mirror of
https://github.com/xenia-project/FFmpeg.git
synced 2024-11-23 11:39:49 +00:00
ce8f45aaba
The image center wasn't preserved, the output image was mirror reversed, and rotations were made around wrong axes. I did also remove the vector normalization, because it's sure that the vector is already normalized if it's calculated from sin() and cos() terms.
4781 lines
152 KiB
C
4781 lines
152 KiB
C
/*
|
|
* Copyright (c) 2019 Eugene Lyapustin
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* 360 video conversion filter.
|
|
* Principle of operation:
|
|
*
|
|
* (for each pixel in output frame)
|
|
* 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j)
|
|
* 2) Apply 360 operations (rotation, mirror) to (x, y, z)
|
|
* 3) Calculate pixel position (u, v) in input frame
|
|
* 4) Calculate interpolation window and weight for each pixel
|
|
*
|
|
* (for each frame)
|
|
* 5) Remap input frame to output frame using precalculated data
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "libavutil/avassert.h"
|
|
#include "libavutil/imgutils.h"
|
|
#include "libavutil/pixdesc.h"
|
|
#include "libavutil/opt.h"
|
|
#include "avfilter.h"
|
|
#include "formats.h"
|
|
#include "internal.h"
|
|
#include "video.h"
|
|
#include "v360.h"
|
|
|
|
typedef struct ThreadData {
|
|
AVFrame *in;
|
|
AVFrame *out;
|
|
} ThreadData;
|
|
|
|
#define OFFSET(x) offsetof(V360Context, x)
|
|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
|
|
#define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
|
|
|
|
static const AVOption v360_options[] = {
|
|
{ "input", "set input projection", OFFSET(in), AV_OPT_TYPE_INT, {.i64=EQUIRECTANGULAR}, 0, NB_PROJECTIONS-1, FLAGS, "in" },
|
|
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "in" },
|
|
{ "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "in" },
|
|
{ "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "in" },
|
|
{ "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "in" },
|
|
{ "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "in" },
|
|
{ "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, "in" },
|
|
{ "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "in" },
|
|
{"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "in" },
|
|
{ "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "in" },
|
|
{ "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "in" },
|
|
{ "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "in" },
|
|
{ "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, "in" },
|
|
{ "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, "in" },
|
|
{ "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, "in" },
|
|
{ "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, "in" },
|
|
{ "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, "in" },
|
|
{"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, "in" },
|
|
{ "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, "in" },
|
|
{ "pannini", "pannini", 0, AV_OPT_TYPE_CONST, {.i64=PANNINI}, 0, 0, FLAGS, "in" },
|
|
{"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, "in" },
|
|
{"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, "in" },
|
|
{"barrelsplit", "barrel split facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL_SPLIT}, 0, 0, FLAGS, "in" },
|
|
{ "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, "in" },
|
|
{ "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "in" },
|
|
{ "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "in" },
|
|
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, "in" },
|
|
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, "in" },
|
|
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, "in" },
|
|
{ "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, "out" },
|
|
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" },
|
|
{ "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" },
|
|
{ "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "out" },
|
|
{ "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "out" },
|
|
{ "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "out" },
|
|
{ "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, "out" },
|
|
{ "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" },
|
|
{"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" },
|
|
{ "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" },
|
|
{ "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "out" },
|
|
{ "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "out" },
|
|
{ "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, "out" },
|
|
{ "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, "out" },
|
|
{ "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, "out" },
|
|
{ "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, "out" },
|
|
{ "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, "out" },
|
|
{"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, "out" },
|
|
{ "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, "out" },
|
|
{ "pannini", "pannini", 0, AV_OPT_TYPE_CONST, {.i64=PANNINI}, 0, 0, FLAGS, "out" },
|
|
{"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, "out" },
|
|
{"perspective", "perspective", 0, AV_OPT_TYPE_CONST, {.i64=PERSPECTIVE}, 0, 0, FLAGS, "out" },
|
|
{"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, "out" },
|
|
{"barrelsplit", "barrel split facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL_SPLIT}, 0, 0, FLAGS, "out" },
|
|
{ "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, "out" },
|
|
{ "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "out" },
|
|
{ "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "out" },
|
|
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, "out" },
|
|
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, "out" },
|
|
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, "out" },
|
|
{ "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, "interp" },
|
|
{ "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" },
|
|
{ "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" },
|
|
{ "line", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" },
|
|
{ "linear", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" },
|
|
{ "lagrange9", "lagrange9 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LAGRANGE9}, 0, 0, FLAGS, "interp" },
|
|
{ "cube", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" },
|
|
{ "cubic", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" },
|
|
{ "lanc", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" },
|
|
{ "lanczos", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" },
|
|
{ "sp16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, "interp" },
|
|
{ "spline16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, "interp" },
|
|
{ "gauss", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, "interp" },
|
|
{ "gaussian", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, "interp" },
|
|
{ "mitchell", "mitchell interpolation", 0, AV_OPT_TYPE_CONST, {.i64=MITCHELL}, 0, 0, FLAGS, "interp" },
|
|
{ "w", "output width", OFFSET(width), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, "w"},
|
|
{ "h", "output height", OFFSET(height), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, "h"},
|
|
{ "in_stereo", "input stereo format", OFFSET(in_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, "stereo" },
|
|
{"out_stereo", "output stereo format", OFFSET(out_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, "stereo" },
|
|
{ "2d", "2d mono", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_2D}, 0, 0, FLAGS, "stereo" },
|
|
{ "sbs", "side by side", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_SBS}, 0, 0, FLAGS, "stereo" },
|
|
{ "tb", "top bottom", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_TB}, 0, 0, FLAGS, "stereo" },
|
|
{ "in_forder", "input cubemap face order", OFFSET(in_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "in_forder"},
|
|
{"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "out_forder"},
|
|
{ "in_frot", "input cubemap face rotation", OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "in_frot"},
|
|
{ "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "out_frot"},
|
|
{ "in_pad", "percent input cubemap pads", OFFSET(in_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 0.1,TFLAGS, "in_pad"},
|
|
{ "out_pad", "percent output cubemap pads", OFFSET(out_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 0.1,TFLAGS, "out_pad"},
|
|
{ "fin_pad", "fixed input cubemap pads", OFFSET(fin_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100,TFLAGS, "fin_pad"},
|
|
{ "fout_pad", "fixed output cubemap pads", OFFSET(fout_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100,TFLAGS, "fout_pad"},
|
|
{ "yaw", "yaw rotation", OFFSET(yaw), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, "yaw"},
|
|
{ "pitch", "pitch rotation", OFFSET(pitch), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, "pitch"},
|
|
{ "roll", "roll rotation", OFFSET(roll), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, "roll"},
|
|
{ "rorder", "rotation order", OFFSET(rorder), AV_OPT_TYPE_STRING, {.str="ypr"}, 0, 0,TFLAGS, "rorder"},
|
|
{ "h_fov", "output horizontal field of view",OFFSET(h_fov), AV_OPT_TYPE_FLOAT, {.dbl=90.f}, 0.00001f, 360.f,TFLAGS, "h_fov"},
|
|
{ "v_fov", "output vertical field of view", OFFSET(v_fov), AV_OPT_TYPE_FLOAT, {.dbl=45.f}, 0.00001f, 360.f,TFLAGS, "v_fov"},
|
|
{ "d_fov", "output diagonal field of view", OFFSET(d_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, "d_fov"},
|
|
{ "h_flip", "flip out video horizontally", OFFSET(h_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, "h_flip"},
|
|
{ "v_flip", "flip out video vertically", OFFSET(v_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, "v_flip"},
|
|
{ "d_flip", "flip out video indepth", OFFSET(d_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, "d_flip"},
|
|
{ "ih_flip", "flip in video horizontally", OFFSET(ih_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, "ih_flip"},
|
|
{ "iv_flip", "flip in video vertically", OFFSET(iv_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, "iv_flip"},
|
|
{ "in_trans", "transpose video input", OFFSET(in_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "in_transpose"},
|
|
{ "out_trans", "transpose video output", OFFSET(out_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "out_transpose"},
|
|
{ "ih_fov", "input horizontal field of view",OFFSET(ih_fov), AV_OPT_TYPE_FLOAT, {.dbl=90.f}, 0.00001f, 360.f,TFLAGS, "ih_fov"},
|
|
{ "iv_fov", "input vertical field of view", OFFSET(iv_fov), AV_OPT_TYPE_FLOAT, {.dbl=45.f}, 0.00001f, 360.f,TFLAGS, "iv_fov"},
|
|
{ "id_fov", "input diagonal field of view", OFFSET(id_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, "id_fov"},
|
|
{"alpha_mask", "build mask in alpha plane", OFFSET(alpha), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "alpha"},
|
|
{ NULL }
|
|
};
|
|
|
|
AVFILTER_DEFINE_CLASS(v360);
|
|
|
|
static int query_formats(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
static const enum AVPixelFormat pix_fmts[] = {
|
|
// YUVA444
|
|
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9,
|
|
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
|
|
AV_PIX_FMT_YUVA444P16,
|
|
|
|
// YUVA422
|
|
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9,
|
|
AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
|
|
AV_PIX_FMT_YUVA422P16,
|
|
|
|
// YUVA420
|
|
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9,
|
|
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
|
|
|
|
// YUVJ
|
|
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
|
|
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
|
|
AV_PIX_FMT_YUVJ411P,
|
|
|
|
// YUV444
|
|
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV444P9,
|
|
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
|
|
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
|
|
|
|
// YUV440
|
|
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10,
|
|
AV_PIX_FMT_YUV440P12,
|
|
|
|
// YUV422
|
|
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P9,
|
|
AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12,
|
|
AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
|
|
|
|
// YUV420
|
|
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV420P9,
|
|
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12,
|
|
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
|
|
|
|
// YUV411
|
|
AV_PIX_FMT_YUV411P,
|
|
|
|
// YUV410
|
|
AV_PIX_FMT_YUV410P,
|
|
|
|
// GBR
|
|
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9,
|
|
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
|
|
AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
|
|
|
|
// GBRA
|
|
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10,
|
|
AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
|
|
|
|
// GRAY
|
|
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
|
|
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
|
|
AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
|
|
|
|
AV_PIX_FMT_NONE
|
|
};
|
|
static const enum AVPixelFormat alpha_pix_fmts[] = {
|
|
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9,
|
|
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
|
|
AV_PIX_FMT_YUVA444P16,
|
|
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9,
|
|
AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
|
|
AV_PIX_FMT_YUVA422P16,
|
|
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9,
|
|
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
|
|
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10,
|
|
AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
|
|
AV_PIX_FMT_NONE
|
|
};
|
|
|
|
AVFilterFormats *fmts_list = ff_make_format_list(s->alpha ? alpha_pix_fmts : pix_fmts);
|
|
if (!fmts_list)
|
|
return AVERROR(ENOMEM);
|
|
return ff_set_common_formats(ctx, fmts_list);
|
|
}
|
|
|
|
#define DEFINE_REMAP1_LINE(bits, div) \
|
|
static void remap1_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
|
|
ptrdiff_t in_linesize, \
|
|
const int16_t *const u, const int16_t *const v, \
|
|
const int16_t *const ker) \
|
|
{ \
|
|
const uint##bits##_t *const s = (const uint##bits##_t *const)src; \
|
|
uint##bits##_t *d = (uint##bits##_t *)dst; \
|
|
\
|
|
in_linesize /= div; \
|
|
\
|
|
for (int x = 0; x < width; x++) \
|
|
d[x] = s[v[x] * in_linesize + u[x]]; \
|
|
}
|
|
|
|
DEFINE_REMAP1_LINE( 8, 1)
|
|
DEFINE_REMAP1_LINE(16, 2)
|
|
|
|
/**
|
|
* Generate remapping function with a given window size and pixel depth.
|
|
*
|
|
* @param ws size of interpolation window
|
|
* @param bits number of bits per pixel
|
|
*/
|
|
#define DEFINE_REMAP(ws, bits) \
|
|
static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
|
|
{ \
|
|
ThreadData *td = arg; \
|
|
const V360Context *s = ctx->priv; \
|
|
const SliceXYRemap *r = &s->slice_remap[jobnr]; \
|
|
const AVFrame *in = td->in; \
|
|
AVFrame *out = td->out; \
|
|
\
|
|
for (int stereo = 0; stereo < 1 + s->out_stereo > STEREO_2D; stereo++) { \
|
|
for (int plane = 0; plane < s->nb_planes; plane++) { \
|
|
const unsigned map = s->map[plane]; \
|
|
const int in_linesize = in->linesize[plane]; \
|
|
const int out_linesize = out->linesize[plane]; \
|
|
const int uv_linesize = s->uv_linesize[plane]; \
|
|
const int in_offset_w = stereo ? s->in_offset_w[plane] : 0; \
|
|
const int in_offset_h = stereo ? s->in_offset_h[plane] : 0; \
|
|
const int out_offset_w = stereo ? s->out_offset_w[plane] : 0; \
|
|
const int out_offset_h = stereo ? s->out_offset_h[plane] : 0; \
|
|
const uint8_t *const src = in->data[plane] + \
|
|
in_offset_h * in_linesize + in_offset_w * (bits >> 3); \
|
|
uint8_t *dst = out->data[plane] + out_offset_h * out_linesize + out_offset_w * (bits >> 3); \
|
|
const uint8_t *mask = plane == 3 ? r->mask : NULL; \
|
|
const int width = s->pr_width[plane]; \
|
|
const int height = s->pr_height[plane]; \
|
|
\
|
|
const int slice_start = (height * jobnr ) / nb_jobs; \
|
|
const int slice_end = (height * (jobnr + 1)) / nb_jobs; \
|
|
\
|
|
for (int y = slice_start; y < slice_end && !mask; y++) { \
|
|
const int16_t *const u = r->u[map] + (y - slice_start) * uv_linesize * ws * ws; \
|
|
const int16_t *const v = r->v[map] + (y - slice_start) * uv_linesize * ws * ws; \
|
|
const int16_t *const ker = r->ker[map] + (y - slice_start) * uv_linesize * ws * ws; \
|
|
\
|
|
s->remap_line(dst + y * out_linesize, width, src, in_linesize, u, v, ker); \
|
|
} \
|
|
\
|
|
for (int y = slice_start; y < slice_end && mask; y++) { \
|
|
memcpy(dst + y * out_linesize, mask + \
|
|
(y - slice_start) * width * (bits >> 3), width * (bits >> 3)); \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
return 0; \
|
|
}
|
|
|
|
DEFINE_REMAP(1, 8)
|
|
DEFINE_REMAP(2, 8)
|
|
DEFINE_REMAP(3, 8)
|
|
DEFINE_REMAP(4, 8)
|
|
DEFINE_REMAP(1, 16)
|
|
DEFINE_REMAP(2, 16)
|
|
DEFINE_REMAP(3, 16)
|
|
DEFINE_REMAP(4, 16)
|
|
|
|
#define DEFINE_REMAP_LINE(ws, bits, div) \
|
|
static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
|
|
ptrdiff_t in_linesize, \
|
|
const int16_t *const u, const int16_t *const v, \
|
|
const int16_t *const ker) \
|
|
{ \
|
|
const uint##bits##_t *const s = (const uint##bits##_t *const)src; \
|
|
uint##bits##_t *d = (uint##bits##_t *)dst; \
|
|
\
|
|
in_linesize /= div; \
|
|
\
|
|
for (int x = 0; x < width; x++) { \
|
|
const int16_t *const uu = u + x * ws * ws; \
|
|
const int16_t *const vv = v + x * ws * ws; \
|
|
const int16_t *const kker = ker + x * ws * ws; \
|
|
int tmp = 0; \
|
|
\
|
|
for (int i = 0; i < ws; i++) { \
|
|
const int iws = i * ws; \
|
|
for (int j = 0; j < ws; j++) { \
|
|
tmp += kker[iws + j] * s[vv[iws + j] * in_linesize + uu[iws + j]]; \
|
|
} \
|
|
} \
|
|
\
|
|
d[x] = av_clip_uint##bits(tmp >> 14); \
|
|
} \
|
|
}
|
|
|
|
DEFINE_REMAP_LINE(2, 8, 1)
|
|
DEFINE_REMAP_LINE(3, 8, 1)
|
|
DEFINE_REMAP_LINE(4, 8, 1)
|
|
DEFINE_REMAP_LINE(2, 16, 2)
|
|
DEFINE_REMAP_LINE(3, 16, 2)
|
|
DEFINE_REMAP_LINE(4, 16, 2)
|
|
|
|
void ff_v360_init(V360Context *s, int depth)
|
|
{
|
|
switch (s->interp) {
|
|
case NEAREST:
|
|
s->remap_line = depth <= 8 ? remap1_8bit_line_c : remap1_16bit_line_c;
|
|
break;
|
|
case BILINEAR:
|
|
s->remap_line = depth <= 8 ? remap2_8bit_line_c : remap2_16bit_line_c;
|
|
break;
|
|
case LAGRANGE9:
|
|
s->remap_line = depth <= 8 ? remap3_8bit_line_c : remap3_16bit_line_c;
|
|
break;
|
|
case BICUBIC:
|
|
case LANCZOS:
|
|
case SPLINE16:
|
|
case GAUSSIAN:
|
|
case MITCHELL:
|
|
s->remap_line = depth <= 8 ? remap4_8bit_line_c : remap4_16bit_line_c;
|
|
break;
|
|
}
|
|
|
|
if (ARCH_X86)
|
|
ff_v360_init_x86(s, depth);
|
|
}
|
|
|
|
/**
|
|
* Save nearest pixel coordinates for remapping.
|
|
*
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
* @param rmap calculated 4x4 window
|
|
* @param u u remap data
|
|
* @param v v remap data
|
|
* @param ker ker remap data
|
|
*/
|
|
static void nearest_kernel(float du, float dv, const XYRemap *rmap,
|
|
int16_t *u, int16_t *v, int16_t *ker)
|
|
{
|
|
const int i = lrintf(dv) + 1;
|
|
const int j = lrintf(du) + 1;
|
|
|
|
u[0] = rmap->u[i][j];
|
|
v[0] = rmap->v[i][j];
|
|
}
|
|
|
|
/**
|
|
* Calculate kernel for bilinear interpolation.
|
|
*
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
* @param rmap calculated 4x4 window
|
|
* @param u u remap data
|
|
* @param v v remap data
|
|
* @param ker ker remap data
|
|
*/
|
|
static void bilinear_kernel(float du, float dv, const XYRemap *rmap,
|
|
int16_t *u, int16_t *v, int16_t *ker)
|
|
{
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 0; j < 2; j++) {
|
|
u[i * 2 + j] = rmap->u[i + 1][j + 1];
|
|
v[i * 2 + j] = rmap->v[i + 1][j + 1];
|
|
}
|
|
}
|
|
|
|
ker[0] = lrintf((1.f - du) * (1.f - dv) * 16385.f);
|
|
ker[1] = lrintf( du * (1.f - dv) * 16385.f);
|
|
ker[2] = lrintf((1.f - du) * dv * 16385.f);
|
|
ker[3] = lrintf( du * dv * 16385.f);
|
|
}
|
|
|
|
/**
|
|
* Calculate 1-dimensional lagrange coefficients.
|
|
*
|
|
* @param t relative coordinate
|
|
* @param coeffs coefficients
|
|
*/
|
|
static inline void calculate_lagrange_coeffs(float t, float *coeffs)
|
|
{
|
|
coeffs[0] = (t - 1.f) * (t - 2.f) * 0.5f;
|
|
coeffs[1] = -t * (t - 2.f);
|
|
coeffs[2] = t * (t - 1.f) * 0.5f;
|
|
}
|
|
|
|
/**
|
|
* Calculate kernel for lagrange interpolation.
|
|
*
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
* @param rmap calculated 4x4 window
|
|
* @param u u remap data
|
|
* @param v v remap data
|
|
* @param ker ker remap data
|
|
*/
|
|
static void lagrange_kernel(float du, float dv, const XYRemap *rmap,
|
|
int16_t *u, int16_t *v, int16_t *ker)
|
|
{
|
|
float du_coeffs[3];
|
|
float dv_coeffs[3];
|
|
|
|
calculate_lagrange_coeffs(du, du_coeffs);
|
|
calculate_lagrange_coeffs(dv, dv_coeffs);
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int j = 0; j < 3; j++) {
|
|
u[i * 3 + j] = rmap->u[i + 1][j + 1];
|
|
v[i * 3 + j] = rmap->v[i + 1][j + 1];
|
|
ker[i * 3 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate 1-dimensional cubic coefficients.
|
|
*
|
|
* @param t relative coordinate
|
|
* @param coeffs coefficients
|
|
*/
|
|
static inline void calculate_bicubic_coeffs(float t, float *coeffs)
|
|
{
|
|
const float tt = t * t;
|
|
const float ttt = t * t * t;
|
|
|
|
coeffs[0] = - t / 3.f + tt / 2.f - ttt / 6.f;
|
|
coeffs[1] = 1.f - t / 2.f - tt + ttt / 2.f;
|
|
coeffs[2] = t + tt / 2.f - ttt / 2.f;
|
|
coeffs[3] = - t / 6.f + ttt / 6.f;
|
|
}
|
|
|
|
/**
|
|
* Calculate kernel for bicubic interpolation.
|
|
*
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
* @param rmap calculated 4x4 window
|
|
* @param u u remap data
|
|
* @param v v remap data
|
|
* @param ker ker remap data
|
|
*/
|
|
static void bicubic_kernel(float du, float dv, const XYRemap *rmap,
|
|
int16_t *u, int16_t *v, int16_t *ker)
|
|
{
|
|
float du_coeffs[4];
|
|
float dv_coeffs[4];
|
|
|
|
calculate_bicubic_coeffs(du, du_coeffs);
|
|
calculate_bicubic_coeffs(dv, dv_coeffs);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
u[i * 4 + j] = rmap->u[i][j];
|
|
v[i * 4 + j] = rmap->v[i][j];
|
|
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate 1-dimensional lanczos coefficients.
|
|
*
|
|
* @param t relative coordinate
|
|
* @param coeffs coefficients
|
|
*/
|
|
static inline void calculate_lanczos_coeffs(float t, float *coeffs)
|
|
{
|
|
float sum = 0.f;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
const float x = M_PI * (t - i + 1);
|
|
if (x == 0.f) {
|
|
coeffs[i] = 1.f;
|
|
} else {
|
|
coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f);
|
|
}
|
|
sum += coeffs[i];
|
|
}
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
coeffs[i] /= sum;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate kernel for lanczos interpolation.
|
|
*
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
* @param rmap calculated 4x4 window
|
|
* @param u u remap data
|
|
* @param v v remap data
|
|
* @param ker ker remap data
|
|
*/
|
|
static void lanczos_kernel(float du, float dv, const XYRemap *rmap,
|
|
int16_t *u, int16_t *v, int16_t *ker)
|
|
{
|
|
float du_coeffs[4];
|
|
float dv_coeffs[4];
|
|
|
|
calculate_lanczos_coeffs(du, du_coeffs);
|
|
calculate_lanczos_coeffs(dv, dv_coeffs);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
u[i * 4 + j] = rmap->u[i][j];
|
|
v[i * 4 + j] = rmap->v[i][j];
|
|
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate 1-dimensional spline16 coefficients.
|
|
*
|
|
* @param t relative coordinate
|
|
* @param coeffs coefficients
|
|
*/
|
|
static void calculate_spline16_coeffs(float t, float *coeffs)
|
|
{
|
|
coeffs[0] = ((-1.f / 3.f * t + 0.8f) * t - 7.f / 15.f) * t;
|
|
coeffs[1] = ((t - 9.f / 5.f) * t - 0.2f) * t + 1.f;
|
|
coeffs[2] = ((6.f / 5.f - t) * t + 0.8f) * t;
|
|
coeffs[3] = ((1.f / 3.f * t - 0.2f) * t - 2.f / 15.f) * t;
|
|
}
|
|
|
|
/**
|
|
* Calculate kernel for spline16 interpolation.
|
|
*
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
* @param rmap calculated 4x4 window
|
|
* @param u u remap data
|
|
* @param v v remap data
|
|
* @param ker ker remap data
|
|
*/
|
|
static void spline16_kernel(float du, float dv, const XYRemap *rmap,
|
|
int16_t *u, int16_t *v, int16_t *ker)
|
|
{
|
|
float du_coeffs[4];
|
|
float dv_coeffs[4];
|
|
|
|
calculate_spline16_coeffs(du, du_coeffs);
|
|
calculate_spline16_coeffs(dv, dv_coeffs);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
u[i * 4 + j] = rmap->u[i][j];
|
|
v[i * 4 + j] = rmap->v[i][j];
|
|
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate 1-dimensional gaussian coefficients.
|
|
*
|
|
* @param t relative coordinate
|
|
* @param coeffs coefficients
|
|
*/
|
|
static void calculate_gaussian_coeffs(float t, float *coeffs)
|
|
{
|
|
float sum = 0.f;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
const float x = t - (i - 1);
|
|
if (x == 0.f) {
|
|
coeffs[i] = 1.f;
|
|
} else {
|
|
coeffs[i] = expf(-2.f * x * x) * expf(-x * x / 2.f);
|
|
}
|
|
sum += coeffs[i];
|
|
}
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
coeffs[i] /= sum;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate kernel for gaussian interpolation.
|
|
*
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
* @param rmap calculated 4x4 window
|
|
* @param u u remap data
|
|
* @param v v remap data
|
|
* @param ker ker remap data
|
|
*/
|
|
static void gaussian_kernel(float du, float dv, const XYRemap *rmap,
|
|
int16_t *u, int16_t *v, int16_t *ker)
|
|
{
|
|
float du_coeffs[4];
|
|
float dv_coeffs[4];
|
|
|
|
calculate_gaussian_coeffs(du, du_coeffs);
|
|
calculate_gaussian_coeffs(dv, dv_coeffs);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
u[i * 4 + j] = rmap->u[i][j];
|
|
v[i * 4 + j] = rmap->v[i][j];
|
|
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate 1-dimensional cubic_bc_spline coefficients.
|
|
*
|
|
* @param t relative coordinate
|
|
* @param coeffs coefficients
|
|
*/
|
|
static void calculate_cubic_bc_coeffs(float t, float *coeffs,
|
|
float b, float c)
|
|
{
|
|
float sum = 0.f;
|
|
float p0 = (6.f - 2.f * b) / 6.f,
|
|
p2 = (-18.f + 12.f * b + 6.f * c) / 6.f,
|
|
p3 = (12.f - 9.f * b - 6.f * c) / 6.f,
|
|
q0 = (8.f * b + 24.f * c) / 6.f,
|
|
q1 = (-12.f * b - 48.f * c) / 6.f,
|
|
q2 = (6.f * b + 30.f * c) / 6.f,
|
|
q3 = (-b - 6.f * c) / 6.f;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
const float x = fabsf(t - i + 1.f);
|
|
if (x < 1.f) {
|
|
coeffs[i] = (p0 + x * x * (p2 + x * p3)) *
|
|
(p0 + x * x * (p2 + x * p3 / 2.f) / 4.f);
|
|
} else if (x < 2.f) {
|
|
coeffs[i] = (q0 + x * (q1 + x * (q2 + x * q3))) *
|
|
(q0 + x * (q1 + x * (q2 + x / 2.f * q3) / 2.f) / 2.f);
|
|
} else {
|
|
coeffs[i] = 0.f;
|
|
}
|
|
sum += coeffs[i];
|
|
}
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
coeffs[i] /= sum;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate kernel for mitchell interpolation.
|
|
*
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
* @param rmap calculated 4x4 window
|
|
* @param u u remap data
|
|
* @param v v remap data
|
|
* @param ker ker remap data
|
|
*/
|
|
static void mitchell_kernel(float du, float dv, const XYRemap *rmap,
|
|
int16_t *u, int16_t *v, int16_t *ker)
|
|
{
|
|
float du_coeffs[4];
|
|
float dv_coeffs[4];
|
|
|
|
calculate_cubic_bc_coeffs(du, du_coeffs, 1.f / 3.f, 1.f / 3.f);
|
|
calculate_cubic_bc_coeffs(dv, dv_coeffs, 1.f / 3.f, 1.f / 3.f);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
u[i * 4 + j] = rmap->u[i][j];
|
|
v[i * 4 + j] = rmap->v[i][j];
|
|
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Modulo operation with only positive remainders.
|
|
*
|
|
* @param a dividend
|
|
* @param b divisor
|
|
*
|
|
* @return positive remainder of (a / b)
|
|
*/
|
|
static inline int mod(int a, int b)
|
|
{
|
|
const int res = a % b;
|
|
if (res < 0) {
|
|
return res + b;
|
|
} else {
|
|
return res;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reflect y operation.
|
|
*
|
|
* @param y input vertical position
|
|
* @param h input height
|
|
*/
|
|
static inline int reflecty(int y, int h)
|
|
{
|
|
if (y < 0) {
|
|
y = -y;
|
|
} else if (y >= h) {
|
|
y = 2 * h - 1 - y;
|
|
}
|
|
|
|
return av_clip(y, 0, h - 1);
|
|
}
|
|
|
|
/**
|
|
* Reflect x operation for equirect.
|
|
*
|
|
* @param x input horizontal position
|
|
* @param y input vertical position
|
|
* @param w input width
|
|
* @param h input height
|
|
*/
|
|
static inline int ereflectx(int x, int y, int w, int h)
|
|
{
|
|
if (y < 0 || y >= h)
|
|
x += w / 2;
|
|
|
|
return mod(x, w);
|
|
}
|
|
|
|
/**
|
|
* Reflect x operation.
|
|
*
|
|
* @param x input horizontal position
|
|
* @param y input vertical position
|
|
* @param w input width
|
|
* @param h input height
|
|
*/
|
|
static inline int reflectx(int x, int y, int w, int h)
|
|
{
|
|
if (y < 0 || y >= h)
|
|
return w - 1 - x;
|
|
|
|
return mod(x, w);
|
|
}
|
|
|
|
/**
|
|
* Convert char to corresponding direction.
|
|
* Used for cubemap options.
|
|
*/
|
|
static int get_direction(char c)
|
|
{
|
|
switch (c) {
|
|
case 'r':
|
|
return RIGHT;
|
|
case 'l':
|
|
return LEFT;
|
|
case 'u':
|
|
return UP;
|
|
case 'd':
|
|
return DOWN;
|
|
case 'f':
|
|
return FRONT;
|
|
case 'b':
|
|
return BACK;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Convert char to corresponding rotation angle.
|
|
* Used for cubemap options.
|
|
*/
|
|
static int get_rotation(char c)
|
|
{
|
|
switch (c) {
|
|
case '0':
|
|
return ROT_0;
|
|
case '1':
|
|
return ROT_90;
|
|
case '2':
|
|
return ROT_180;
|
|
case '3':
|
|
return ROT_270;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Convert char to corresponding rotation order.
|
|
*/
|
|
static int get_rorder(char c)
|
|
{
|
|
switch (c) {
|
|
case 'Y':
|
|
case 'y':
|
|
return YAW;
|
|
case 'P':
|
|
case 'p':
|
|
return PITCH;
|
|
case 'R':
|
|
case 'r':
|
|
return ROLL;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing cubemap input format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_cube_in(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
for (int face = 0; face < NB_FACES; face++) {
|
|
const char c = s->in_forder[face];
|
|
int direction;
|
|
|
|
if (c == '\0') {
|
|
av_log(ctx, AV_LOG_ERROR,
|
|
"Incomplete in_forder option. Direction for all 6 faces should be specified.\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
direction = get_direction(c);
|
|
if (direction == -1) {
|
|
av_log(ctx, AV_LOG_ERROR,
|
|
"Incorrect direction symbol '%c' in in_forder option.\n", c);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
s->in_cubemap_face_order[direction] = face;
|
|
}
|
|
|
|
for (int face = 0; face < NB_FACES; face++) {
|
|
const char c = s->in_frot[face];
|
|
int rotation;
|
|
|
|
if (c == '\0') {
|
|
av_log(ctx, AV_LOG_ERROR,
|
|
"Incomplete in_frot option. Rotation for all 6 faces should be specified.\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
rotation = get_rotation(c);
|
|
if (rotation == -1) {
|
|
av_log(ctx, AV_LOG_ERROR,
|
|
"Incorrect rotation symbol '%c' in in_frot option.\n", c);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
s->in_cubemap_face_rotation[face] = rotation;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing cubemap output format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_cube_out(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
for (int face = 0; face < NB_FACES; face++) {
|
|
const char c = s->out_forder[face];
|
|
int direction;
|
|
|
|
if (c == '\0') {
|
|
av_log(ctx, AV_LOG_ERROR,
|
|
"Incomplete out_forder option. Direction for all 6 faces should be specified.\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
direction = get_direction(c);
|
|
if (direction == -1) {
|
|
av_log(ctx, AV_LOG_ERROR,
|
|
"Incorrect direction symbol '%c' in out_forder option.\n", c);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
s->out_cubemap_direction_order[face] = direction;
|
|
}
|
|
|
|
for (int face = 0; face < NB_FACES; face++) {
|
|
const char c = s->out_frot[face];
|
|
int rotation;
|
|
|
|
if (c == '\0') {
|
|
av_log(ctx, AV_LOG_ERROR,
|
|
"Incomplete out_frot option. Rotation for all 6 faces should be specified.\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
rotation = get_rotation(c);
|
|
if (rotation == -1) {
|
|
av_log(ctx, AV_LOG_ERROR,
|
|
"Incorrect rotation symbol '%c' in out_frot option.\n", c);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
s->out_cubemap_face_rotation[face] = rotation;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void rotate_cube_face(float *uf, float *vf, int rotation)
|
|
{
|
|
float tmp;
|
|
|
|
switch (rotation) {
|
|
case ROT_0:
|
|
break;
|
|
case ROT_90:
|
|
tmp = *uf;
|
|
*uf = -*vf;
|
|
*vf = tmp;
|
|
break;
|
|
case ROT_180:
|
|
*uf = -*uf;
|
|
*vf = -*vf;
|
|
break;
|
|
case ROT_270:
|
|
tmp = -*uf;
|
|
*uf = *vf;
|
|
*vf = tmp;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
}
|
|
|
|
static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation)
|
|
{
|
|
float tmp;
|
|
|
|
switch (rotation) {
|
|
case ROT_0:
|
|
break;
|
|
case ROT_90:
|
|
tmp = -*uf;
|
|
*uf = *vf;
|
|
*vf = tmp;
|
|
break;
|
|
case ROT_180:
|
|
*uf = -*uf;
|
|
*vf = -*vf;
|
|
break;
|
|
case ROT_270:
|
|
tmp = *uf;
|
|
*uf = -*vf;
|
|
*vf = tmp;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Normalize vector.
|
|
*
|
|
* @param vec vector
|
|
*/
|
|
static void normalize_vector(float *vec)
|
|
{
|
|
const float norm = sqrtf(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);
|
|
|
|
vec[0] /= norm;
|
|
vec[1] /= norm;
|
|
vec[2] /= norm;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding cubemap position.
|
|
* Common operation for every cubemap.
|
|
*
|
|
* @param s filter private context
|
|
* @param uf horizontal cubemap coordinate [0, 1)
|
|
* @param vf vertical cubemap coordinate [0, 1)
|
|
* @param face face of cubemap
|
|
* @param vec coordinates on sphere
|
|
* @param scalew scale for uf
|
|
* @param scaleh scale for vf
|
|
*/
|
|
static void cube_to_xyz(const V360Context *s,
|
|
float uf, float vf, int face,
|
|
float *vec, float scalew, float scaleh)
|
|
{
|
|
const int direction = s->out_cubemap_direction_order[face];
|
|
float l_x, l_y, l_z;
|
|
|
|
uf /= scalew;
|
|
vf /= scaleh;
|
|
|
|
rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]);
|
|
|
|
switch (direction) {
|
|
case RIGHT:
|
|
l_x = 1.f;
|
|
l_y = vf;
|
|
l_z = -uf;
|
|
break;
|
|
case LEFT:
|
|
l_x = -1.f;
|
|
l_y = vf;
|
|
l_z = uf;
|
|
break;
|
|
case UP:
|
|
l_x = uf;
|
|
l_y = -1.f;
|
|
l_z = vf;
|
|
break;
|
|
case DOWN:
|
|
l_x = uf;
|
|
l_y = 1.f;
|
|
l_z = -vf;
|
|
break;
|
|
case FRONT:
|
|
l_x = uf;
|
|
l_y = vf;
|
|
l_z = 1.f;
|
|
break;
|
|
case BACK:
|
|
l_x = -uf;
|
|
l_y = vf;
|
|
l_z = -1.f;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
|
|
vec[0] = l_x;
|
|
vec[1] = l_y;
|
|
vec[2] = l_z;
|
|
|
|
normalize_vector(vec);
|
|
}
|
|
|
|
/**
|
|
* Calculate cubemap position for corresponding 3D coordinates on sphere.
|
|
* Common operation for every cubemap.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinated on sphere
|
|
* @param uf horizontal cubemap coordinate [0, 1)
|
|
* @param vf vertical cubemap coordinate [0, 1)
|
|
* @param direction direction of view
|
|
*/
|
|
static void xyz_to_cube(const V360Context *s,
|
|
const float *vec,
|
|
float *uf, float *vf, int *direction)
|
|
{
|
|
const float phi = atan2f(vec[0], vec[2]);
|
|
const float theta = asinf(vec[1]);
|
|
float phi_norm, theta_threshold;
|
|
int face;
|
|
|
|
if (phi >= -M_PI_4 && phi < M_PI_4) {
|
|
*direction = FRONT;
|
|
phi_norm = phi;
|
|
} else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) {
|
|
*direction = LEFT;
|
|
phi_norm = phi + M_PI_2;
|
|
} else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) {
|
|
*direction = RIGHT;
|
|
phi_norm = phi - M_PI_2;
|
|
} else {
|
|
*direction = BACK;
|
|
phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI);
|
|
}
|
|
|
|
theta_threshold = atanf(cosf(phi_norm));
|
|
if (theta > theta_threshold) {
|
|
*direction = DOWN;
|
|
} else if (theta < -theta_threshold) {
|
|
*direction = UP;
|
|
}
|
|
|
|
switch (*direction) {
|
|
case RIGHT:
|
|
*uf = -vec[2] / vec[0];
|
|
*vf = vec[1] / vec[0];
|
|
break;
|
|
case LEFT:
|
|
*uf = -vec[2] / vec[0];
|
|
*vf = -vec[1] / vec[0];
|
|
break;
|
|
case UP:
|
|
*uf = -vec[0] / vec[1];
|
|
*vf = -vec[2] / vec[1];
|
|
break;
|
|
case DOWN:
|
|
*uf = vec[0] / vec[1];
|
|
*vf = -vec[2] / vec[1];
|
|
break;
|
|
case FRONT:
|
|
*uf = vec[0] / vec[2];
|
|
*vf = vec[1] / vec[2];
|
|
break;
|
|
case BACK:
|
|
*uf = vec[0] / vec[2];
|
|
*vf = -vec[1] / vec[2];
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
|
|
face = s->in_cubemap_face_order[*direction];
|
|
rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]);
|
|
}
|
|
|
|
/**
|
|
* Find position on another cube face in case of overflow/underflow.
|
|
* Used for calculation of interpolation window.
|
|
*
|
|
* @param s filter private context
|
|
* @param uf horizontal cubemap coordinate
|
|
* @param vf vertical cubemap coordinate
|
|
* @param direction direction of view
|
|
* @param new_uf new horizontal cubemap coordinate
|
|
* @param new_vf new vertical cubemap coordinate
|
|
* @param face face position on cubemap
|
|
*/
|
|
static void process_cube_coordinates(const V360Context *s,
|
|
float uf, float vf, int direction,
|
|
float *new_uf, float *new_vf, int *face)
|
|
{
|
|
/*
|
|
* Cubemap orientation
|
|
*
|
|
* width
|
|
* <------->
|
|
* +-------+
|
|
* | | U
|
|
* | up | h ------->
|
|
* +-------+-------+-------+-------+ ^ e |
|
|
* | | | | | | i V |
|
|
* | left | front | right | back | | g |
|
|
* +-------+-------+-------+-------+ v h v
|
|
* | | t
|
|
* | down |
|
|
* +-------+
|
|
*/
|
|
|
|
*face = s->in_cubemap_face_order[direction];
|
|
rotate_cube_face_inverse(&uf, &vf, s->in_cubemap_face_rotation[*face]);
|
|
|
|
if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) {
|
|
// There are no pixels to use in this case
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
} else if (uf < -1.f) {
|
|
uf += 2.f;
|
|
switch (direction) {
|
|
case RIGHT:
|
|
direction = FRONT;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
case LEFT:
|
|
direction = BACK;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
case UP:
|
|
direction = LEFT;
|
|
*new_uf = vf;
|
|
*new_vf = -uf;
|
|
break;
|
|
case DOWN:
|
|
direction = LEFT;
|
|
*new_uf = -vf;
|
|
*new_vf = uf;
|
|
break;
|
|
case FRONT:
|
|
direction = LEFT;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
case BACK:
|
|
direction = RIGHT;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
} else if (uf >= 1.f) {
|
|
uf -= 2.f;
|
|
switch (direction) {
|
|
case RIGHT:
|
|
direction = BACK;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
case LEFT:
|
|
direction = FRONT;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
case UP:
|
|
direction = RIGHT;
|
|
*new_uf = -vf;
|
|
*new_vf = uf;
|
|
break;
|
|
case DOWN:
|
|
direction = RIGHT;
|
|
*new_uf = vf;
|
|
*new_vf = -uf;
|
|
break;
|
|
case FRONT:
|
|
direction = RIGHT;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
case BACK:
|
|
direction = LEFT;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
} else if (vf < -1.f) {
|
|
vf += 2.f;
|
|
switch (direction) {
|
|
case RIGHT:
|
|
direction = UP;
|
|
*new_uf = vf;
|
|
*new_vf = -uf;
|
|
break;
|
|
case LEFT:
|
|
direction = UP;
|
|
*new_uf = -vf;
|
|
*new_vf = uf;
|
|
break;
|
|
case UP:
|
|
direction = BACK;
|
|
*new_uf = -uf;
|
|
*new_vf = -vf;
|
|
break;
|
|
case DOWN:
|
|
direction = FRONT;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
case FRONT:
|
|
direction = UP;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
case BACK:
|
|
direction = UP;
|
|
*new_uf = -uf;
|
|
*new_vf = -vf;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
} else if (vf >= 1.f) {
|
|
vf -= 2.f;
|
|
switch (direction) {
|
|
case RIGHT:
|
|
direction = DOWN;
|
|
*new_uf = -vf;
|
|
*new_vf = uf;
|
|
break;
|
|
case LEFT:
|
|
direction = DOWN;
|
|
*new_uf = vf;
|
|
*new_vf = -uf;
|
|
break;
|
|
case UP:
|
|
direction = FRONT;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
case DOWN:
|
|
direction = BACK;
|
|
*new_uf = -uf;
|
|
*new_vf = -vf;
|
|
break;
|
|
case FRONT:
|
|
direction = DOWN;
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
break;
|
|
case BACK:
|
|
direction = DOWN;
|
|
*new_uf = -uf;
|
|
*new_vf = -vf;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
} else {
|
|
// Inside cube face
|
|
*new_uf = uf;
|
|
*new_vf = vf;
|
|
}
|
|
|
|
*face = s->in_cubemap_face_order[direction];
|
|
rotate_cube_face(new_uf, new_vf, s->in_cubemap_face_rotation[*face]);
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap3x2 format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int cube3x2_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 3.f) : 1.f - s->out_pad;
|
|
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 2.f) : 1.f - s->out_pad;
|
|
|
|
const float ew = width / 3.f;
|
|
const float eh = height / 2.f;
|
|
|
|
const int u_face = floorf(i / ew);
|
|
const int v_face = floorf(j / eh);
|
|
const int face = u_face + 3 * v_face;
|
|
|
|
const int u_shift = ceilf(ew * u_face);
|
|
const int v_shift = ceilf(eh * v_face);
|
|
const int ewi = ceilf(ew * (u_face + 1)) - u_shift;
|
|
const int ehi = ceilf(eh * (v_face + 1)) - v_shift;
|
|
|
|
const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
|
|
const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
|
|
|
|
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in cubemap3x2 format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_cube3x2(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 3.f) : 1.f - s->in_pad;
|
|
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 2.f) : 1.f - s->in_pad;
|
|
const float ew = width / 3.f;
|
|
const float eh = height / 2.f;
|
|
float uf, vf;
|
|
int ui, vi;
|
|
int ewi, ehi;
|
|
int direction, face;
|
|
int u_face, v_face;
|
|
|
|
xyz_to_cube(s, vec, &uf, &vf, &direction);
|
|
|
|
uf *= scalew;
|
|
vf *= scaleh;
|
|
|
|
face = s->in_cubemap_face_order[direction];
|
|
u_face = face % 3;
|
|
v_face = face / 3;
|
|
ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face);
|
|
ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face);
|
|
|
|
uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
|
|
vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
int new_ui = ui + j - 1;
|
|
int new_vi = vi + i - 1;
|
|
int u_shift, v_shift;
|
|
int new_ewi, new_ehi;
|
|
|
|
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
|
|
face = s->in_cubemap_face_order[direction];
|
|
|
|
u_face = face % 3;
|
|
v_face = face / 3;
|
|
u_shift = ceilf(ew * u_face);
|
|
v_shift = ceilf(eh * v_face);
|
|
} else {
|
|
uf = 2.f * new_ui / ewi - 1.f;
|
|
vf = 2.f * new_vi / ehi - 1.f;
|
|
|
|
uf /= scalew;
|
|
vf /= scaleh;
|
|
|
|
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
|
|
|
|
uf *= scalew;
|
|
vf *= scaleh;
|
|
|
|
u_face = face % 3;
|
|
v_face = face / 3;
|
|
u_shift = ceilf(ew * u_face);
|
|
v_shift = ceilf(eh * v_face);
|
|
new_ewi = ceilf(ew * (u_face + 1)) - u_shift;
|
|
new_ehi = ceilf(eh * (v_face + 1)) - v_shift;
|
|
|
|
new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
|
|
new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
|
|
}
|
|
|
|
us[i][j] = u_shift + new_ui;
|
|
vs[i][j] = v_shift + new_vi;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap1x6 format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int cube1x6_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float scalew = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / width : 1.f - s->out_pad;
|
|
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 6.f) : 1.f - s->out_pad;
|
|
|
|
const float ew = width;
|
|
const float eh = height / 6.f;
|
|
|
|
const int face = floorf(j / eh);
|
|
|
|
const int v_shift = ceilf(eh * face);
|
|
const int ehi = ceilf(eh * (face + 1)) - v_shift;
|
|
|
|
const float uf = 2.f * (i + 0.5f) / ew - 1.f;
|
|
const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
|
|
|
|
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap6x1 format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int cube6x1_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 6.f) : 1.f - s->out_pad;
|
|
const float scaleh = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / height : 1.f - s->out_pad;
|
|
|
|
const float ew = width / 6.f;
|
|
const float eh = height;
|
|
|
|
const int face = floorf(i / ew);
|
|
|
|
const int u_shift = ceilf(ew * face);
|
|
const int ewi = ceilf(ew * (face + 1)) - u_shift;
|
|
|
|
const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
|
|
const float vf = 2.f * (j + 0.5f) / eh - 1.f;
|
|
|
|
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in cubemap1x6 format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_cube1x6(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float scalew = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / width : 1.f - s->in_pad;
|
|
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 6.f) : 1.f - s->in_pad;
|
|
const float eh = height / 6.f;
|
|
const int ewi = width;
|
|
float uf, vf;
|
|
int ui, vi;
|
|
int ehi;
|
|
int direction, face;
|
|
|
|
xyz_to_cube(s, vec, &uf, &vf, &direction);
|
|
|
|
uf *= scalew;
|
|
vf *= scaleh;
|
|
|
|
face = s->in_cubemap_face_order[direction];
|
|
ehi = ceilf(eh * (face + 1)) - ceilf(eh * face);
|
|
|
|
uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
|
|
vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
int new_ui = ui + j - 1;
|
|
int new_vi = vi + i - 1;
|
|
int v_shift;
|
|
int new_ehi;
|
|
|
|
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
|
|
face = s->in_cubemap_face_order[direction];
|
|
|
|
v_shift = ceilf(eh * face);
|
|
} else {
|
|
uf = 2.f * new_ui / ewi - 1.f;
|
|
vf = 2.f * new_vi / ehi - 1.f;
|
|
|
|
uf /= scalew;
|
|
vf /= scaleh;
|
|
|
|
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
|
|
|
|
uf *= scalew;
|
|
vf *= scaleh;
|
|
|
|
v_shift = ceilf(eh * face);
|
|
new_ehi = ceilf(eh * (face + 1)) - v_shift;
|
|
|
|
new_ui = av_clip(lrintf(0.5f * ewi * (uf + 1.f)), 0, ewi - 1);
|
|
new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
|
|
}
|
|
|
|
us[i][j] = new_ui;
|
|
vs[i][j] = v_shift + new_vi;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in cubemap6x1 format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_cube6x1(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 6.f) : 1.f - s->in_pad;
|
|
const float scaleh = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / height : 1.f - s->in_pad;
|
|
const float ew = width / 6.f;
|
|
const int ehi = height;
|
|
float uf, vf;
|
|
int ui, vi;
|
|
int ewi;
|
|
int direction, face;
|
|
|
|
xyz_to_cube(s, vec, &uf, &vf, &direction);
|
|
|
|
uf *= scalew;
|
|
vf *= scaleh;
|
|
|
|
face = s->in_cubemap_face_order[direction];
|
|
ewi = ceilf(ew * (face + 1)) - ceilf(ew * face);
|
|
|
|
uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
|
|
vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
int new_ui = ui + j - 1;
|
|
int new_vi = vi + i - 1;
|
|
int u_shift;
|
|
int new_ewi;
|
|
|
|
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
|
|
face = s->in_cubemap_face_order[direction];
|
|
|
|
u_shift = ceilf(ew * face);
|
|
} else {
|
|
uf = 2.f * new_ui / ewi - 1.f;
|
|
vf = 2.f * new_vi / ehi - 1.f;
|
|
|
|
uf /= scalew;
|
|
vf /= scaleh;
|
|
|
|
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
|
|
|
|
uf *= scalew;
|
|
vf *= scaleh;
|
|
|
|
u_shift = ceilf(ew * face);
|
|
new_ewi = ceilf(ew * (face + 1)) - u_shift;
|
|
|
|
new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
|
|
new_vi = av_clip(lrintf(0.5f * ehi * (vf + 1.f)), 0, ehi - 1);
|
|
}
|
|
|
|
us[i][j] = u_shift + new_ui;
|
|
vs[i][j] = new_vi;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in equirectangular format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int equirect_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float phi = ((2.f * i + 0.5f) / width - 1.f) * M_PI;
|
|
const float theta = ((2.f * j + 0.5f) / height - 1.f) * M_PI_2;
|
|
|
|
const float sin_phi = sinf(phi);
|
|
const float cos_phi = cosf(phi);
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
vec[0] = cos_theta * sin_phi;
|
|
vec[1] = sin_theta;
|
|
vec[2] = cos_theta * cos_phi;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in half equirectangular format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int hequirect_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float phi = ((2.f * i + 0.5f) / width - 1.f) * M_PI_2;
|
|
const float theta = ((2.f * j + 0.5f) / height - 1.f) * M_PI_2;
|
|
|
|
const float sin_phi = sinf(phi);
|
|
const float cos_phi = cosf(phi);
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
vec[0] = cos_theta * sin_phi;
|
|
vec[1] = sin_theta;
|
|
vec[2] = cos_theta * cos_phi;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing stereographic output format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_stereographic_out(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->flat_range[0] = tanf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f);
|
|
s->flat_range[1] = tanf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in stereographic format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int stereographic_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float x = ((2.f * i + 1.f) / width - 1.f) * s->flat_range[0];
|
|
const float y = ((2.f * j + 1.f) / height - 1.f) * s->flat_range[1];
|
|
const float r = hypotf(x, y);
|
|
const float theta = atanf(r) * 2.f;
|
|
const float sin_theta = sinf(theta);
|
|
|
|
vec[0] = x / r * sin_theta;
|
|
vec[1] = y / r * sin_theta;
|
|
vec[2] = cosf(theta);
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing stereographic input format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_stereographic_in(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->iflat_range[0] = tanf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f);
|
|
s->iflat_range[1] = tanf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in stereographic format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_stereographic(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float theta = acosf(vec[2]);
|
|
const float r = tanf(theta * 0.5f);
|
|
const float c = r / hypotf(vec[0], vec[1]);
|
|
const float x = vec[0] * c / s->iflat_range[0];
|
|
const float y = vec[1] * c / s->iflat_range[1];
|
|
|
|
const float uf = (x + 1.f) * width / 2.f;
|
|
const float vf = (y + 1.f) * height / 2.f;
|
|
|
|
const int ui = floorf(uf);
|
|
const int vi = floorf(vf);
|
|
|
|
const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
|
|
|
|
*du = visible ? uf - ui : 0.f;
|
|
*dv = visible ? vf - vi : 0.f;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
|
|
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
|
|
}
|
|
}
|
|
|
|
return visible;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing equisolid output format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_equisolid_out(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->flat_range[0] = sinf(s->h_fov * M_PI / 720.f);
|
|
s->flat_range[1] = sinf(s->v_fov * M_PI / 720.f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in equisolid format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int equisolid_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float x = ((2.f * i + 1.f) / width - 1.f) * s->flat_range[0];
|
|
const float y = ((2.f * j + 1.f) / height - 1.f) * s->flat_range[1];
|
|
const float r = hypotf(x, y);
|
|
const float theta = asinf(r) * 2.f;
|
|
const float sin_theta = sinf(theta);
|
|
|
|
vec[0] = x / r * sin_theta;
|
|
vec[1] = y / r * sin_theta;
|
|
vec[2] = cosf(theta);
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing equisolid input format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_equisolid_in(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f);
|
|
s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in equisolid format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_equisolid(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float theta = acosf(vec[2]);
|
|
const float r = sinf(theta * 0.5f);
|
|
const float c = r / hypotf(vec[0], vec[1]);
|
|
const float x = vec[0] * c / s->iflat_range[0];
|
|
const float y = vec[1] * c / s->iflat_range[1];
|
|
|
|
const float uf = (x + 1.f) * width / 2.f;
|
|
const float vf = (y + 1.f) * height / 2.f;
|
|
|
|
const int ui = floorf(uf);
|
|
const int vi = floorf(vf);
|
|
|
|
const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
|
|
|
|
*du = visible ? uf - ui : 0.f;
|
|
*dv = visible ? vf - vi : 0.f;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
|
|
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
|
|
}
|
|
}
|
|
|
|
return visible;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing orthographic output format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_orthographic_out(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->flat_range[0] = sinf(FFMIN(s->h_fov, 180.f) * M_PI / 360.f);
|
|
s->flat_range[1] = sinf(FFMIN(s->v_fov, 180.f) * M_PI / 360.f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in orthographic format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int orthographic_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float x = ((2.f * i + 1.f) / width - 1.f) * s->flat_range[0];
|
|
const float y = ((2.f * j + 1.f) / height - 1.f) * s->flat_range[1];
|
|
const float r = hypotf(x, y);
|
|
const float theta = asinf(r);
|
|
|
|
vec[0] = x;
|
|
vec[1] = y;
|
|
vec[2] = cosf(theta);
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing orthographic input format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_orthographic_in(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 180.f) * M_PI / 360.f);
|
|
s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 180.f) * M_PI / 360.f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in orthographic format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_orthographic(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float theta = acosf(vec[2]);
|
|
const float r = sinf(theta);
|
|
const float c = r / hypotf(vec[0], vec[1]);
|
|
const float x = vec[0] * c / s->iflat_range[0];
|
|
const float y = vec[1] * c / s->iflat_range[1];
|
|
|
|
const float uf = (x + 1.f) * width / 2.f;
|
|
const float vf = (y + 1.f) * height / 2.f;
|
|
|
|
const int ui = floorf(uf);
|
|
const int vi = floorf(vf);
|
|
|
|
const int visible = vec[2] >= 0.f && isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
|
|
|
|
*du = visible ? uf - ui : 0.f;
|
|
*dv = visible ? vf - vi : 0.f;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
|
|
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
|
|
}
|
|
}
|
|
|
|
return visible;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_equirect(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float phi = atan2f(vec[0], vec[2]);
|
|
const float theta = asinf(vec[1]);
|
|
|
|
const float uf = (phi / M_PI + 1.f) * width / 2.f;
|
|
const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
|
|
|
|
const int ui = floorf(uf);
|
|
const int vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = ereflectx(ui + j - 1, vi + i - 1, width, height);
|
|
vs[i][j] = reflecty(vi + i - 1, height);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in half equirectangular format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_hequirect(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float phi = atan2f(vec[0], vec[2]);
|
|
const float theta = asinf(vec[1]);
|
|
|
|
const float uf = (phi / M_PI_2 + 1.f) * width / 2.f;
|
|
const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
|
|
|
|
const int ui = floorf(uf);
|
|
const int vi = floorf(vf);
|
|
|
|
const int visible = phi >= -M_PI_2 && phi <= M_PI_2;
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
|
|
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
|
|
}
|
|
}
|
|
|
|
return visible;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing flat input format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_flat_in(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->iflat_range[0] = tanf(0.5f * s->ih_fov * M_PI / 180.f);
|
|
s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in flat format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_flat(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float theta = acosf(vec[2]);
|
|
const float r = tanf(theta);
|
|
const float rr = fabsf(r) < 1e+6f ? r : hypotf(width, height);
|
|
const float zf = vec[2];
|
|
const float h = hypotf(vec[0], vec[1]);
|
|
const float c = h <= 1e-6f ? 1.f : rr / h;
|
|
float uf = vec[0] * c / s->iflat_range[0];
|
|
float vf = vec[1] * c / s->iflat_range[1];
|
|
int visible, ui, vi;
|
|
|
|
uf = zf >= 0.f ? (uf + 1.f) * width / 2.f : 0.f;
|
|
vf = zf >= 0.f ? (vf + 1.f) * height / 2.f : 0.f;
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
visible = vi >= 0 && vi < height && ui >= 0 && ui < width && zf >= 0.f;
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
|
|
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
|
|
}
|
|
}
|
|
|
|
return visible;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in mercator format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_mercator(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float phi = atan2f(vec[0], vec[2]);
|
|
const float theta = vec[1];
|
|
|
|
const float uf = (phi / M_PI + 1.f) * width / 2.f;
|
|
const float vf = (av_clipf(logf((1.f + theta) / (1.f - theta)) / (2.f * M_PI), -1.f, 1.f) + 1.f) * height / 2.f;
|
|
|
|
const int ui = floorf(uf);
|
|
const int vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
|
|
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in mercator format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int mercator_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float phi = ((2.f * i + 1.f) / width - 1.f) * M_PI + M_PI_2;
|
|
const float y = ((2.f * j + 1.f) / height - 1.f) * M_PI;
|
|
const float div = expf(2.f * y) + 1.f;
|
|
|
|
const float sin_phi = sinf(phi);
|
|
const float cos_phi = cosf(phi);
|
|
const float sin_theta = 2.f * expf(y) / div;
|
|
const float cos_theta = (expf(2.f * y) - 1.f) / div;
|
|
|
|
vec[0] = -sin_theta * cos_phi;
|
|
vec[1] = cos_theta;
|
|
vec[2] = sin_theta * sin_phi;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in ball format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_ball(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float l = hypotf(vec[0], vec[1]);
|
|
const float r = sqrtf(1.f - vec[2]) / M_SQRT2;
|
|
|
|
const float uf = (1.f + r * vec[0] / (l > 0.f ? l : 1.f)) * width * 0.5f;
|
|
const float vf = (1.f + r * vec[1] / (l > 0.f ? l : 1.f)) * height * 0.5f;
|
|
|
|
const int ui = floorf(uf);
|
|
const int vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
|
|
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in ball format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int ball_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float x = (2.f * i + 1.f) / width - 1.f;
|
|
const float y = (2.f * j + 1.f) / height - 1.f;
|
|
const float l = hypotf(x, y);
|
|
|
|
if (l <= 1.f) {
|
|
const float z = 2.f * l * sqrtf(1.f - l * l);
|
|
|
|
vec[0] = z * x / (l > 0.f ? l : 1.f);
|
|
vec[1] = z * y / (l > 0.f ? l : 1.f);
|
|
vec[2] = 1.f - 2.f * l * l;
|
|
} else {
|
|
vec[0] = 0.f;
|
|
vec[1] = 1.f;
|
|
vec[2] = 0.f;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in hammer format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int hammer_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float x = ((2.f * i + 1.f) / width - 1.f);
|
|
const float y = ((2.f * j + 1.f) / height - 1.f);
|
|
|
|
const float xx = x * x;
|
|
const float yy = y * y;
|
|
|
|
const float z = sqrtf(1.f - xx * 0.5f - yy * 0.5f);
|
|
|
|
const float a = M_SQRT2 * x * z;
|
|
const float b = 2.f * z * z - 1.f;
|
|
|
|
const float aa = a * a;
|
|
const float bb = b * b;
|
|
|
|
const float w = sqrtf(1.f - 2.f * yy * z * z);
|
|
|
|
vec[0] = w * 2.f * a * b / (aa + bb);
|
|
vec[1] = M_SQRT2 * y * z;
|
|
vec[2] = w * (bb - aa) / (aa + bb);
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in hammer format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_hammer(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float theta = atan2f(vec[0], vec[2]);
|
|
|
|
const float z = sqrtf(1.f + sqrtf(1.f - vec[1] * vec[1]) * cosf(theta * 0.5f));
|
|
const float x = sqrtf(1.f - vec[1] * vec[1]) * sinf(theta * 0.5f) / z;
|
|
const float y = vec[1] / z;
|
|
|
|
const float uf = (x + 1.f) * width / 2.f;
|
|
const float vf = (y + 1.f) * height / 2.f;
|
|
|
|
const int ui = floorf(uf);
|
|
const int vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
|
|
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in sinusoidal format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int sinusoidal_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float theta = ((2.f * j + 1.f) / height - 1.f) * M_PI_2;
|
|
const float phi = ((2.f * i + 1.f) / width - 1.f) * M_PI / cosf(theta);
|
|
|
|
const float sin_phi = sinf(phi);
|
|
const float cos_phi = cosf(phi);
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
vec[0] = cos_theta * sin_phi;
|
|
vec[1] = sin_theta;
|
|
vec[2] = cos_theta * cos_phi;
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in sinusoidal format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_sinusoidal(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float theta = asinf(vec[1]);
|
|
const float phi = atan2f(vec[0], vec[2]) * cosf(theta);
|
|
|
|
const float uf = (phi / M_PI + 1.f) * width / 2.f;
|
|
const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
|
|
|
|
const int ui = floorf(uf);
|
|
const int vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
|
|
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing equi-angular cubemap input format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_eac_in(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->in_cubemap_face_order[RIGHT] = TOP_RIGHT;
|
|
s->in_cubemap_face_order[LEFT] = TOP_LEFT;
|
|
s->in_cubemap_face_order[UP] = BOTTOM_RIGHT;
|
|
s->in_cubemap_face_order[DOWN] = BOTTOM_LEFT;
|
|
s->in_cubemap_face_order[FRONT] = TOP_MIDDLE;
|
|
s->in_cubemap_face_order[BACK] = BOTTOM_MIDDLE;
|
|
|
|
s->in_cubemap_face_rotation[TOP_LEFT] = ROT_0;
|
|
s->in_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
|
|
s->in_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
|
|
s->in_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
|
|
s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
|
|
s->in_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing equi-angular cubemap output format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_eac_out(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->out_cubemap_direction_order[TOP_LEFT] = LEFT;
|
|
s->out_cubemap_direction_order[TOP_MIDDLE] = FRONT;
|
|
s->out_cubemap_direction_order[TOP_RIGHT] = RIGHT;
|
|
s->out_cubemap_direction_order[BOTTOM_LEFT] = DOWN;
|
|
s->out_cubemap_direction_order[BOTTOM_MIDDLE] = BACK;
|
|
s->out_cubemap_direction_order[BOTTOM_RIGHT] = UP;
|
|
|
|
s->out_cubemap_face_rotation[TOP_LEFT] = ROT_0;
|
|
s->out_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
|
|
s->out_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
|
|
s->out_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
|
|
s->out_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
|
|
s->out_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in equi-angular cubemap format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int eac_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float pixel_pad = 2;
|
|
const float u_pad = pixel_pad / width;
|
|
const float v_pad = pixel_pad / height;
|
|
|
|
int u_face, v_face, face;
|
|
|
|
float l_x, l_y, l_z;
|
|
|
|
float uf = (i + 0.5f) / width;
|
|
float vf = (j + 0.5f) / height;
|
|
|
|
// EAC has 2-pixel padding on faces except between faces on the same row
|
|
// Padding pixels seems not to be stretched with tangent as regular pixels
|
|
// Formulas below approximate original padding as close as I could get experimentally
|
|
|
|
// Horizontal padding
|
|
uf = 3.f * (uf - u_pad) / (1.f - 2.f * u_pad);
|
|
if (uf < 0.f) {
|
|
u_face = 0;
|
|
uf -= 0.5f;
|
|
} else if (uf >= 3.f) {
|
|
u_face = 2;
|
|
uf -= 2.5f;
|
|
} else {
|
|
u_face = floorf(uf);
|
|
uf = fmodf(uf, 1.f) - 0.5f;
|
|
}
|
|
|
|
// Vertical padding
|
|
v_face = floorf(vf * 2.f);
|
|
vf = (vf - v_pad - 0.5f * v_face) / (0.5f - 2.f * v_pad) - 0.5f;
|
|
|
|
if (uf >= -0.5f && uf < 0.5f) {
|
|
uf = tanf(M_PI_2 * uf);
|
|
} else {
|
|
uf = 2.f * uf;
|
|
}
|
|
if (vf >= -0.5f && vf < 0.5f) {
|
|
vf = tanf(M_PI_2 * vf);
|
|
} else {
|
|
vf = 2.f * vf;
|
|
}
|
|
|
|
face = u_face + 3 * v_face;
|
|
|
|
switch (face) {
|
|
case TOP_LEFT:
|
|
l_x = -1.f;
|
|
l_y = vf;
|
|
l_z = uf;
|
|
break;
|
|
case TOP_MIDDLE:
|
|
l_x = uf;
|
|
l_y = vf;
|
|
l_z = 1.f;
|
|
break;
|
|
case TOP_RIGHT:
|
|
l_x = 1.f;
|
|
l_y = vf;
|
|
l_z = -uf;
|
|
break;
|
|
case BOTTOM_LEFT:
|
|
l_x = -vf;
|
|
l_y = 1.f;
|
|
l_z = -uf;
|
|
break;
|
|
case BOTTOM_MIDDLE:
|
|
l_x = -vf;
|
|
l_y = -uf;
|
|
l_z = -1.f;
|
|
break;
|
|
case BOTTOM_RIGHT:
|
|
l_x = -vf;
|
|
l_y = -1.f;
|
|
l_z = uf;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
|
|
vec[0] = l_x;
|
|
vec[1] = l_y;
|
|
vec[2] = l_z;
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in equi-angular cubemap format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_eac(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float pixel_pad = 2;
|
|
const float u_pad = pixel_pad / width;
|
|
const float v_pad = pixel_pad / height;
|
|
|
|
float uf, vf;
|
|
int ui, vi;
|
|
int direction, face;
|
|
int u_face, v_face;
|
|
|
|
xyz_to_cube(s, vec, &uf, &vf, &direction);
|
|
|
|
face = s->in_cubemap_face_order[direction];
|
|
u_face = face % 3;
|
|
v_face = face / 3;
|
|
|
|
uf = M_2_PI * atanf(uf) + 0.5f;
|
|
vf = M_2_PI * atanf(vf) + 0.5f;
|
|
|
|
// These formulas are inversed from eac_to_xyz ones
|
|
uf = (uf + u_face) * (1.f - 2.f * u_pad) / 3.f + u_pad;
|
|
vf = vf * (0.5f - 2.f * v_pad) + v_pad + 0.5f * v_face;
|
|
|
|
uf *= width;
|
|
vf *= height;
|
|
|
|
uf -= 0.5f;
|
|
vf -= 0.5f;
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
|
|
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing flat output format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_flat_out(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->flat_range[0] = tanf(0.5f * s->h_fov * M_PI / 180.f);
|
|
s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in flat format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int flat_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float l_x = s->flat_range[0] * ((2.f * i + 0.5f) / width - 1.f);
|
|
const float l_y = s->flat_range[1] * ((2.f * j + 0.5f) / height - 1.f);
|
|
|
|
vec[0] = l_x;
|
|
vec[1] = l_y;
|
|
vec[2] = 1.f;
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing fisheye output format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_fisheye_out(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->flat_range[0] = s->h_fov / 180.f;
|
|
s->flat_range[1] = s->v_fov / 180.f;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in fisheye format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int fisheye_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float uf = s->flat_range[0] * ((2.f * i) / width - 1.f);
|
|
const float vf = s->flat_range[1] * ((2.f * j + 1.f) / height - 1.f);
|
|
|
|
const float phi = atan2f(vf, uf);
|
|
const float theta = M_PI_2 * (1.f - hypotf(uf, vf));
|
|
|
|
const float sin_phi = sinf(phi);
|
|
const float cos_phi = cosf(phi);
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
vec[0] = cos_theta * cos_phi;
|
|
vec[1] = cos_theta * sin_phi;
|
|
vec[2] = sin_theta;
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing fisheye input format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_fisheye_in(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->iflat_range[0] = s->ih_fov / 180.f;
|
|
s->iflat_range[1] = s->iv_fov / 180.f;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in fisheye format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_fisheye(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float h = hypotf(vec[0], vec[1]);
|
|
const float lh = h > 0.f ? h : 1.f;
|
|
const float phi = atan2f(h, vec[2]) / M_PI;
|
|
|
|
float uf = vec[0] / lh * phi / s->iflat_range[0];
|
|
float vf = vec[1] / lh * phi / s->iflat_range[1];
|
|
|
|
const int visible = hypotf(uf, vf) <= 0.5f;
|
|
int ui, vi;
|
|
|
|
uf = (uf + 0.5f) * width;
|
|
vf = (vf + 0.5f) * height;
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
*du = visible ? uf - ui : 0.f;
|
|
*dv = visible ? vf - vi : 0.f;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
|
|
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
|
|
}
|
|
}
|
|
|
|
return visible;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in pannini format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int pannini_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float uf = ((2.f * i + 1.f) / width - 1.f);
|
|
const float vf = ((2.f * j + 1.f) / height - 1.f);
|
|
|
|
const float d = s->h_fov;
|
|
const float k = uf * uf / ((d + 1.f) * (d + 1.f));
|
|
const float dscr = k * k * d * d - (k + 1.f) * (k * d * d - 1.f);
|
|
const float clon = (-k * d + sqrtf(dscr)) / (k + 1.f);
|
|
const float S = (d + 1.f) / (d + clon);
|
|
const float lon = atan2f(uf, S * clon);
|
|
const float lat = atan2f(vf, S);
|
|
|
|
vec[0] = sinf(lon) * cosf(lat);
|
|
vec[1] = sinf(lat);
|
|
vec[2] = cosf(lon) * cosf(lat);
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in pannini format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_pannini(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float phi = atan2f(vec[0], vec[2]);
|
|
const float theta = asinf(vec[1]);
|
|
|
|
const float d = s->ih_fov;
|
|
const float S = (d + 1.f) / (d + cosf(phi));
|
|
|
|
const float x = S * sinf(phi);
|
|
const float y = S * tanf(theta);
|
|
|
|
const float uf = (x + 1.f) * width / 2.f;
|
|
const float vf = (y + 1.f) * height / 2.f;
|
|
|
|
const int ui = floorf(uf);
|
|
const int vi = floorf(vf);
|
|
|
|
const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width && vec[2] >= 0.f;
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
|
|
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
|
|
}
|
|
}
|
|
|
|
return visible;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing cylindrical output format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_cylindrical_out(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->flat_range[0] = M_PI * s->h_fov / 360.f;
|
|
s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in cylindrical format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int cylindrical_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float uf = s->flat_range[0] * ((2.f * i + 1.f) / width - 1.f);
|
|
const float vf = s->flat_range[1] * ((2.f * j + 1.f) / height - 1.f);
|
|
|
|
const float phi = uf;
|
|
const float theta = atanf(vf);
|
|
|
|
const float sin_phi = sinf(phi);
|
|
const float cos_phi = cosf(phi);
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
vec[0] = cos_theta * sin_phi;
|
|
vec[1] = sin_theta;
|
|
vec[2] = cos_theta * cos_phi;
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Prepare data for processing cylindrical input format.
|
|
*
|
|
* @param ctx filter context
|
|
*
|
|
* @return error code
|
|
*/
|
|
static int prepare_cylindrical_in(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->iflat_range[0] = M_PI * s->ih_fov / 360.f;
|
|
s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in cylindrical format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_cylindrical(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float phi = atan2f(vec[0], vec[2]) / s->iflat_range[0];
|
|
const float theta = asinf(vec[1]);
|
|
|
|
const float uf = (phi + 1.f) * (width - 1) / 2.f;
|
|
const float vf = (tanf(theta) / s->iflat_range[1] + 1.f) * height / 2.f;
|
|
|
|
const int ui = floorf(uf);
|
|
const int vi = floorf(vf);
|
|
|
|
const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width &&
|
|
theta <= M_PI * s->iv_fov / 180.f &&
|
|
theta >= -M_PI * s->iv_fov / 180.f;
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
|
|
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
|
|
}
|
|
}
|
|
|
|
return visible;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in perspective format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int perspective_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float uf = ((2.f * i + 1.f) / width - 1.f);
|
|
const float vf = ((2.f * j + 1.f) / height - 1.f);
|
|
const float rh = hypotf(uf, vf);
|
|
const float sinzz = 1.f - rh * rh;
|
|
const float h = 1.f + s->v_fov;
|
|
const float sinz = (h - sqrtf(sinzz)) / (h / rh + rh / h);
|
|
const float sinz2 = sinz * sinz;
|
|
|
|
if (sinz2 <= 1.f) {
|
|
const float cosz = sqrtf(1.f - sinz2);
|
|
|
|
const float theta = asinf(cosz);
|
|
const float phi = atan2f(uf, vf);
|
|
|
|
const float sin_phi = sinf(phi);
|
|
const float cos_phi = cosf(phi);
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
vec[0] = cos_theta * sin_phi;
|
|
vec[1] = cos_theta * cos_phi;
|
|
vec[2] = sin_theta;
|
|
} else {
|
|
vec[0] = 0.f;
|
|
vec[1] = 1.f;
|
|
vec[2] = 0.f;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in tetrahedron format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int tetrahedron_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float uf = (float)i / width;
|
|
const float vf = (float)j / height;
|
|
|
|
vec[0] = uf < 0.5f ? uf * 4.f - 1.f : 3.f - uf * 4.f;
|
|
vec[1] = 1.f - vf * 2.f;
|
|
vec[2] = 2.f * fabsf(1.f - fabsf(1.f - uf * 2.f + vf)) - 1.f;
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in tetrahedron format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_tetrahedron(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float d0 = vec[0] * 1.f + vec[1] * 1.f + vec[2] *-1.f;
|
|
const float d1 = vec[0] *-1.f + vec[1] *-1.f + vec[2] *-1.f;
|
|
const float d2 = vec[0] * 1.f + vec[1] *-1.f + vec[2] * 1.f;
|
|
const float d3 = vec[0] *-1.f + vec[1] * 1.f + vec[2] * 1.f;
|
|
const float d = FFMAX(d0, FFMAX3(d1, d2, d3));
|
|
|
|
float uf, vf, x, y, z;
|
|
int ui, vi;
|
|
|
|
x = vec[0] / d;
|
|
y = vec[1] / d;
|
|
z = -vec[2] / d;
|
|
|
|
vf = 0.5f - y * 0.5f;
|
|
|
|
if ((x + y >= 0.f && y + z >= 0.f && -z - x <= 0.f) ||
|
|
(x + y <= 0.f && -y + z >= 0.f && z - x >= 0.f)) {
|
|
uf = 0.25f * x + 0.25f;
|
|
} else {
|
|
uf = 0.75f - 0.25f * x;
|
|
}
|
|
|
|
uf *= width;
|
|
vf *= height;
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = reflectx(ui + j - 1, vi + i - 1, width, height);
|
|
vs[i][j] = reflecty(vi + i - 1, height);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in dual fisheye format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int dfisheye_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float ew = width / 2.f;
|
|
const float eh = height;
|
|
|
|
const int ei = i >= ew ? i - ew : i;
|
|
const float m = i >= ew ? 1.f : -1.f;
|
|
|
|
const float uf = s->flat_range[0] * ((2.f * ei) / ew - 1.f);
|
|
const float vf = s->flat_range[1] * ((2.f * j + 1.f) / eh - 1.f);
|
|
|
|
const float h = hypotf(uf, vf);
|
|
const float lh = h > 0.f ? h : 1.f;
|
|
const float theta = m * M_PI_2 * (1.f - h);
|
|
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
vec[0] = cos_theta * m * uf / lh;
|
|
vec[1] = cos_theta * vf / lh;
|
|
vec[2] = sin_theta;
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in dual fisheye format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_dfisheye(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float ew = width / 2.f;
|
|
const float eh = height;
|
|
|
|
const float h = hypotf(vec[0], vec[1]);
|
|
const float lh = h > 0.f ? h : 1.f;
|
|
const float theta = acosf(fabsf(vec[2])) / M_PI;
|
|
|
|
float uf = (theta * (vec[0] / lh) / s->iflat_range[0] + 0.5f) * ew;
|
|
float vf = (theta * (vec[1] / lh) / s->iflat_range[1] + 0.5f) * eh;
|
|
|
|
int ui, vi;
|
|
int u_shift;
|
|
|
|
if (vec[2] >= 0.f) {
|
|
u_shift = ceilf(ew);
|
|
} else {
|
|
u_shift = 0;
|
|
uf = ew - uf;
|
|
}
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = av_clip(u_shift + ui + j - 1, 0, width - 1);
|
|
vs[i][j] = av_clip( vi + i - 1, 0, height - 1);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in barrel facebook's format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int barrel_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float scale = 0.99f;
|
|
float l_x, l_y, l_z;
|
|
|
|
if (i < 4 * width / 5) {
|
|
const float theta_range = M_PI_4;
|
|
|
|
const int ew = 4 * width / 5;
|
|
const int eh = height;
|
|
|
|
const float phi = ((2.f * i) / ew - 1.f) * M_PI / scale;
|
|
const float theta = ((2.f * j) / eh - 1.f) * theta_range / scale;
|
|
|
|
const float sin_phi = sinf(phi);
|
|
const float cos_phi = cosf(phi);
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
l_x = cos_theta * sin_phi;
|
|
l_y = sin_theta;
|
|
l_z = cos_theta * cos_phi;
|
|
} else {
|
|
const int ew = width / 5;
|
|
const int eh = height / 2;
|
|
|
|
float uf, vf;
|
|
|
|
if (j < eh) { // UP
|
|
uf = 2.f * (i - 4 * ew) / ew - 1.f;
|
|
vf = 2.f * (j ) / eh - 1.f;
|
|
|
|
uf /= scale;
|
|
vf /= scale;
|
|
|
|
l_x = uf;
|
|
l_y = -1.f;
|
|
l_z = vf;
|
|
} else { // DOWN
|
|
uf = 2.f * (i - 4 * ew) / ew - 1.f;
|
|
vf = 2.f * (j - eh) / eh - 1.f;
|
|
|
|
uf /= scale;
|
|
vf /= scale;
|
|
|
|
l_x = uf;
|
|
l_y = 1.f;
|
|
l_z = -vf;
|
|
}
|
|
}
|
|
|
|
vec[0] = l_x;
|
|
vec[1] = l_y;
|
|
vec[2] = l_z;
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in barrel facebook's format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_barrel(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float scale = 0.99f;
|
|
|
|
const float phi = atan2f(vec[0], vec[2]);
|
|
const float theta = asinf(vec[1]);
|
|
const float theta_range = M_PI_4;
|
|
|
|
int ew, eh;
|
|
int u_shift, v_shift;
|
|
float uf, vf;
|
|
int ui, vi;
|
|
|
|
if (theta > -theta_range && theta < theta_range) {
|
|
ew = 4 * width / 5;
|
|
eh = height;
|
|
|
|
u_shift = 0;
|
|
v_shift = 0;
|
|
|
|
uf = (phi / M_PI * scale + 1.f) * ew / 2.f;
|
|
vf = (theta / theta_range * scale + 1.f) * eh / 2.f;
|
|
} else {
|
|
ew = width / 5;
|
|
eh = height / 2;
|
|
|
|
u_shift = 4 * ew;
|
|
|
|
if (theta < 0.f) { // UP
|
|
uf = -vec[0] / vec[1];
|
|
vf = -vec[2] / vec[1];
|
|
v_shift = 0;
|
|
} else { // DOWN
|
|
uf = vec[0] / vec[1];
|
|
vf = -vec[2] / vec[1];
|
|
v_shift = eh;
|
|
}
|
|
|
|
uf = 0.5f * ew * (uf * scale + 1.f);
|
|
vf = 0.5f * eh * (vf * scale + 1.f);
|
|
}
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1);
|
|
vs[i][j] = v_shift + av_clip(vi + i - 1, 0, eh - 1);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in barrel split facebook's format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_barrelsplit(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
const float phi = atan2f(vec[0], vec[2]);
|
|
const float theta = asinf(vec[1]);
|
|
|
|
const float theta_range = M_PI_4;
|
|
|
|
int ew, eh;
|
|
int u_shift, v_shift;
|
|
float uf, vf;
|
|
int ui, vi;
|
|
|
|
if (theta >= -theta_range && theta <= theta_range) {
|
|
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width * 2.f / 3.f) : 1.f - s->in_pad;
|
|
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 2.f) : 1.f - s->in_pad;
|
|
|
|
ew = width / 3 * 2;
|
|
eh = height / 2;
|
|
|
|
u_shift = 0;
|
|
v_shift = phi >= M_PI_2 || phi < -M_PI_2 ? eh : 0;
|
|
|
|
uf = fmodf(phi, M_PI_2) / M_PI_2;
|
|
vf = theta / M_PI_4;
|
|
|
|
if (v_shift)
|
|
uf = uf >= 0.f ? fmodf(uf - 1.f, 1.f) : fmodf(uf + 1.f, 1.f);
|
|
|
|
uf = (uf * scalew + 1.f) * width / 3.f;
|
|
vf = (vf * scaleh + 1.f) * height / 4.f;
|
|
} else {
|
|
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 3.f) : 1.f - s->in_pad;
|
|
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 4.f) : 1.f - s->in_pad;
|
|
int v_offset = 0;
|
|
|
|
ew = width / 3;
|
|
eh = height / 4;
|
|
|
|
u_shift = 2 * ew;
|
|
|
|
if (theta <= 0.f && theta >= -M_PI_2 &&
|
|
phi <= M_PI_2 && phi >= -M_PI_2) {
|
|
uf = -vec[0] / vec[1];
|
|
vf = -vec[2] / vec[1];
|
|
v_shift = 0;
|
|
v_offset = -eh;
|
|
} else if (theta >= 0.f && theta <= M_PI_2 &&
|
|
phi <= M_PI_2 && phi >= -M_PI_2) {
|
|
uf = vec[0] / vec[1];
|
|
vf = -vec[2] / vec[1];
|
|
v_shift = height * 0.25f;
|
|
} else if (theta <= 0.f && theta >= -M_PI_2) {
|
|
uf = vec[0] / vec[1];
|
|
vf = vec[2] / vec[1];
|
|
v_shift = height * 0.5f;
|
|
v_offset = -eh;
|
|
} else {
|
|
uf = -vec[0] / vec[1];
|
|
vf = vec[2] / vec[1];
|
|
v_shift = height * 0.75f;
|
|
}
|
|
|
|
uf = 0.5f * width / 3.f * (uf * scalew + 1.f);
|
|
vf = height * 0.25f * (vf * scaleh + 1.f) + v_offset;
|
|
}
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1);
|
|
vs[i][j] = v_shift + av_clip(vi + i - 1, 0, eh - 1);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in barrel split facebook's format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int barrelsplit_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float x = (i + 0.5f) / width;
|
|
const float y = (j + 0.5f) / height;
|
|
float l_x, l_y, l_z;
|
|
|
|
if (x < 2.f / 3.f) {
|
|
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width * 2.f / 3.f) : 1.f - s->out_pad;
|
|
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 2.f) : 1.f - s->out_pad;
|
|
|
|
const float back = floorf(y * 2.f);
|
|
|
|
const float phi = ((3.f / 2.f * x - 0.5f) / scalew - back) * M_PI;
|
|
const float theta = (y - 0.25f - 0.5f * back) / scaleh * M_PI;
|
|
|
|
const float sin_phi = sinf(phi);
|
|
const float cos_phi = cosf(phi);
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
l_x = cos_theta * sin_phi;
|
|
l_y = sin_theta;
|
|
l_z = cos_theta * cos_phi;
|
|
} else {
|
|
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 3.f) : 1.f - s->out_pad;
|
|
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 4.f) : 1.f - s->out_pad;
|
|
|
|
const int face = floorf(y * 4.f);
|
|
float uf, vf;
|
|
|
|
uf = x * 3.f - 2.f;
|
|
|
|
switch (face) {
|
|
case 0:
|
|
vf = y * 2.f;
|
|
uf = 1.f - uf;
|
|
vf = 0.5f - vf;
|
|
|
|
l_x = (0.5f - uf) / scalew;
|
|
l_y = -0.5f;
|
|
l_z = (0.5f - vf) / scaleh;
|
|
break;
|
|
case 1:
|
|
vf = y * 2.f;
|
|
uf = 1.f - uf;
|
|
vf = 1.f - (vf - 0.5f);
|
|
|
|
l_x = (0.5f - uf) / scalew;
|
|
l_y = 0.5f;
|
|
l_z = (-0.5f + vf) / scaleh;
|
|
break;
|
|
case 2:
|
|
vf = y * 2.f - 0.5f;
|
|
vf = 1.f - (1.f - vf);
|
|
|
|
l_x = (0.5f - uf) / scalew;
|
|
l_y = -0.5f;
|
|
l_z = (0.5f - vf) / scaleh;
|
|
break;
|
|
case 3:
|
|
vf = y * 2.f - 1.5f;
|
|
|
|
l_x = (0.5f - uf) / scalew;
|
|
l_y = 0.5f;
|
|
l_z = (-0.5f + vf) / scaleh;
|
|
break;
|
|
}
|
|
}
|
|
|
|
vec[0] = l_x;
|
|
vec[1] = l_y;
|
|
vec[2] = l_z;
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in tspyramid format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int tspyramid_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float x = (i + 0.5f) / width;
|
|
const float y = (j + 0.5f) / height;
|
|
|
|
if (x < 0.5f) {
|
|
vec[0] = x * 4.f - 1.f;
|
|
vec[1] = (y * 2.f - 1.f);
|
|
vec[2] = 1.f;
|
|
} else if (x >= 0.6875f && x < 0.8125f &&
|
|
y >= 0.375f && y < 0.625f) {
|
|
vec[0] = -(x - 0.6875f) * 16.f + 1.f;
|
|
vec[1] = (y - 0.375f) * 8.f - 1.f;
|
|
vec[2] = -1.f;
|
|
} else if (0.5f <= x && x < 0.6875f &&
|
|
((0.f <= y && y < 0.375f && y >= 2.f * (x - 0.5f)) ||
|
|
(0.375f <= y && y < 0.625f) ||
|
|
(0.625f <= y && y < 1.f && y <= 2.f * (1.f - x)))) {
|
|
vec[0] = 1.f;
|
|
vec[1] = 2.f * (y - 2.f * x + 1.f) / (3.f - 4.f * x) - 1.f;
|
|
vec[2] = -2.f * (x - 0.5f) / 0.1875f + 1.f;
|
|
} else if (0.8125f <= x && x < 1.f &&
|
|
((0.f <= y && y < 0.375f && x >= (1.f - y / 2.f)) ||
|
|
(0.375f <= y && y < 0.625f) ||
|
|
(0.625f <= y && y < 1.f && y <= (2.f * x - 1.f)))) {
|
|
vec[0] = -1.f;
|
|
vec[1] = 2.f * (y + 2.f * x - 2.f) / (4.f * x - 3.f) - 1.f;
|
|
vec[2] = 2.f * (x - 0.8125f) / 0.1875f - 1.f;
|
|
} else if (0.f <= y && y < 0.375f &&
|
|
((0.5f <= x && x < 0.8125f && y < 2.f * (x - 0.5f)) ||
|
|
(0.6875f <= x && x < 0.8125f) ||
|
|
(0.8125f <= x && x < 1.f && x < (1.f - y / 2.f)))) {
|
|
vec[0] = 2.f * (1.f - x - 0.5f * y) / (0.5f - y) - 1.f;
|
|
vec[1] = -1.f;
|
|
vec[2] = 2.f * (0.375f - y) / 0.375f - 1.f;
|
|
} else {
|
|
vec[0] = 2.f * (0.5f - x + 0.5f * y) / (y - 0.5f) - 1.f;
|
|
vec[1] = 1.f;
|
|
vec[2] = -2.f * (1.f - y) / 0.375f + 1.f;
|
|
}
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in tspyramid format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_tspyramid(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
float uf, vf;
|
|
int ui, vi;
|
|
int face;
|
|
|
|
xyz_to_cube(s, vec, &uf, &vf, &face);
|
|
|
|
uf = (uf + 1.f) * 0.5f;
|
|
vf = (vf + 1.f) * 0.5f;
|
|
|
|
switch (face) {
|
|
case UP:
|
|
uf = 0.1875f * vf - 0.375f * uf * vf - 0.125f * uf + 0.8125f;
|
|
vf = 0.375f - 0.375f * vf;
|
|
break;
|
|
case FRONT:
|
|
uf = 0.5f * uf;
|
|
break;
|
|
case DOWN:
|
|
uf = 1.f - 0.1875f * vf - 0.5f * uf + 0.375f * uf * vf;
|
|
vf = 1.f - 0.375f * vf;
|
|
break;
|
|
case LEFT:
|
|
vf = 0.25f * vf + 0.75f * uf * vf - 0.375f * uf + 0.375f;
|
|
uf = 0.1875f * uf + 0.8125f;
|
|
break;
|
|
case RIGHT:
|
|
vf = 0.375f * uf - 0.75f * uf * vf + vf;
|
|
uf = 0.1875f * uf + 0.5f;
|
|
break;
|
|
case BACK:
|
|
uf = 0.125f * uf + 0.6875f;
|
|
vf = 0.25f * vf + 0.375f;
|
|
break;
|
|
}
|
|
|
|
uf *= width;
|
|
vf *= height;
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = reflectx(ui + j - 1, vi + i - 1, width, height);
|
|
vs[i][j] = reflecty(vi + i - 1, height);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in octahedron format.
|
|
*
|
|
* @param s filter private context
|
|
* @param i horizontal position on frame [0, width)
|
|
* @param j vertical position on frame [0, height)
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param vec coordinates on sphere
|
|
*/
|
|
static int octahedron_to_xyz(const V360Context *s,
|
|
int i, int j, int width, int height,
|
|
float *vec)
|
|
{
|
|
const float x = ((i + 0.5f) / width) * 2.f - 1.f;
|
|
const float y = ((j + 0.5f) / height) * 2.f - 1.f;
|
|
const float ax = fabsf(x);
|
|
const float ay = fabsf(y);
|
|
|
|
vec[2] = 1.f - (ax + ay);
|
|
if (ax + ay > 1.f) {
|
|
vec[0] = (1.f - ay) * FFSIGN(x);
|
|
vec[1] = (1.f - ax) * FFSIGN(y);
|
|
} else {
|
|
vec[0] = x;
|
|
vec[1] = y;
|
|
}
|
|
|
|
normalize_vector(vec);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Calculate frame position in octahedron format for corresponding 3D coordinates on sphere.
|
|
*
|
|
* @param s filter private context
|
|
* @param vec coordinates on sphere
|
|
* @param width frame width
|
|
* @param height frame height
|
|
* @param us horizontal coordinates for interpolation window
|
|
* @param vs vertical coordinates for interpolation window
|
|
* @param du horizontal relative coordinate
|
|
* @param dv vertical relative coordinate
|
|
*/
|
|
static int xyz_to_octahedron(const V360Context *s,
|
|
const float *vec, int width, int height,
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
|
|
{
|
|
float uf, vf, zf;
|
|
int ui, vi;
|
|
float div = fabsf(vec[0]) + fabsf(vec[1]) + fabsf(vec[2]);
|
|
|
|
uf = vec[0] / div;
|
|
vf = vec[1] / div;
|
|
zf = vec[2];
|
|
|
|
if (zf < 0.f) {
|
|
zf = vf;
|
|
vf = (1.f - fabsf(uf)) * FFSIGN(zf);
|
|
uf = (1.f - fabsf(zf)) * FFSIGN(uf);
|
|
}
|
|
|
|
uf = uf * 0.5f + 0.5f;
|
|
vf = vf * 0.5f + 0.5f;
|
|
|
|
uf *= width;
|
|
vf *= height;
|
|
|
|
ui = floorf(uf);
|
|
vi = floorf(vf);
|
|
|
|
*du = uf - ui;
|
|
*dv = vf - vi;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
|
|
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void multiply_quaternion(float c[4], const float a[4], const float b[4])
|
|
{
|
|
c[0] = a[0] * b[0] - a[1] * b[1] - a[2] * b[2] - a[3] * b[3];
|
|
c[1] = a[1] * b[0] + a[0] * b[1] + a[2] * b[3] - a[3] * b[2];
|
|
c[2] = a[2] * b[0] + a[0] * b[2] + a[3] * b[1] - a[1] * b[3];
|
|
c[3] = a[3] * b[0] + a[0] * b[3] + a[1] * b[2] - a[2] * b[1];
|
|
}
|
|
|
|
static void conjugate_quaternion(float d[4], const float q[4])
|
|
{
|
|
d[0] = q[0];
|
|
d[1] = -q[1];
|
|
d[2] = -q[2];
|
|
d[3] = -q[3];
|
|
}
|
|
|
|
/**
|
|
* Calculate rotation quaternion for yaw/pitch/roll angles.
|
|
*/
|
|
static inline void calculate_rotation(float yaw, float pitch, float roll,
|
|
float rot_quaternion[2][4],
|
|
const int rotation_order[3])
|
|
{
|
|
const float yaw_rad = yaw * M_PI / 180.f;
|
|
const float pitch_rad = pitch * M_PI / 180.f;
|
|
const float roll_rad = roll * M_PI / 180.f;
|
|
|
|
const float sin_yaw = sinf(yaw_rad * 0.5f);
|
|
const float cos_yaw = cosf(yaw_rad * 0.5f);
|
|
const float sin_pitch = sinf(pitch_rad * 0.5f);
|
|
const float cos_pitch = cosf(pitch_rad * 0.5f);
|
|
const float sin_roll = sinf(roll_rad * 0.5f);
|
|
const float cos_roll = cosf(roll_rad * 0.5f);
|
|
|
|
float m[3][4];
|
|
float tmp[2][4];
|
|
|
|
m[0][0] = cos_yaw; m[0][1] = 0.f; m[0][2] = sin_yaw; m[0][3] = 0.f;
|
|
m[1][0] = cos_pitch; m[1][1] = sin_pitch; m[1][2] = 0.f; m[1][3] = 0.f;
|
|
m[2][0] = cos_roll; m[2][1] = 0.f; m[2][2] = 0.f; m[2][3] = sin_roll;
|
|
|
|
multiply_quaternion(tmp[0], rot_quaternion[0], m[rotation_order[0]]);
|
|
multiply_quaternion(tmp[1], tmp[0], m[rotation_order[1]]);
|
|
multiply_quaternion(rot_quaternion[0], tmp[1], m[rotation_order[2]]);
|
|
|
|
conjugate_quaternion(rot_quaternion[1], rot_quaternion[0]);
|
|
}
|
|
|
|
/**
|
|
* Rotate vector with given rotation quaternion.
|
|
*
|
|
* @param rot_quaternion rotation quaternion
|
|
* @param vec vector
|
|
*/
|
|
static inline void rotate(const float rot_quaternion[2][4],
|
|
float *vec)
|
|
{
|
|
float qv[4], temp[4], rqv[4];
|
|
|
|
qv[0] = 0.f;
|
|
qv[1] = vec[0];
|
|
qv[2] = vec[1];
|
|
qv[3] = vec[2];
|
|
|
|
multiply_quaternion(temp, rot_quaternion[0], qv);
|
|
multiply_quaternion(rqv, temp, rot_quaternion[1]);
|
|
|
|
vec[0] = rqv[1];
|
|
vec[1] = rqv[2];
|
|
vec[2] = rqv[3];
|
|
}
|
|
|
|
static inline void set_mirror_modifier(int h_flip, int v_flip, int d_flip,
|
|
float *modifier)
|
|
{
|
|
modifier[0] = h_flip ? -1.f : 1.f;
|
|
modifier[1] = v_flip ? -1.f : 1.f;
|
|
modifier[2] = d_flip ? -1.f : 1.f;
|
|
}
|
|
|
|
static inline void mirror(const float *modifier, float *vec)
|
|
{
|
|
vec[0] *= modifier[0];
|
|
vec[1] *= modifier[1];
|
|
vec[2] *= modifier[2];
|
|
}
|
|
|
|
static inline void input_flip(int16_t u[4][4], int16_t v[4][4], int w, int h, int hflip, int vflip)
|
|
{
|
|
if (hflip) {
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++)
|
|
u[i][j] = w - 1 - u[i][j];
|
|
}
|
|
}
|
|
|
|
if (vflip) {
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++)
|
|
v[i][j] = h - 1 - v[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
static int allocate_plane(V360Context *s, int sizeof_uv, int sizeof_ker, int sizeof_mask, int p)
|
|
{
|
|
const int pr_height = s->pr_height[p];
|
|
|
|
for (int n = 0; n < s->nb_threads; n++) {
|
|
SliceXYRemap *r = &s->slice_remap[n];
|
|
const int slice_start = (pr_height * n ) / s->nb_threads;
|
|
const int slice_end = (pr_height * (n + 1)) / s->nb_threads;
|
|
const int height = slice_end - slice_start;
|
|
|
|
if (!r->u[p])
|
|
r->u[p] = av_calloc(s->uv_linesize[p] * height, sizeof_uv);
|
|
if (!r->v[p])
|
|
r->v[p] = av_calloc(s->uv_linesize[p] * height, sizeof_uv);
|
|
if (!r->u[p] || !r->v[p])
|
|
return AVERROR(ENOMEM);
|
|
if (sizeof_ker) {
|
|
if (!r->ker[p])
|
|
r->ker[p] = av_calloc(s->uv_linesize[p] * height, sizeof_ker);
|
|
if (!r->ker[p])
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
if (sizeof_mask && !p) {
|
|
if (!r->mask)
|
|
r->mask = av_calloc(s->pr_width[p] * height, sizeof_mask);
|
|
if (!r->mask)
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fov_from_dfov(int format, float d_fov, float w, float h, float *h_fov, float *v_fov)
|
|
{
|
|
switch (format) {
|
|
case ORTHOGRAPHIC:
|
|
{
|
|
const float d = 0.5f * hypotf(w, h);
|
|
const float l = sinf(d_fov * M_PI / 360.f) / d;
|
|
|
|
*h_fov = asinf(w * 0.5 * l) * 360.f / M_PI;
|
|
*v_fov = asinf(h * 0.5 * l) * 360.f / M_PI;
|
|
|
|
if (d_fov > 180.f) {
|
|
*h_fov = 180.f - *h_fov;
|
|
*v_fov = 180.f - *v_fov;
|
|
}
|
|
}
|
|
break;
|
|
case EQUISOLID:
|
|
{
|
|
const float d = 0.5f * hypotf(w, h);
|
|
const float l = d / (sinf(d_fov * M_PI / 720.f));
|
|
|
|
*h_fov = 2.f * asinf(w * 0.5f / l) * 360.f / M_PI;
|
|
*v_fov = 2.f * asinf(h * 0.5f / l) * 360.f / M_PI;
|
|
}
|
|
break;
|
|
case STEREOGRAPHIC:
|
|
{
|
|
const float d = 0.5f * hypotf(w, h);
|
|
const float l = d / (tanf(d_fov * M_PI / 720.f));
|
|
|
|
*h_fov = 2.f * atan2f(w * 0.5f, l) * 360.f / M_PI;
|
|
*v_fov = 2.f * atan2f(h * 0.5f, l) * 360.f / M_PI;
|
|
}
|
|
break;
|
|
case DUAL_FISHEYE:
|
|
{
|
|
const float d = 0.5f * hypotf(w * 0.5f, h);
|
|
|
|
*h_fov = d / w * 2.f * d_fov;
|
|
*v_fov = d / h * d_fov;
|
|
}
|
|
break;
|
|
case FISHEYE:
|
|
{
|
|
const float d = 0.5f * hypotf(w, h);
|
|
|
|
*h_fov = d / w * d_fov;
|
|
*v_fov = d / h * d_fov;
|
|
}
|
|
break;
|
|
case FLAT:
|
|
default:
|
|
{
|
|
const float da = tanf(0.5f * FFMIN(d_fov, 359.f) * M_PI / 180.f);
|
|
const float d = hypotf(w, h);
|
|
|
|
*h_fov = atan2f(da * w, d) * 360.f / M_PI;
|
|
*v_fov = atan2f(da * h, d) * 360.f / M_PI;
|
|
|
|
if (*h_fov < 0.f)
|
|
*h_fov += 360.f;
|
|
if (*v_fov < 0.f)
|
|
*v_fov += 360.f;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void set_dimensions(int *outw, int *outh, int w, int h, const AVPixFmtDescriptor *desc)
|
|
{
|
|
outw[1] = outw[2] = FF_CEIL_RSHIFT(w, desc->log2_chroma_w);
|
|
outw[0] = outw[3] = w;
|
|
outh[1] = outh[2] = FF_CEIL_RSHIFT(h, desc->log2_chroma_h);
|
|
outh[0] = outh[3] = h;
|
|
}
|
|
|
|
// Calculate remap data
|
|
static av_always_inline int v360_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
SliceXYRemap *r = &s->slice_remap[jobnr];
|
|
|
|
for (int p = 0; p < s->nb_allocated; p++) {
|
|
const int max_value = s->max_value;
|
|
const int width = s->pr_width[p];
|
|
const int uv_linesize = s->uv_linesize[p];
|
|
const int height = s->pr_height[p];
|
|
const int in_width = s->inplanewidth[p];
|
|
const int in_height = s->inplaneheight[p];
|
|
const int slice_start = (height * jobnr ) / nb_jobs;
|
|
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
|
|
const int elements = s->elements;
|
|
float du, dv;
|
|
float vec[3];
|
|
XYRemap rmap;
|
|
|
|
for (int j = slice_start; j < slice_end; j++) {
|
|
for (int i = 0; i < width; i++) {
|
|
int16_t *u = r->u[p] + ((j - slice_start) * uv_linesize + i) * elements;
|
|
int16_t *v = r->v[p] + ((j - slice_start) * uv_linesize + i) * elements;
|
|
int16_t *ker = r->ker[p] + ((j - slice_start) * uv_linesize + i) * elements;
|
|
uint8_t *mask8 = p ? NULL : r->mask + ((j - slice_start) * s->pr_width[0] + i);
|
|
uint16_t *mask16 = p ? NULL : (uint16_t *)r->mask + ((j - slice_start) * s->pr_width[0] + i);
|
|
int in_mask, out_mask;
|
|
|
|
if (s->out_transpose)
|
|
out_mask = s->out_transform(s, j, i, height, width, vec);
|
|
else
|
|
out_mask = s->out_transform(s, i, j, width, height, vec);
|
|
av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2]));
|
|
rotate(s->rot_quaternion, vec);
|
|
av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2]));
|
|
normalize_vector(vec);
|
|
mirror(s->output_mirror_modifier, vec);
|
|
if (s->in_transpose)
|
|
in_mask = s->in_transform(s, vec, in_height, in_width, rmap.v, rmap.u, &du, &dv);
|
|
else
|
|
in_mask = s->in_transform(s, vec, in_width, in_height, rmap.u, rmap.v, &du, &dv);
|
|
input_flip(rmap.u, rmap.v, in_width, in_height, s->ih_flip, s->iv_flip);
|
|
av_assert1(!isnan(du) && !isnan(dv));
|
|
s->calculate_kernel(du, dv, &rmap, u, v, ker);
|
|
|
|
if (!p && r->mask) {
|
|
if (s->mask_size == 1) {
|
|
mask8[0] = 255 * (out_mask & in_mask);
|
|
} else {
|
|
mask16[0] = max_value * (out_mask & in_mask);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int config_output(AVFilterLink *outlink)
|
|
{
|
|
AVFilterContext *ctx = outlink->src;
|
|
AVFilterLink *inlink = ctx->inputs[0];
|
|
V360Context *s = ctx->priv;
|
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
|
|
const int depth = desc->comp[0].depth;
|
|
const int sizeof_mask = s->mask_size = (depth + 7) >> 3;
|
|
int sizeof_uv;
|
|
int sizeof_ker;
|
|
int err;
|
|
int h, w;
|
|
int in_offset_h, in_offset_w;
|
|
int out_offset_h, out_offset_w;
|
|
float hf, wf;
|
|
int (*prepare_out)(AVFilterContext *ctx);
|
|
int have_alpha;
|
|
|
|
s->max_value = (1 << depth) - 1;
|
|
|
|
switch (s->interp) {
|
|
case NEAREST:
|
|
s->calculate_kernel = nearest_kernel;
|
|
s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice;
|
|
s->elements = 1;
|
|
sizeof_uv = sizeof(int16_t) * s->elements;
|
|
sizeof_ker = 0;
|
|
break;
|
|
case BILINEAR:
|
|
s->calculate_kernel = bilinear_kernel;
|
|
s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice;
|
|
s->elements = 2 * 2;
|
|
sizeof_uv = sizeof(int16_t) * s->elements;
|
|
sizeof_ker = sizeof(int16_t) * s->elements;
|
|
break;
|
|
case LAGRANGE9:
|
|
s->calculate_kernel = lagrange_kernel;
|
|
s->remap_slice = depth <= 8 ? remap3_8bit_slice : remap3_16bit_slice;
|
|
s->elements = 3 * 3;
|
|
sizeof_uv = sizeof(int16_t) * s->elements;
|
|
sizeof_ker = sizeof(int16_t) * s->elements;
|
|
break;
|
|
case BICUBIC:
|
|
s->calculate_kernel = bicubic_kernel;
|
|
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
|
|
s->elements = 4 * 4;
|
|
sizeof_uv = sizeof(int16_t) * s->elements;
|
|
sizeof_ker = sizeof(int16_t) * s->elements;
|
|
break;
|
|
case LANCZOS:
|
|
s->calculate_kernel = lanczos_kernel;
|
|
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
|
|
s->elements = 4 * 4;
|
|
sizeof_uv = sizeof(int16_t) * s->elements;
|
|
sizeof_ker = sizeof(int16_t) * s->elements;
|
|
break;
|
|
case SPLINE16:
|
|
s->calculate_kernel = spline16_kernel;
|
|
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
|
|
s->elements = 4 * 4;
|
|
sizeof_uv = sizeof(int16_t) * s->elements;
|
|
sizeof_ker = sizeof(int16_t) * s->elements;
|
|
break;
|
|
case GAUSSIAN:
|
|
s->calculate_kernel = gaussian_kernel;
|
|
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
|
|
s->elements = 4 * 4;
|
|
sizeof_uv = sizeof(int16_t) * s->elements;
|
|
sizeof_ker = sizeof(int16_t) * s->elements;
|
|
break;
|
|
case MITCHELL:
|
|
s->calculate_kernel = mitchell_kernel;
|
|
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
|
|
s->elements = 4 * 4;
|
|
sizeof_uv = sizeof(int16_t) * s->elements;
|
|
sizeof_ker = sizeof(int16_t) * s->elements;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
|
|
ff_v360_init(s, depth);
|
|
|
|
for (int order = 0; order < NB_RORDERS; order++) {
|
|
const char c = s->rorder[order];
|
|
int rorder;
|
|
|
|
if (c == '\0') {
|
|
av_log(ctx, AV_LOG_WARNING,
|
|
"Incomplete rorder option. Direction for all 3 rotation orders should be specified. Switching to default rorder.\n");
|
|
s->rotation_order[0] = YAW;
|
|
s->rotation_order[1] = PITCH;
|
|
s->rotation_order[2] = ROLL;
|
|
break;
|
|
}
|
|
|
|
rorder = get_rorder(c);
|
|
if (rorder == -1) {
|
|
av_log(ctx, AV_LOG_WARNING,
|
|
"Incorrect rotation order symbol '%c' in rorder option. Switching to default rorder.\n", c);
|
|
s->rotation_order[0] = YAW;
|
|
s->rotation_order[1] = PITCH;
|
|
s->rotation_order[2] = ROLL;
|
|
break;
|
|
}
|
|
|
|
s->rotation_order[order] = rorder;
|
|
}
|
|
|
|
switch (s->in_stereo) {
|
|
case STEREO_2D:
|
|
w = inlink->w;
|
|
h = inlink->h;
|
|
in_offset_w = in_offset_h = 0;
|
|
break;
|
|
case STEREO_SBS:
|
|
w = inlink->w / 2;
|
|
h = inlink->h;
|
|
in_offset_w = w;
|
|
in_offset_h = 0;
|
|
break;
|
|
case STEREO_TB:
|
|
w = inlink->w;
|
|
h = inlink->h / 2;
|
|
in_offset_w = 0;
|
|
in_offset_h = h;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
|
|
set_dimensions(s->inplanewidth, s->inplaneheight, w, h, desc);
|
|
set_dimensions(s->in_offset_w, s->in_offset_h, in_offset_w, in_offset_h, desc);
|
|
|
|
s->in_width = s->inplanewidth[0];
|
|
s->in_height = s->inplaneheight[0];
|
|
|
|
if (s->id_fov > 0.f)
|
|
fov_from_dfov(s->in, s->id_fov, w, h, &s->ih_fov, &s->iv_fov);
|
|
|
|
if (s->in_transpose)
|
|
FFSWAP(int, s->in_width, s->in_height);
|
|
|
|
switch (s->in) {
|
|
case EQUIRECTANGULAR:
|
|
s->in_transform = xyz_to_equirect;
|
|
err = 0;
|
|
wf = w;
|
|
hf = h;
|
|
break;
|
|
case CUBEMAP_3_2:
|
|
s->in_transform = xyz_to_cube3x2;
|
|
err = prepare_cube_in(ctx);
|
|
wf = w / 3.f * 4.f;
|
|
hf = h;
|
|
break;
|
|
case CUBEMAP_1_6:
|
|
s->in_transform = xyz_to_cube1x6;
|
|
err = prepare_cube_in(ctx);
|
|
wf = w * 4.f;
|
|
hf = h / 3.f;
|
|
break;
|
|
case CUBEMAP_6_1:
|
|
s->in_transform = xyz_to_cube6x1;
|
|
err = prepare_cube_in(ctx);
|
|
wf = w / 3.f * 2.f;
|
|
hf = h * 2.f;
|
|
break;
|
|
case EQUIANGULAR:
|
|
s->in_transform = xyz_to_eac;
|
|
err = prepare_eac_in(ctx);
|
|
wf = w;
|
|
hf = h / 9.f * 8.f;
|
|
break;
|
|
case FLAT:
|
|
s->in_transform = xyz_to_flat;
|
|
err = prepare_flat_in(ctx);
|
|
wf = w;
|
|
hf = h;
|
|
break;
|
|
case PERSPECTIVE:
|
|
av_log(ctx, AV_LOG_ERROR, "Supplied format is not accepted as input.\n");
|
|
return AVERROR(EINVAL);
|
|
case DUAL_FISHEYE:
|
|
s->in_transform = xyz_to_dfisheye;
|
|
err = prepare_fisheye_in(ctx);
|
|
wf = w;
|
|
hf = h;
|
|
break;
|
|
case BARREL:
|
|
s->in_transform = xyz_to_barrel;
|
|
err = 0;
|
|
wf = w / 5.f * 4.f;
|
|
hf = h;
|
|
break;
|
|
case STEREOGRAPHIC:
|
|
s->in_transform = xyz_to_stereographic;
|
|
err = prepare_stereographic_in(ctx);
|
|
wf = w;
|
|
hf = h / 2.f;
|
|
break;
|
|
case MERCATOR:
|
|
s->in_transform = xyz_to_mercator;
|
|
err = 0;
|
|
wf = w;
|
|
hf = h / 2.f;
|
|
break;
|
|
case BALL:
|
|
s->in_transform = xyz_to_ball;
|
|
err = 0;
|
|
wf = w;
|
|
hf = h / 2.f;
|
|
break;
|
|
case HAMMER:
|
|
s->in_transform = xyz_to_hammer;
|
|
err = 0;
|
|
wf = w;
|
|
hf = h;
|
|
break;
|
|
case SINUSOIDAL:
|
|
s->in_transform = xyz_to_sinusoidal;
|
|
err = 0;
|
|
wf = w;
|
|
hf = h;
|
|
break;
|
|
case FISHEYE:
|
|
s->in_transform = xyz_to_fisheye;
|
|
err = prepare_fisheye_in(ctx);
|
|
wf = w * 2;
|
|
hf = h;
|
|
break;
|
|
case PANNINI:
|
|
s->in_transform = xyz_to_pannini;
|
|
err = 0;
|
|
wf = w;
|
|
hf = h;
|
|
break;
|
|
case CYLINDRICAL:
|
|
s->in_transform = xyz_to_cylindrical;
|
|
err = prepare_cylindrical_in(ctx);
|
|
wf = w;
|
|
hf = h * 2.f;
|
|
break;
|
|
case TETRAHEDRON:
|
|
s->in_transform = xyz_to_tetrahedron;
|
|
err = 0;
|
|
wf = w;
|
|
hf = h;
|
|
break;
|
|
case BARREL_SPLIT:
|
|
s->in_transform = xyz_to_barrelsplit;
|
|
err = 0;
|
|
wf = w * 4.f / 3.f;
|
|
hf = h;
|
|
break;
|
|
case TSPYRAMID:
|
|
s->in_transform = xyz_to_tspyramid;
|
|
err = 0;
|
|
wf = w;
|
|
hf = h;
|
|
break;
|
|
case HEQUIRECTANGULAR:
|
|
s->in_transform = xyz_to_hequirect;
|
|
err = 0;
|
|
wf = w * 2.f;
|
|
hf = h;
|
|
break;
|
|
case EQUISOLID:
|
|
s->in_transform = xyz_to_equisolid;
|
|
err = prepare_equisolid_in(ctx);
|
|
wf = w;
|
|
hf = h / 2.f;
|
|
break;
|
|
case ORTHOGRAPHIC:
|
|
s->in_transform = xyz_to_orthographic;
|
|
err = prepare_orthographic_in(ctx);
|
|
wf = w;
|
|
hf = h / 2.f;
|
|
break;
|
|
case OCTAHEDRON:
|
|
s->in_transform = xyz_to_octahedron;
|
|
err = 0;
|
|
wf = w;
|
|
hf = h / 2.f;
|
|
break;
|
|
default:
|
|
av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n");
|
|
return AVERROR_BUG;
|
|
}
|
|
|
|
if (err != 0) {
|
|
return err;
|
|
}
|
|
|
|
switch (s->out) {
|
|
case EQUIRECTANGULAR:
|
|
s->out_transform = equirect_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf);
|
|
break;
|
|
case CUBEMAP_3_2:
|
|
s->out_transform = cube3x2_to_xyz;
|
|
prepare_out = prepare_cube_out;
|
|
w = lrintf(wf / 4.f * 3.f);
|
|
h = lrintf(hf);
|
|
break;
|
|
case CUBEMAP_1_6:
|
|
s->out_transform = cube1x6_to_xyz;
|
|
prepare_out = prepare_cube_out;
|
|
w = lrintf(wf / 4.f);
|
|
h = lrintf(hf * 3.f);
|
|
break;
|
|
case CUBEMAP_6_1:
|
|
s->out_transform = cube6x1_to_xyz;
|
|
prepare_out = prepare_cube_out;
|
|
w = lrintf(wf / 2.f * 3.f);
|
|
h = lrintf(hf / 2.f);
|
|
break;
|
|
case EQUIANGULAR:
|
|
s->out_transform = eac_to_xyz;
|
|
prepare_out = prepare_eac_out;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf / 8.f * 9.f);
|
|
break;
|
|
case FLAT:
|
|
s->out_transform = flat_to_xyz;
|
|
prepare_out = prepare_flat_out;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf);
|
|
break;
|
|
case DUAL_FISHEYE:
|
|
s->out_transform = dfisheye_to_xyz;
|
|
prepare_out = prepare_fisheye_out;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf);
|
|
break;
|
|
case BARREL:
|
|
s->out_transform = barrel_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf / 4.f * 5.f);
|
|
h = lrintf(hf);
|
|
break;
|
|
case STEREOGRAPHIC:
|
|
s->out_transform = stereographic_to_xyz;
|
|
prepare_out = prepare_stereographic_out;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf * 2.f);
|
|
break;
|
|
case MERCATOR:
|
|
s->out_transform = mercator_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf * 2.f);
|
|
break;
|
|
case BALL:
|
|
s->out_transform = ball_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf * 2.f);
|
|
break;
|
|
case HAMMER:
|
|
s->out_transform = hammer_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf);
|
|
break;
|
|
case SINUSOIDAL:
|
|
s->out_transform = sinusoidal_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf);
|
|
break;
|
|
case FISHEYE:
|
|
s->out_transform = fisheye_to_xyz;
|
|
prepare_out = prepare_fisheye_out;
|
|
w = lrintf(wf * 0.5f);
|
|
h = lrintf(hf);
|
|
break;
|
|
case PANNINI:
|
|
s->out_transform = pannini_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf);
|
|
break;
|
|
case CYLINDRICAL:
|
|
s->out_transform = cylindrical_to_xyz;
|
|
prepare_out = prepare_cylindrical_out;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf * 0.5f);
|
|
break;
|
|
case PERSPECTIVE:
|
|
s->out_transform = perspective_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf / 2.f);
|
|
h = lrintf(hf);
|
|
break;
|
|
case TETRAHEDRON:
|
|
s->out_transform = tetrahedron_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf);
|
|
break;
|
|
case BARREL_SPLIT:
|
|
s->out_transform = barrelsplit_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf / 4.f * 3.f);
|
|
h = lrintf(hf);
|
|
break;
|
|
case TSPYRAMID:
|
|
s->out_transform = tspyramid_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf);
|
|
break;
|
|
case HEQUIRECTANGULAR:
|
|
s->out_transform = hequirect_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf / 2.f);
|
|
h = lrintf(hf);
|
|
break;
|
|
case EQUISOLID:
|
|
s->out_transform = equisolid_to_xyz;
|
|
prepare_out = prepare_equisolid_out;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf * 2.f);
|
|
break;
|
|
case ORTHOGRAPHIC:
|
|
s->out_transform = orthographic_to_xyz;
|
|
prepare_out = prepare_orthographic_out;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf * 2.f);
|
|
break;
|
|
case OCTAHEDRON:
|
|
s->out_transform = octahedron_to_xyz;
|
|
prepare_out = NULL;
|
|
w = lrintf(wf);
|
|
h = lrintf(hf * 2.f);
|
|
break;
|
|
default:
|
|
av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n");
|
|
return AVERROR_BUG;
|
|
}
|
|
|
|
// Override resolution with user values if specified
|
|
if (s->width > 0 && s->height <= 0 && s->h_fov > 0.f && s->v_fov > 0.f &&
|
|
s->out == FLAT && s->d_fov == 0.f) {
|
|
w = s->width;
|
|
h = w / tanf(s->h_fov * M_PI / 360.f) * tanf(s->v_fov * M_PI / 360.f);
|
|
} else if (s->width <= 0 && s->height > 0 && s->h_fov > 0.f && s->v_fov > 0.f &&
|
|
s->out == FLAT && s->d_fov == 0.f) {
|
|
h = s->height;
|
|
w = h / tanf(s->v_fov * M_PI / 360.f) * tanf(s->h_fov * M_PI / 360.f);
|
|
} else if (s->width > 0 && s->height > 0) {
|
|
w = s->width;
|
|
h = s->height;
|
|
} else if (s->width > 0 || s->height > 0) {
|
|
av_log(ctx, AV_LOG_ERROR, "Both width and height values should be specified.\n");
|
|
return AVERROR(EINVAL);
|
|
} else {
|
|
if (s->out_transpose)
|
|
FFSWAP(int, w, h);
|
|
|
|
if (s->in_transpose)
|
|
FFSWAP(int, w, h);
|
|
}
|
|
|
|
s->width = w;
|
|
s->height = h;
|
|
|
|
if (s->d_fov > 0.f)
|
|
fov_from_dfov(s->out, s->d_fov, w, h, &s->h_fov, &s->v_fov);
|
|
|
|
if (prepare_out) {
|
|
err = prepare_out(ctx);
|
|
if (err != 0)
|
|
return err;
|
|
}
|
|
|
|
set_dimensions(s->pr_width, s->pr_height, w, h, desc);
|
|
|
|
switch (s->out_stereo) {
|
|
case STEREO_2D:
|
|
out_offset_w = out_offset_h = 0;
|
|
break;
|
|
case STEREO_SBS:
|
|
out_offset_w = w;
|
|
out_offset_h = 0;
|
|
w *= 2;
|
|
break;
|
|
case STEREO_TB:
|
|
out_offset_w = 0;
|
|
out_offset_h = h;
|
|
h *= 2;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
|
|
set_dimensions(s->out_offset_w, s->out_offset_h, out_offset_w, out_offset_h, desc);
|
|
set_dimensions(s->planewidth, s->planeheight, w, h, desc);
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
s->uv_linesize[i] = FFALIGN(s->pr_width[i], 8);
|
|
|
|
outlink->h = h;
|
|
outlink->w = w;
|
|
|
|
s->nb_threads = FFMIN(outlink->h, ff_filter_get_nb_threads(ctx));
|
|
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
|
|
have_alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
|
|
|
|
if (desc->log2_chroma_h == desc->log2_chroma_w && desc->log2_chroma_h == 0) {
|
|
s->nb_allocated = 1;
|
|
s->map[0] = s->map[1] = s->map[2] = s->map[3] = 0;
|
|
} else {
|
|
s->nb_allocated = 2;
|
|
s->map[0] = s->map[3] = 0;
|
|
s->map[1] = s->map[2] = 1;
|
|
}
|
|
|
|
if (!s->slice_remap)
|
|
s->slice_remap = av_calloc(s->nb_threads, sizeof(*s->slice_remap));
|
|
if (!s->slice_remap)
|
|
return AVERROR(ENOMEM);
|
|
|
|
for (int i = 0; i < s->nb_allocated; i++) {
|
|
err = allocate_plane(s, sizeof_uv, sizeof_ker, sizeof_mask * have_alpha * s->alpha, i);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
|
|
calculate_rotation(s->yaw, s->pitch, s->roll,
|
|
s->rot_quaternion, s->rotation_order);
|
|
|
|
set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, s->output_mirror_modifier);
|
|
|
|
ctx->internal->execute(ctx, v360_slice, NULL, NULL, s->nb_threads);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
|
{
|
|
AVFilterContext *ctx = inlink->dst;
|
|
AVFilterLink *outlink = ctx->outputs[0];
|
|
V360Context *s = ctx->priv;
|
|
AVFrame *out;
|
|
ThreadData td;
|
|
|
|
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
|
if (!out) {
|
|
av_frame_free(&in);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
av_frame_copy_props(out, in);
|
|
|
|
td.in = in;
|
|
td.out = out;
|
|
|
|
ctx->internal->execute(ctx, s->remap_slice, &td, NULL, s->nb_threads);
|
|
|
|
av_frame_free(&in);
|
|
return ff_filter_frame(outlink, out);
|
|
}
|
|
|
|
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
|
|
char *res, int res_len, int flags)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
int ret;
|
|
|
|
s->yaw = s->pitch = s->roll = 0.f;
|
|
|
|
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return config_output(ctx->outputs[0]);
|
|
}
|
|
|
|
static av_cold int init(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
s->rot_quaternion[0][0] = 1.f;
|
|
s->rot_quaternion[0][1] = s->rot_quaternion[0][2] = s->rot_quaternion[0][3] = 0.f;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold void uninit(AVFilterContext *ctx)
|
|
{
|
|
V360Context *s = ctx->priv;
|
|
|
|
for (int n = 0; n < s->nb_threads && s->slice_remap; n++) {
|
|
SliceXYRemap *r = &s->slice_remap[n];
|
|
|
|
for (int p = 0; p < s->nb_allocated; p++) {
|
|
av_freep(&r->u[p]);
|
|
av_freep(&r->v[p]);
|
|
av_freep(&r->ker[p]);
|
|
}
|
|
|
|
av_freep(&r->mask);
|
|
}
|
|
|
|
av_freep(&s->slice_remap);
|
|
}
|
|
|
|
static const AVFilterPad inputs[] = {
|
|
{
|
|
.name = "default",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.filter_frame = filter_frame,
|
|
},
|
|
{ NULL }
|
|
};
|
|
|
|
static const AVFilterPad outputs[] = {
|
|
{
|
|
.name = "default",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.config_props = config_output,
|
|
},
|
|
{ NULL }
|
|
};
|
|
|
|
AVFilter ff_vf_v360 = {
|
|
.name = "v360",
|
|
.description = NULL_IF_CONFIG_SMALL("Convert 360 projection of video."),
|
|
.priv_size = sizeof(V360Context),
|
|
.init = init,
|
|
.uninit = uninit,
|
|
.query_formats = query_formats,
|
|
.inputs = inputs,
|
|
.outputs = outputs,
|
|
.priv_class = &v360_class,
|
|
.flags = AVFILTER_FLAG_SLICE_THREADS,
|
|
.process_command = process_command,
|
|
};
|