/* * DV decoder * Copyright (c) 2002 Fabrice Bellard * Copyright (c) 2004 Roman Shaposhnik * * DV encoder * Copyright (c) 2003 Roman Shaposhnik * * 50 Mbps (DVCPRO50) support * Copyright (c) 2006 Daniel Maas * * 100 Mbps (DVCPRO HD) support * Initial code by Daniel Maas (funded by BBC R&D) * Final code by Roman Shaposhnik * * Many thanks to Dan Dennedy for providing wealth * of DV technical info. * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * DV codec. */ #include "libavutil/internal.h" #include "libavutil/pixdesc.h" #include "avcodec.h" #include "get_bits.h" #include "internal.h" #include "put_bits.h" #include "simple_idct.h" #include "dvdata.h" #include "dv.h" /* XXX: also include quantization */ RL_VLC_ELEM ff_dv_rl_vlc[1184]; static inline void dv_calc_mb_coordinates(const DVprofile *d, int chan, int seq, int slot, uint16_t *tbl) { static const uint8_t off[] = { 2, 6, 8, 0, 4 }; static const uint8_t shuf1[] = { 36, 18, 54, 0, 72 }; static const uint8_t shuf2[] = { 24, 12, 36, 0, 48 }; static const uint8_t shuf3[] = { 18, 9, 27, 0, 36 }; static const uint8_t l_start[] = {0, 4, 9, 13, 18, 22, 27, 31, 36, 40}; static const uint8_t l_start_shuffled[] = { 9, 4, 13, 0, 18 }; static const uint8_t serpent1[] = {0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2}; static const uint8_t serpent2[] = {0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5}; static const uint8_t remap[][2] = {{ 0, 0}, { 0, 0}, { 0, 0}, { 0, 0}, /* dummy */ { 0, 0}, { 0, 1}, { 0, 2}, { 0, 3}, {10, 0}, {10, 1}, {10, 2}, {10, 3}, {20, 0}, {20, 1}, {20, 2}, {20, 3}, {30, 0}, {30, 1}, {30, 2}, {30, 3}, {40, 0}, {40, 1}, {40, 2}, {40, 3}, {50, 0}, {50, 1}, {50, 2}, {50, 3}, {60, 0}, {60, 1}, {60, 2}, {60, 3}, {70, 0}, {70, 1}, {70, 2}, {70, 3}, { 0,64}, { 0,65}, { 0,66}, {10,64}, {10,65}, {10,66}, {20,64}, {20,65}, {20,66}, {30,64}, {30,65}, {30,66}, {40,64}, {40,65}, {40,66}, {50,64}, {50,65}, {50,66}, {60,64}, {60,65}, {60,66}, {70,64}, {70,65}, {70,66}, { 0,67}, {20,67}, {40,67}, {60,67}}; int i, k, m; int x, y, blk; for (m=0; m<5; m++) { switch (d->width) { case 1440: blk = (chan*11+seq)*27+slot; if (chan == 0 && seq == 11) { x = m*27+slot; if (x<90) { y = 0; } else { x = (x - 90)*2; y = 67; } } else { i = (4*chan + blk + off[m])%11; k = (blk/11)%27; x = shuf1[m] + (chan&1)*9 + k%9; y = (i*3+k/9)*2 + (chan>>1) + 1; } tbl[m] = (x<<1)|(y<<9); break; case 1280: blk = (chan*10+seq)*27+slot; i = (4*chan + (seq/5) + 2*blk + off[m])%10; k = (blk/5)%27; x = shuf1[m]+(chan&1)*9 + k%9; y = (i*3+k/9)*2 + (chan>>1) + 4; if (x >= 80) { x = remap[y][0]+((x-80)<<(y>59)); y = remap[y][1]; } tbl[m] = (x<<1)|(y<<9); break; case 960: blk = (chan*10+seq)*27+slot; i = (4*chan + (seq/5) + 2*blk + off[m])%10; k = (blk/5)%27 + (i&1)*3; x = shuf2[m] + k%6 + 6*(chan&1); y = l_start[i] + k/6 + 45*(chan>>1); tbl[m] = (x<<1)|(y<<9); break; case 720: switch (d->pix_fmt) { case AV_PIX_FMT_YUV422P: x = shuf3[m] + slot/3; y = serpent1[slot] + ((((seq + off[m]) % d->difseg_size)<<1) + chan)*3; tbl[m] = (x<<1)|(y<<8); break; case AV_PIX_FMT_YUV420P: x = shuf3[m] + slot/3; y = serpent1[slot] + ((seq + off[m]) % d->difseg_size)*3; tbl[m] = (x<<1)|(y<<9); break; case AV_PIX_FMT_YUV411P: i = (seq + off[m]) % d->difseg_size; k = slot + ((m==1||m==2)?3:0); x = l_start_shuffled[m] + k/6; y = serpent2[k] + i*6; if (x>21) y = y*2 - i*6; tbl[m] = (x<<2)|(y<<8); break; } default: break; } } } /* quantization quanta by QNO for DV100 */ static const uint8_t dv100_qstep[16] = { 1, /* QNO = 0 and 1 both have no quantization */ 1, 2, 3, 4, 5, 6, 7, 8, 16, 18, 20, 22, 24, 28, 52 }; static const uint8_t dv_quant_areas[4] = { 6, 21, 43, 64 }; int ff_dv_init_dynamic_tables(DVVideoContext *ctx, const DVprofile *d) { int j,i,c,s,p; uint32_t *factor1, *factor2; const int *iweight1, *iweight2; p = i = 0; for (c = 0; c < d->n_difchan; c++) { for (s = 0; s < d->difseg_size; s++) { p += 6; for (j = 0; j < 27; j++) { p += !(j % 3); if (!(DV_PROFILE_IS_1080i50(d) && c != 0 && s == 11) && !(DV_PROFILE_IS_720p50(d) && s > 9)) { dv_calc_mb_coordinates(d, c, s, j, &ctx->work_chunks[i].mb_coordinates[0]); ctx->work_chunks[i++].buf_offset = p; } p += 5; } } } factor1 = &ctx->idct_factor[0]; factor2 = &ctx->idct_factor[DV_PROFILE_IS_HD(d) ? 4096 : 2816]; if (d->height == 720) { iweight1 = &ff_dv_iweight_720_y[0]; iweight2 = &ff_dv_iweight_720_c[0]; } else { iweight1 = &ff_dv_iweight_1080_y[0]; iweight2 = &ff_dv_iweight_1080_c[0]; } if (DV_PROFILE_IS_HD(d)) { for (c = 0; c < 4; c++) { for (s = 0; s < 16; s++) { for (i = 0; i < 64; i++) { *factor1++ = (dv100_qstep[s] << (c + 9)) * iweight1[i]; *factor2++ = (dv100_qstep[s] << (c + 9)) * iweight2[i]; } } } } else { iweight1 = &ff_dv_iweight_88[0]; for (j = 0; j < 2; j++, iweight1 = &ff_dv_iweight_248[0]) { for (s = 0; s < 22; s++) { for (i = c = 0; c < 4; c++) { for (; i < dv_quant_areas[c]; i++) { *factor1 = iweight1[i] << (ff_dv_quant_shifts[s][c] + 1); *factor2++ = (*factor1++) << 1; } } } } } return 0; } av_cold int ff_dvvideo_init(AVCodecContext *avctx) { DVVideoContext *s = avctx->priv_data; DSPContext dsp; static int done = 0; int i, j; if (!done) { VLC dv_vlc; uint16_t new_dv_vlc_bits[NB_DV_VLC*2]; uint8_t new_dv_vlc_len[NB_DV_VLC*2]; uint8_t new_dv_vlc_run[NB_DV_VLC*2]; int16_t new_dv_vlc_level[NB_DV_VLC*2]; done = 1; /* it's faster to include sign bit in a generic VLC parsing scheme */ for (i = 0, j = 0; i < NB_DV_VLC; i++, j++) { new_dv_vlc_bits[j] = ff_dv_vlc_bits[i]; new_dv_vlc_len[j] = ff_dv_vlc_len[i]; new_dv_vlc_run[j] = ff_dv_vlc_run[i]; new_dv_vlc_level[j] = ff_dv_vlc_level[i]; if (ff_dv_vlc_level[i]) { new_dv_vlc_bits[j] <<= 1; new_dv_vlc_len[j]++; j++; new_dv_vlc_bits[j] = (ff_dv_vlc_bits[i] << 1) | 1; new_dv_vlc_len[j] = ff_dv_vlc_len[i] + 1; new_dv_vlc_run[j] = ff_dv_vlc_run[i]; new_dv_vlc_level[j] = -ff_dv_vlc_level[i]; } } /* NOTE: as a trick, we use the fact the no codes are unused to accelerate the parsing of partial codes */ init_vlc(&dv_vlc, TEX_VLC_BITS, j, new_dv_vlc_len, 1, 1, new_dv_vlc_bits, 2, 2, 0); assert(dv_vlc.table_size == 1184); for (i = 0; i < dv_vlc.table_size; i++){ int code = dv_vlc.table[i][0]; int len = dv_vlc.table[i][1]; int level, run; if (len < 0){ //more bits needed run = 0; level = code; } else { run = new_dv_vlc_run [code] + 1; level = new_dv_vlc_level[code]; } ff_dv_rl_vlc[i].len = len; ff_dv_rl_vlc[i].level = level; ff_dv_rl_vlc[i].run = run; } ff_free_vlc(&dv_vlc); } /* Generic DSP setup */ ff_dsputil_init(&dsp, avctx); ff_set_cmp(&dsp, dsp.ildct_cmp, avctx->ildct_cmp); s->get_pixels = dsp.get_pixels; s->ildct_cmp = dsp.ildct_cmp[5]; /* 88DCT setup */ s->fdct[0] = dsp.fdct; s->idct_put[0] = dsp.idct_put; for (i = 0; i < 64; i++) s->dv_zigzag[0][i] = dsp.idct_permutation[ff_zigzag_direct[i]]; /* 248DCT setup */ s->fdct[1] = dsp.fdct248; s->idct_put[1] = ff_simple_idct248_put; // FIXME: need to add it to DSP memcpy(s->dv_zigzag[1], ff_dv_zigzag248_direct, sizeof(s->dv_zigzag[1])); s->avctx = avctx; avctx->chroma_sample_location = AVCHROMA_LOC_TOPLEFT; return 0; }