0){ for(i=0; i<4; i++){ /* ..RRr * .RXx. * rxx.. */ int x= mb_x + (i&1) - (i>>1); int y= mb_y + (i>>1); int index= x + y*b_stride; BlockNode *b = &s->block[index]; BlockNode *left = x ? &s->block[index-1] : &null_block; BlockNode *top = y ? &s->block[index-b_stride] : &null_block; BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left; BlockNode *tr = y && x+1block[index-b_stride+1] : tl; int dmx= b->mx - mid_pred(left->mx, top->mx, tr->mx); int dmy= b->my - mid_pred(left->my, top->my, tr->my); // int mx_context= av_log2(2*ABS(left->mx - top->mx)); // int my_context= av_log2(2*ABS(left->my - top->my)); if(x<0 || x>=b_stride || y>=b_height) continue; /* 1 0 0 01X 1-2 1 001XX 3-6 2-3 0001XXX 7-14 4-7 00001XXXX 15-30 8-15 */ //FIXME try accurate rate //FIXME intra and inter predictors if surrounding blocks arent the same type if(b->type & BLOCK_INTRA){ rate += 3+2*( av_log2(2*ABS(left->color[0] - b->color[0])) + av_log2(2*ABS(left->color[1] - b->color[1])) + av_log2(2*ABS(left->color[2] - b->color[2]))); }else rate += 2*(1 + av_log2(2*ABS(dmx)) + av_log2(2*ABS(dmy))); //FIXME kill the 2* can be merged in lambda } } return distortion + rate*penalty_factor; } static always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, int *best_rd){ const int b_stride= s->b_width << s->block_max_depth; BlockNode *block= &s->block[mb_x + mb_y * b_stride]; BlockNode backup= *block; int rd, index, value; assert(mb_x>=0 && mb_y>=0); assert(mb_ycolor[0] = p[0]; block->color[1] = p[1]; block->color[2] = p[2]; block->type |= BLOCK_INTRA; }else{ index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1); value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6); if(s->me_cache[index] == value) return 0; s->me_cache[index]= value; block->mx= p[0]; block->my= p[1]; block->type &= ~BLOCK_INTRA; } rd= get_block_rd(s, mb_x, mb_y, 0); //FIXME chroma if(rd < *best_rd){ *best_rd= rd; return 1; }else{ *block= backup; return 0; } } static void iterative_me(SnowContext *s){ int pass, mb_x, mb_y; const int b_width = s->b_width << s->block_max_depth; const int b_height= s->b_height << s->block_max_depth; const int b_stride= b_width; int color[3]; for(pass=0; pass<50; pass++){ int change= 0; for(mb_y= 0; mb_yblock[index]; BlockNode *tb = mb_y ? &s->block[index-b_stride ] : &null_block; BlockNode *lb = mb_x ? &s->block[index -1] : &null_block; BlockNode *rb = mb_xblock[index +1] : &null_block; BlockNode *bb = mb_yblock[index+b_stride ] : &null_block; BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : &null_block; BlockNode *trb= mb_xblock[index-b_stride+1] : &null_block; BlockNode *blb= mb_x && mb_yblock[index+b_stride-1] : &null_block; BlockNode *brb= mb_xblock[index+b_stride+1] : &null_block; if(pass && (block->type & BLOCK_OPT)) continue; block->type |= BLOCK_OPT; backup= *block; if(!s->me_cache_generation) memset(s->me_cache, 0, sizeof(s->me_cache)); s->me_cache_generation += 1<<22; // get previous score (cant be cached due to OBMC) check_block(s, mb_x, mb_y, (int[2]){block->mx, block->my}, 0, &best_rd); check_block(s, mb_x, mb_y, (int[2]){0, 0}, 0, &best_rd); check_block(s, mb_x, mb_y, (int[2]){tb->mx, tb->my}, 0, &best_rd); check_block(s, mb_x, mb_y, (int[2]){lb->mx, lb->my}, 0, &best_rd); check_block(s, mb_x, mb_y, (int[2]){rb->mx, rb->my}, 0, &best_rd); check_block(s, mb_x, mb_y, (int[2]){bb->mx, bb->my}, 0, &best_rd); /* fullpel ME */ //FIXME avoid subpel interpol / round to nearest integer do{ dia_change=0; for(i=0; iavctx->dia_size, 1); i++){ for(j=0; jmx+4*(i-j), block->my+(4*j)}, 0, &best_rd); dia_change |= check_block(s, mb_x, mb_y, (int[2]){block->mx-4*(i-j), block->my-(4*j)}, 0, &best_rd); dia_change |= check_block(s, mb_x, mb_y, (int[2]){block->mx+4*(i-j), block->my-(4*j)}, 0, &best_rd); dia_change |= check_block(s, mb_x, mb_y, (int[2]){block->mx-4*(i-j), block->my+(4*j)}, 0, &best_rd); } } }while(dia_change); /* subpel ME */ do{ static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},}; dia_change=0; for(i=0; i<8; i++) dia_change |= check_block(s, mb_x, mb_y, (int[2]){block->mx+square[i][0], block->my+square[i][1]}, 0, &best_rd); }while(dia_change); //FIXME or try the standard 2 pass qpel or similar for(i=0; i<3; i++){ color[i]= get_dc(s, mb_x, mb_y, i); } check_block(s, mb_x, mb_y, color, 1, &best_rd); //FIXME RD style color selection if(!same_block(block, &backup)){ if(tb != &null_block) tb ->type &= ~BLOCK_OPT; if(lb != &null_block) lb ->type &= ~BLOCK_OPT; if(rb != &null_block) rb ->type &= ~BLOCK_OPT; if(bb != &null_block) bb ->type &= ~BLOCK_OPT; if(tlb!= &null_block) tlb->type &= ~BLOCK_OPT; if(trb!= &null_block) trb->type &= ~BLOCK_OPT; if(blb!= &null_block) blb->type &= ~BLOCK_OPT; if(brb!= &null_block) brb->type &= ~BLOCK_OPT; change ++; } } } av_log(NULL, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change); if(!change) break; } } static void quantize(SnowContext *s, SubBand *b, DWTELEM *src, int stride, int bias){ const int level= b->level; const int w= b->width; const int h= b->height; const int qlog= clip(s->qlog + b->qlog, 0, QROOT*16); const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); int x,y, thres1, thres2; // START_TIMER if(s->qlog == LOSSLESS_QLOG) return; bias= bias ? 0 : (3*qmul)>>3; thres1= ((qmul - bias)>>QEXPSHIFT) - 1; thres2= 2*thres1; if(!bias){ for(y=0; y thres2){ if(i>=0){ i<<= QEXPSHIFT; i/= qmul; //FIXME optimize src[x + y*stride]= i; }else{ i= -i; i<<= QEXPSHIFT; i/= qmul; //FIXME optimize src[x + y*stride]= -i; } }else src[x + y*stride]= 0; } } }else{ for(y=0; y thres2){ if(i>=0){ i<<= QEXPSHIFT; i= (i + bias) / qmul; //FIXME optimize src[x + y*stride]= i; }else{ i= -i; i<<= QEXPSHIFT; i= (i + bias) / qmul; //FIXME optimize src[x + y*stride]= -i; } }else src[x + y*stride]= 0; } } } if(level+1 == s->spatial_decomposition_count){ // STOP_TIMER("quantize") } } static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, DWTELEM *src, int stride, int start_y, int end_y){ const int w= b->width; const int qlog= clip(s->qlog + b->qlog, 0, QROOT*16); const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; int x,y; START_TIMER if(s->qlog == LOSSLESS_QLOG) return; for(y=start_y; ystride_line) + b->buf_y_offset) + b->buf_x_offset; for(x=0; x>(QEXPSHIFT)); //FIXME try different bias }else if(i>0){ line[x]= (( i*qmul + qadd)>>(QEXPSHIFT)); } } } if(w > 200 /*level+1 == s->spatial_decomposition_count*/){ STOP_TIMER("dquant") } } static void dequantize(SnowContext *s, SubBand *b, DWTELEM *src, int stride){ const int w= b->width; const int h= b->height; const int qlog= clip(s->qlog + b->qlog, 0, QROOT*16); const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; int x,y; START_TIMER if(s->qlog == LOSSLESS_QLOG) return; for(y=0; y>(QEXPSHIFT)); //FIXME try different bias }else if(i>0){ src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT)); } } } if(w > 200 /*level+1 == s->spatial_decomposition_count*/){ STOP_TIMER("dquant") } } static void decorrelate(SnowContext *s, SubBand *b, DWTELEM *src, int stride, int inverse, int use_median){ const int w= b->width; const int h= b->height; int x,y; for(y=h-1; y>=0; y--){ for(x=w-1; x>=0; x--){ int i= x + y*stride; if(x){ if(use_median){ if(y && x+1width; int x,y; // START_TIMER DWTELEM * line; DWTELEM * prev; if (start_y != 0) line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset; for(y=start_y; ystride_line) + b->buf_y_offset) + b->buf_x_offset; for(x=0; xwidth; const int h= b->height; int x,y; for(y=0; yc, kstate, s->keyframe); if(s->keyframe || s->always_reset) reset_contexts(s); if(s->keyframe){ put_symbol(&s->c, s->header_state, s->version, 0); put_rac(&s->c, s->header_state, s->always_reset); put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0); put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0); put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0); put_symbol(&s->c, s->header_state, s->colorspace_type, 0); put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0); put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0); put_rac(&s->c, s->header_state, s->spatial_scalability); // put_rac(&s->c, s->header_state, s->rate_scalability); for(plane_index=0; plane_index<2; plane_index++){ for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1:0; orientation<4; orientation++){ if(orientation==2) continue; put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1); } } } } put_symbol(&s->c, s->header_state, s->spatial_decomposition_type, 0); put_symbol(&s->c, s->header_state, s->qlog, 1); put_symbol(&s->c, s->header_state, s->mv_scale, 0); put_symbol(&s->c, s->header_state, s->qbias, 1); put_symbol(&s->c, s->header_state, s->block_max_depth, 0); } static int decode_header(SnowContext *s){ int plane_index, level, orientation; uint8_t kstate[32]; memset(kstate, MID_STATE, sizeof(kstate)); s->keyframe= get_rac(&s->c, kstate); if(s->keyframe || s->always_reset) reset_contexts(s); if(s->keyframe){ s->version= get_symbol(&s->c, s->header_state, 0); if(s->version>0){ av_log(s->avctx, AV_LOG_ERROR, "version %d not supported", s->version); return -1; } s->always_reset= get_rac(&s->c, s->header_state); s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0); s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0); s->spatial_decomposition_count= get_symbol(&s->c, s->header_state, 0); s->colorspace_type= get_symbol(&s->c, s->header_state, 0); s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0); s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0); s->spatial_scalability= get_rac(&s->c, s->header_state); // s->rate_scalability= get_rac(&s->c, s->header_state); for(plane_index=0; plane_index<3; plane_index++){ for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1:0; orientation<4; orientation++){ int q; if (plane_index==2) q= s->plane[1].band[level][orientation].qlog; else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog; else q= get_symbol(&s->c, s->header_state, 1); s->plane[plane_index].band[level][orientation].qlog= q; } } } } s->spatial_decomposition_type= get_symbol(&s->c, s->header_state, 0); if(s->spatial_decomposition_type > 2){ av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported", s->spatial_decomposition_type); return -1; } s->qlog= get_symbol(&s->c, s->header_state, 1); s->mv_scale= get_symbol(&s->c, s->header_state, 0); s->qbias= get_symbol(&s->c, s->header_state, 1); s->block_max_depth= get_symbol(&s->c, s->header_state, 0); if(s->block_max_depth > 1){ av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large", s->block_max_depth); s->block_max_depth= 0; return -1; } return 0; } static void init_qexp(){ int i; double v=128; for(i=0; ipriv_data; int width, height; int level, orientation, plane_index, dec; s->avctx= avctx; dsputil_init(&s->dsp, avctx); #define mcf(dx,dy)\ s->dsp.put_qpel_pixels_tab [0][dy+dx/4]=\ s->dsp.put_no_rnd_qpel_pixels_tab[0][dy+dx/4]=\ s->dsp.put_h264_qpel_pixels_tab[0][dy+dx/4];\ s->dsp.put_qpel_pixels_tab [1][dy+dx/4]=\ s->dsp.put_no_rnd_qpel_pixels_tab[1][dy+dx/4]=\ s->dsp.put_h264_qpel_pixels_tab[1][dy+dx/4]; mcf( 0, 0) mcf( 4, 0) mcf( 8, 0) mcf(12, 0) mcf( 0, 4) mcf( 4, 4) mcf( 8, 4) mcf(12, 4) mcf( 0, 8) mcf( 4, 8) mcf( 8, 8) mcf(12, 8) mcf( 0,12) mcf( 4,12) mcf( 8,12) mcf(12,12) #define mcfh(dx,dy)\ s->dsp.put_pixels_tab [0][dy/4+dx/8]=\ s->dsp.put_no_rnd_pixels_tab[0][dy/4+dx/8]=\ mc_block_hpel ## dx ## dy ## 16;\ s->dsp.put_pixels_tab [1][dy/4+dx/8]=\ s->dsp.put_no_rnd_pixels_tab[1][dy/4+dx/8]=\ mc_block_hpel ## dx ## dy ## 8; mcfh(0, 0) mcfh(8, 0) mcfh(0, 8) mcfh(8, 8) if(!qexp[0]) init_qexp(); dec= s->spatial_decomposition_count= 5; s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type s->chroma_h_shift= 1; //FIXME XXX s->chroma_v_shift= 1; // dec += FFMAX(s->chroma_h_shift, s->chroma_v_shift); width= s->avctx->width; height= s->avctx->height; s->spatial_dwt_buffer= av_mallocz(width*height*sizeof(DWTELEM)); s->mv_scale= (s->avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4; s->block_max_depth= (s->avctx->flags & CODEC_FLAG_4MV) ? 1 : 0; for(plane_index=0; plane_index<3; plane_index++){ int w= s->avctx->width; int h= s->avctx->height; if(plane_index){ w>>= s->chroma_h_shift; h>>= s->chroma_v_shift; } s->plane[plane_index].width = w; s->plane[plane_index].height= h; //av_log(NULL, AV_LOG_DEBUG, "%d %d\n", w, h); for(level=s->spatial_decomposition_count-1; level>=0; level--){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &s->plane[plane_index].band[level][orientation]; b->buf= s->spatial_dwt_buffer; b->level= level; b->stride= s->plane[plane_index].width << (s->spatial_decomposition_count - level); b->width = (w + !(orientation&1))>>1; b->height= (h + !(orientation>1))>>1; b->stride_line = 1 << (s->spatial_decomposition_count - level); b->buf_x_offset = 0; b->buf_y_offset = 0; if(orientation&1){ b->buf += (w+1)>>1; b->buf_x_offset = (w+1)>>1; } if(orientation>1){ b->buf += b->stride>>1; b->buf_y_offset = b->stride_line >> 1; } if(level) b->parent= &s->plane[plane_index].band[level-1][orientation]; b->x_coeff=av_mallocz(((b->width+1) * b->height+1)*sizeof(x_and_coeff)); } w= (w+1)>>1; h= (h+1)>>1; } } reset_contexts(s); /* width= s->width= avctx->width; height= s->height= avctx->height; assert(width && height); */ s->avctx->get_buffer(s->avctx, &s->mconly_picture); return 0; } static void calculate_vissual_weight(SnowContext *s, Plane *p){ int width = p->width; int height= p->height; int level, orientation, x, y; for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; DWTELEM *buf= b->buf; int64_t error=0; memset(s->spatial_dwt_buffer, 0, sizeof(int)*width*height); buf[b->width/2 + b->height/2*b->stride]= 256*256; ff_spatial_idwt(s->spatial_dwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count); for(y=0; yspatial_dwt_buffer[x + y*width]; error += d*d; } } b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5); // av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", level, orientation, b->qlog/*, sqrt(error)*/); } } } static int encode_init(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; int plane_index; if(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL){ av_log(avctx, AV_LOG_ERROR, "this codec is under development, files encoded with it may not be decodable with future versions!!!\n" "use vstrict=-2 / -strict -2 to use it anyway\n"); return -1; } common_init(avctx); alloc_blocks(s); s->version=0; s->m.avctx = avctx; s->m.flags = avctx->flags; s->m.bit_rate= avctx->bit_rate; s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t)); s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); h263_encode_init(&s->m); //mv_penalty if(avctx->flags&CODEC_FLAG_PASS1){ if(!avctx->stats_out) avctx->stats_out = av_mallocz(256); } if(avctx->flags&CODEC_FLAG_PASS2){ if(ff_rate_control_init(&s->m) < 0) return -1; } for(plane_index=0; plane_index<3; plane_index++){ calculate_vissual_weight(s, &s->plane[plane_index]); } avctx->coded_frame= &s->current_picture; switch(avctx->pix_fmt){ // case PIX_FMT_YUV444P: // case PIX_FMT_YUV422P: case PIX_FMT_YUV420P: case PIX_FMT_GRAY8: // case PIX_FMT_YUV411P: // case PIX_FMT_YUV410P: s->colorspace_type= 0; break; /* case PIX_FMT_RGBA32: s->colorspace= 1; break;*/ default: av_log(avctx, AV_LOG_ERROR, "format not supported\n"); return -1; } // avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift); s->chroma_h_shift= 1; s->chroma_v_shift= 1; ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp); ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp); s->avctx->get_buffer(s->avctx, &s->input_picture); return 0; } static int frame_start(SnowContext *s){ AVFrame tmp; int w= s->avctx->width; //FIXME round up to x16 ? int h= s->avctx->height; if(s->current_picture.data[0]){ draw_edges(s->current_picture.data[0], s->current_picture.linesize[0], w , h , EDGE_WIDTH ); draw_edges(s->current_picture.data[1], s->current_picture.linesize[1], w>>1, h>>1, EDGE_WIDTH/2); draw_edges(s->current_picture.data[2], s->current_picture.linesize[2], w>>1, h>>1, EDGE_WIDTH/2); } tmp= s->last_picture; s->last_picture= s->current_picture; s->current_picture= tmp; s->current_picture.reference= 1; if(s->avctx->get_buffer(s->avctx, &s->current_picture) < 0){ av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } return 0; } static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){ SnowContext *s = avctx->priv_data; RangeCoder * const c= &s->c; AVFrame *pict = data; const int width= s->avctx->width; const int height= s->avctx->height; int level, orientation, plane_index, i, y; ff_init_range_encoder(c, buf, buf_size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); for(i=0; i<3; i++){ int shift= !!i; for(y=0; y<(height>>shift); y++) memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]], &pict->data[i][y * pict->linesize[i]], width>>shift); } s->new_picture = *pict; if(avctx->flags&CODEC_FLAG_PASS2){ s->m.pict_type = pict->pict_type= s->m.rc_context.entry[avctx->frame_number].new_pict_type; s->keyframe= pict->pict_type==FF_I_TYPE; s->m.picture_number= avctx->frame_number; pict->quality= ff_rate_estimate_qscale(&s->m, 0); }else{ s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0; pict->pict_type= s->keyframe ? FF_I_TYPE : FF_P_TYPE; } if(pict->quality){ s->qlog= rint(QROOT*log(pict->quality / (float)FF_QP2LAMBDA)/log(2)); //<64 >60 s->qlog += 61*QROOT/8; }else{ s->qlog= LOSSLESS_QLOG; } frame_start(s); s->current_picture.key_frame= s->keyframe; s->m.current_picture_ptr= &s->m.current_picture; if(pict->pict_type == P_TYPE){ int block_width = (width +15)>>4; int block_height= (height+15)>>4; int stride= s->current_picture.linesize[0]; assert(s->current_picture.data[0]); assert(s->last_picture.data[0]); s->m.avctx= s->avctx; s->m.current_picture.data[0]= s->current_picture.data[0]; s->m. last_picture.data[0]= s-> last_picture.data[0]; s->m. new_picture.data[0]= s-> input_picture.data[0]; s->m. last_picture_ptr= &s->m. last_picture; s->m.linesize= s->m. last_picture.linesize[0]= s->m. new_picture.linesize[0]= s->m.current_picture.linesize[0]= stride; s->m.uvlinesize= s->current_picture.linesize[1]; s->m.width = width; s->m.height= height; s->m.mb_width = block_width; s->m.mb_height= block_height; s->m.mb_stride= s->m.mb_width+1; s->m.b8_stride= 2*s->m.mb_width+1; s->m.f_code=1; s->m.pict_type= pict->pict_type; s->m.me_method= s->avctx->me_method; s->m.me.scene_change_score=0; s->m.flags= s->avctx->flags; s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0; s->m.out_format= FMT_H263; s->m.unrestricted_mv= 1; s->lambda = s->m.lambda= pict->quality * 3/2; //FIXME bug somewhere else s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7); s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT; s->m.dsp= s->dsp; //move ff_init_me(&s->m); s->dsp= s->m.dsp; } redo_frame: s->qbias= pict->pict_type == P_TYPE ? 2 : 0; encode_header(s); s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start); encode_blocks(s); s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits; for(plane_index=0; plane_index<3; plane_index++){ Plane *p= &s->plane[plane_index]; int w= p->width; int h= p->height; int x, y; // int bits= put_bits_count(&s->c.pb); //FIXME optimize if(pict->data[plane_index]) //FIXME gray hack for(y=0; yspatial_dwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<spatial_dwt_buffer, plane_index, 0); if( plane_index==0 && pict->pict_type == P_TYPE && s->m.me.scene_change_score > s->avctx->scenechange_threshold){ ff_init_range_encoder(c, buf, buf_size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); pict->pict_type= FF_I_TYPE; s->keyframe=1; reset_contexts(s); goto redo_frame; } if(s->qlog == LOSSLESS_QLOG){ for(y=0; yspatial_dwt_buffer[y*w + x]= (s->spatial_dwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS; } } } ff_spatial_dwt(s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; quantize(s, b, b->buf, b->stride, s->qbias); if(orientation==0) decorrelate(s, b, b->buf, b->stride, pict->pict_type == P_TYPE, 0); encode_subband(s, b, b->buf, b->parent ? b->parent->buf : NULL, b->stride, orientation); assert(b->parent==NULL || b->parent->stride == b->stride*2); if(orientation==0) correlate(s, b, b->buf, b->stride, 1, 0); } } // av_log(NULL, AV_LOG_DEBUG, "plane:%d bits:%d\n", plane_index, put_bits_count(&s->c.pb) - bits); for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; dequantize(s, b, b->buf, b->stride); } } ff_spatial_idwt(s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); if(s->qlog == LOSSLESS_QLOG){ for(y=0; yspatial_dwt_buffer[y*w + x]<<=FRAC_BITS; } } } {START_TIMER predict_plane(s, s->spatial_dwt_buffer, plane_index, 1); STOP_TIMER("pred-conv")} if(s->avctx->flags&CODEC_FLAG_PSNR){ int64_t error= 0; if(pict->data[plane_index]) //FIXME gray hack for(y=0; ycurrent_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x]; error += d*d; } } s->avctx->error[plane_index] += error; s->current_picture.error[plane_index] = error; } } if(s->last_picture.data[0]) avctx->release_buffer(avctx, &s->last_picture); s->current_picture.coded_picture_number = avctx->frame_number; s->current_picture.pict_type = pict->pict_type; s->current_picture.quality = pict->quality; if(avctx->flags&CODEC_FLAG_PASS1){ s->m.p_tex_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits - s->m.mv_bits; s->m.current_picture.display_picture_number = s->m.current_picture.coded_picture_number = avctx->frame_number; s->m.pict_type = pict->pict_type; s->m.current_picture.quality = pict->quality; ff_write_pass1_stats(&s->m); } if(avctx->flags&CODEC_FLAG_PASS2){ s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start); } emms_c(); return ff_rac_terminate(c); } static void common_end(SnowContext *s){ int plane_index, level, orientation; av_freep(&s->spatial_dwt_buffer); av_freep(&s->m.me.scratchpad); av_freep(&s->m.me.map); av_freep(&s->m.me.score_map); av_freep(&s->block); for(plane_index=0; plane_index<3; plane_index++){ for(level=s->spatial_decomposition_count-1; level>=0; level--){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &s->plane[plane_index].band[level][orientation]; av_freep(&b->x_coeff); } } } } static int encode_end(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; common_end(s); av_free(avctx->stats_out); return 0; } static int decode_init(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; int block_size; avctx->pix_fmt= PIX_FMT_YUV420P; common_init(avctx); block_size = MB_SIZE >> s->block_max_depth; slice_buffer_init(&s->sb, s->plane[0].height, (block_size) + (s->spatial_decomposition_count * (s->spatial_decomposition_count + 2)) + 1, s->plane[0].width, s->spatial_dwt_buffer); return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){ SnowContext *s = avctx->priv_data; RangeCoder * const c= &s->c; int bytes_read; AVFrame *picture = data; int level, orientation, plane_index; ff_init_range_decoder(c, buf, buf_size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); s->current_picture.pict_type= FF_I_TYPE; //FIXME I vs. P decode_header(s); if(!s->block) alloc_blocks(s); frame_start(s); //keyframe flag dupliaction mess FIXME if(avctx->debug&FF_DEBUG_PICT_INFO) av_log(avctx, AV_LOG_ERROR, "keyframe:%d qlog:%d\n", s->keyframe, s->qlog); decode_blocks(s); for(plane_index=0; plane_index<3; plane_index++){ Plane *p= &s->plane[plane_index]; int w= p->width; int h= p->height; int x, y; int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */ if(s->avctx->debug&2048){ memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h); predict_plane(s, s->spatial_dwt_buffer, plane_index, 1); for(y=0; ycurrent_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]; s->mconly_picture.data[plane_index][y*s->mconly_picture.linesize[plane_index] + x]= v; } } } { START_TIMER for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; unpack_coeffs(s, b, b->parent, orientation); } } STOP_TIMER("unpack coeffs"); } {START_TIMER const int mb_h= s->b_height << s->block_max_depth; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size/2 : block_size; int mb_y; dwt_compose_t cs[MAX_DECOMPOSITIONS]; int yd=0, yq=0; int y; int end_y; ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count); for(mb_y=0; mb_y<=mb_h; mb_y++){ int slice_starty = block_w*mb_y; int slice_h = block_w*(mb_y+1); if (!(s->keyframe || s->avctx->debug&512)){ slice_starty = FFMAX(0, slice_starty - (block_w >> 1)); slice_h -= (block_w >> 1); } { START_TIMER for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; int start_y; int end_y; int our_mb_start = mb_y; int our_mb_end = (mb_y + 1); start_y = (mb_y ? ((block_w * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + 2: 0); end_y = (((block_w * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + 2); if (!(s->keyframe || s->avctx->debug&512)){ start_y = FFMAX(0, start_y - (block_w >> (1+s->spatial_decomposition_count - level))); end_y = FFMAX(0, end_y - (block_w >> (1+s->spatial_decomposition_count - level))); } start_y = FFMIN(b->height, start_y); end_y = FFMIN(b->height, end_y); if (start_y != end_y){ if (orientation == 0){ SubBand * correlate_band = &p->band[0][0]; int correlate_end_y = FFMIN(b->height, end_y + 1); int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0)); decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]); correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->buf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y); dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->buf, correlate_band->stride, start_y, end_y); } else decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]); } } } STOP_TIMER("decode_subband_slice"); } { START_TIMER for(; ydsb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd); } STOP_TIMER("idwt slice");} if(s->qlog == LOSSLESS_QLOG){ for(; yqsb, yq); for(x=0; xsb, s->spatial_dwt_buffer, plane_index, 1, mb_y); y = FFMIN(p->height, slice_starty); end_y = FFMIN(p->height, slice_h); while(y < end_y) slice_buffer_release(&s->sb, y++); } slice_buffer_flush(&s->sb); STOP_TIMER("idwt + predict_slices")} } emms_c(); if(s->last_picture.data[0]) avctx->release_buffer(avctx, &s->last_picture); if(!(s->avctx->debug&2048)) *picture= s->current_picture; else *picture= s->mconly_picture; *data_size = sizeof(AVFrame); bytes_read= c->bytestream - c->bytestream_start; if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME return bytes_read; } static int decode_end(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; slice_buffer_destroy(&s->sb); common_end(s); return 0; } AVCodec snow_decoder = { "snow", CODEC_TYPE_VIDEO, CODEC_ID_SNOW, sizeof(SnowContext), decode_init, NULL, decode_end, decode_frame, 0 /*CODEC_CAP_DR1*/ /*| CODEC_CAP_DRAW_HORIZ_BAND*/, NULL }; #ifdef CONFIG_ENCODERS AVCodec snow_encoder = { "snow", CODEC_TYPE_VIDEO, CODEC_ID_SNOW, sizeof(SnowContext), encode_init, encode_frame, encode_end, }; #endif #if 0 #undef malloc #undef free #undef printf int main(){ int width=256; int height=256; int buffer[2][width*height]; SnowContext s; int i; s.spatial_decomposition_count=6; s.spatial_decomposition_type=1; printf("testing 5/3 DWT\n"); for(i=0; i20) printf("fsck: %d %d %d\n",i, buffer[0][i], buffer[1][i]); #if 0 printf("testing AC coder\n"); memset(s.header_state, 0, sizeof(s.header_state)); ff_init_range_encoder(&s.c, buffer[0], 256*256); ff_init_cabac_states(&s.c, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64); for(i=-256; i<256; i++){ START_TIMER put_symbol(&s.c, s.header_state, i*i*i/3*ABS(i), 1); STOP_TIMER("put_symbol") } ff_rac_terminate(&s.c); memset(s.header_state, 0, sizeof(s.header_state)); ff_init_range_decoder(&s.c, buffer[0], 256*256); ff_init_cabac_states(&s.c, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64); for(i=-256; i<256; i++){ int j; START_TIMER j= get_symbol(&s.c, s.header_state, 1); STOP_TIMER("get_symbol") if(j!=i*i*i/3*ABS(i)) printf("fsck: %d != %d\n", i, j); } #endif { int level, orientation, x, y; int64_t errors[8][4]; int64_t g=0; memset(errors, 0, sizeof(errors)); s.spatial_decomposition_count=3; s.spatial_decomposition_type=0; for(level=0; level> (s.spatial_decomposition_count-level); int h= height >> (s.spatial_decomposition_count-level); int stride= width << (s.spatial_decomposition_count-level); DWTELEM *buf= buffer[0]; int64_t error=0; if(orientation&1) buf+=w; if(orientation>1) buf+=stride>>1; memset(buffer[0], 0, sizeof(int)*width*height); buf[w/2 + h/2*stride]= 256*256; ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); for(y=0; y> (s.spatial_decomposition_count-level); int h= height >> (s.spatial_decomposition_count-level); int stride= width << (s.spatial_decomposition_count-level); DWTELEM *buf= buffer[0]; int64_t error=0; buf+=w; buf+=stride>>1; memset(buffer[0], 0, sizeof(int)*width*height); #if 1 for(y=0; y