FFmpeg/libavcodec/svq3.c
Diego Biurrun bad5537e2c Use full internal pathname in doxygen @file directives.
Otherwise doxygen complains about ambiguous filenames when files exist
under the same name in different subdirectories.

Originally committed as revision 16912 to svn://svn.ffmpeg.org/ffmpeg/trunk
2009-02-01 02:00:19 +00:00

1054 lines
37 KiB
C

/*
* Copyright (c) 2003 The FFmpeg Project
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* How to use this decoder:
* SVQ3 data is transported within Apple Quicktime files. Quicktime files
* have stsd atoms to describe media trak properties. A stsd atom for a
* video trak contains 1 or more ImageDescription atoms. These atoms begin
* with the 4-byte length of the atom followed by the codec fourcc. Some
* decoders need information in this atom to operate correctly. Such
* is the case with SVQ3. In order to get the best use out of this decoder,
* the calling app must make the SVQ3 ImageDescription atom available
* via the AVCodecContext's extradata[_size] field:
*
* AVCodecContext.extradata = pointer to ImageDescription, first characters
* are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
* AVCodecContext.extradata_size = size of ImageDescription atom memory
* buffer (which will be the same as the ImageDescription atom size field
* from the QT file, minus 4 bytes since the length is missing)
*
* You will know you have these parameters passed correctly when the decoder
* correctly decodes this file:
* http://samples.mplayerhq.hu/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
*/
#if CONFIG_ZLIB
#include <zlib.h>
#endif
#include "svq1.h"
/**
* @file libavcodec/svq3.c
* svq3 decoder.
*/
#define FULLPEL_MODE 1
#define HALFPEL_MODE 2
#define THIRDPEL_MODE 3
#define PREDICT_MODE 4
/* dual scan (from some older h264 draft)
o-->o-->o o
| /|
o o o / o
| / | |/ |
o o o o
/
o-->o-->o-->o
*/
static const uint8_t svq3_scan[16] = {
0+0*4, 1+0*4, 2+0*4, 2+1*4,
2+2*4, 3+0*4, 3+1*4, 3+2*4,
0+1*4, 0+2*4, 1+1*4, 1+2*4,
0+3*4, 1+3*4, 2+3*4, 3+3*4,
};
static const uint8_t svq3_pred_0[25][2] = {
{ 0, 0 },
{ 1, 0 }, { 0, 1 },
{ 0, 2 }, { 1, 1 }, { 2, 0 },
{ 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
{ 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
{ 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
{ 2, 4 }, { 3, 3 }, { 4, 2 },
{ 4, 3 }, { 3, 4 },
{ 4, 4 }
};
static const int8_t svq3_pred_1[6][6][5] = {
{ { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
{ 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
{ { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
{ 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
{ { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
{ 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
{ { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
{ 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
{ { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
{ 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
{ { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
{ 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
};
static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
{ { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
{ 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
{ { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
{ 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
};
static const uint32_t svq3_dequant_coeff[32] = {
3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
61694, 68745, 77615, 89113,100253,109366,126635,141533
};
static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp)
{
const int qmul = svq3_dequant_coeff[qp];
#define stride 16
int i;
int temp[16];
static const int x_offset[4] = {0, 1*stride, 4* stride, 5*stride};
static const int y_offset[4] = {0, 2*stride, 8* stride, 10*stride};
for (i = 0; i < 4; i++){
const int offset = y_offset[i];
const int z0 = 13*(block[offset+stride*0] + block[offset+stride*4]);
const int z1 = 13*(block[offset+stride*0] - block[offset+stride*4]);
const int z2 = 7* block[offset+stride*1] - 17*block[offset+stride*5];
const int z3 = 17* block[offset+stride*1] + 7*block[offset+stride*5];
temp[4*i+0] = z0+z3;
temp[4*i+1] = z1+z2;
temp[4*i+2] = z1-z2;
temp[4*i+3] = z0-z3;
}
for (i = 0; i < 4; i++){
const int offset = x_offset[i];
const int z0 = 13*(temp[4*0+i] + temp[4*2+i]);
const int z1 = 13*(temp[4*0+i] - temp[4*2+i]);
const int z2 = 7* temp[4*1+i] - 17*temp[4*3+i];
const int z3 = 17* temp[4*1+i] + 7*temp[4*3+i];
block[stride*0 +offset] = ((z0 + z3)*qmul + 0x80000) >> 20;
block[stride*2 +offset] = ((z1 + z2)*qmul + 0x80000) >> 20;
block[stride*8 +offset] = ((z1 - z2)*qmul + 0x80000) >> 20;
block[stride*10+offset] = ((z0 - z3)*qmul + 0x80000) >> 20;
}
}
#undef stride
static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp,
int dc)
{
const int qmul = svq3_dequant_coeff[qp];
int i;
uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
if (dc) {
dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
block[0] = 0;
}
for (i = 0; i < 4; i++) {
const int z0 = 13*(block[0 + 4*i] + block[2 + 4*i]);
const int z1 = 13*(block[0 + 4*i] - block[2 + 4*i]);
const int z2 = 7* block[1 + 4*i] - 17*block[3 + 4*i];
const int z3 = 17* block[1 + 4*i] + 7*block[3 + 4*i];
block[0 + 4*i] = z0 + z3;
block[1 + 4*i] = z1 + z2;
block[2 + 4*i] = z1 - z2;
block[3 + 4*i] = z0 - z3;
}
for (i = 0; i < 4; i++) {
const int z0 = 13*(block[i + 4*0] + block[i + 4*2]);
const int z1 = 13*(block[i + 4*0] - block[i + 4*2]);
const int z2 = 7* block[i + 4*1] - 17*block[i + 4*3];
const int z3 = 17* block[i + 4*1] + 7*block[i + 4*3];
const int rr = (dc + 0x80000);
dst[i + stride*0] = cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
dst[i + stride*1] = cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
dst[i + stride*2] = cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
dst[i + stride*3] = cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
}
}
static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block,
int index, const int type)
{
static const uint8_t *const scan_patterns[4] =
{ luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
int run, level, sign, vlc, limit;
const int intra = (3 * type) >> 2;
const uint8_t *const scan = scan_patterns[type];
for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
if (vlc == INVALID_VLC)
return -1;
sign = (vlc & 0x1) - 1;
vlc = (vlc + 1) >> 1;
if (type == 3) {
if (vlc < 3) {
run = 0;
level = vlc;
} else if (vlc < 4) {
run = 1;
level = 1;
} else {
run = (vlc & 0x3);
level = ((vlc + 9) >> 2) - run;
}
} else {
if (vlc < 16) {
run = svq3_dct_tables[intra][vlc].run;
level = svq3_dct_tables[intra][vlc].level;
} else if (intra) {
run = (vlc & 0x7);
level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
} else {
run = (vlc & 0xF);
level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
}
}
if ((index += run) >= limit)
return -1;
block[scan[index]] = (level ^ sign) - sign;
}
if (type != 2) {
break;
}
}
return 0;
}
static inline void svq3_mc_dir_part(MpegEncContext *s,
int x, int y, int width, int height,
int mx, int my, int dxy,
int thirdpel, int dir, int avg)
{
const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
uint8_t *src, *dest;
int i, emu = 0;
int blocksize = 2 - (width>>3); //16->0, 8->1, 4->2
mx += x;
my += y;
if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
my < 0 || my >= (s->v_edge_pos - height - 1)) {
if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
emu = 1;
}
mx = av_clip (mx, -16, (s->h_edge_pos - width + 15));
my = av_clip (my, -16, (s->v_edge_pos - height + 15));
}
/* form component predictions */
dest = s->current_picture.data[0] + x + y*s->linesize;
src = pic->data[0] + mx + my*s->linesize;
if (emu) {
ff_emulated_edge_mc(s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
mx, my, s->h_edge_pos, s->v_edge_pos);
src = s->edge_emu_buffer;
}
if (thirdpel)
(avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
else
(avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
if (!(s->flags & CODEC_FLAG_GRAY)) {
mx = (mx + (mx < (int) x)) >> 1;
my = (my + (my < (int) y)) >> 1;
width = (width >> 1);
height = (height >> 1);
blocksize++;
for (i = 1; i < 3; i++) {
dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;
src = pic->data[i] + mx + my*s->uvlinesize;
if (emu) {
ff_emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
src = s->edge_emu_buffer;
}
if (thirdpel)
(avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
else
(avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
}
}
}
static inline int svq3_mc_dir(H264Context *h, int size, int mode, int dir,
int avg)
{
int i, j, k, mx, my, dx, dy, x, y;
MpegEncContext *const s = (MpegEncContext *) h;
const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
const int part_height = 16 >> ((unsigned) (size + 1) / 3);
const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;
const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width;
const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width;
for (i = 0; i < 16; i += part_height) {
for (j = 0; j < 16; j += part_width) {
const int b_xy = (4*s->mb_x + (j >> 2)) + (4*s->mb_y + (i >> 2))*h->b_stride;
int dxy;
x = 16*s->mb_x + j;
y = 16*s->mb_y + i;
k = ((j >> 2) & 1) + ((i >> 1) & 2) + ((j >> 1) & 4) + (i & 8);
if (mode != PREDICT_MODE) {
pred_motion(h, k, (part_width >> 2), dir, 1, &mx, &my);
} else {
mx = s->next_picture.motion_val[0][b_xy][0]<<1;
my = s->next_picture.motion_val[0][b_xy][1]<<1;
if (dir == 0) {
mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
} else {
mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
}
}
/* clip motion vector prediction to frame border */
mx = av_clip(mx, extra_width - 6*x, h_edge_pos - 6*x);
my = av_clip(my, extra_width - 6*y, v_edge_pos - 6*y);
/* get (optional) motion vector differential */
if (mode == PREDICT_MODE) {
dx = dy = 0;
} else {
dy = svq3_get_se_golomb(&s->gb);
dx = svq3_get_se_golomb(&s->gb);
if (dx == INVALID_VLC || dy == INVALID_VLC) {
av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
return -1;
}
}
/* compute motion vector */
if (mode == THIRDPEL_MODE) {
int fx, fy;
mx = ((mx + 1)>>1) + dx;
my = ((my + 1)>>1) + dy;
fx = ((unsigned)(mx + 0x3000))/3 - 0x1000;
fy = ((unsigned)(my + 0x3000))/3 - 0x1000;
dxy = (mx - 3*fx) + 4*(my - 3*fy);
svq3_mc_dir_part(s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
mx += mx;
my += my;
} else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
dxy = (mx&1) + 2*(my&1);
svq3_mc_dir_part(s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
mx *= 3;
my *= 3;
} else {
mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
svq3_mc_dir_part(s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
mx *= 6;
my *= 6;
}
/* update mv_cache */
if (mode != PREDICT_MODE) {
int32_t mv = pack16to32(mx,my);
if (part_height == 8 && i < 8) {
*(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;
if (part_width == 8 && j < 8) {
*(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;
}
}
if (part_width == 8 && j < 8) {
*(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;
}
if (part_width == 4 || part_height == 4) {
*(int32_t *) h->mv_cache[dir][scan8[k]] = mv;
}
}
/* write back motion vectors */
fill_rectangle(s->current_picture.motion_val[dir][b_xy], part_width>>2, part_height>>2, h->b_stride, pack16to32(mx,my), 4);
}
}
return 0;
}
static int svq3_decode_mb(H264Context *h, unsigned int mb_type)
{
int i, j, k, m, dir, mode;
int cbp = 0;
uint32_t vlc;
int8_t *top, *left;
MpegEncContext *const s = (MpegEncContext *) h;
const int mb_xy = h->mb_xy;
const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
h->topright_samples_available = 0xFFFF;
if (mb_type == 0) { /* SKIP */
if (s->pict_type == FF_P_TYPE || s->next_picture.mb_type[mb_xy] == -1) {
svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
if (s->pict_type == FF_B_TYPE) {
svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);
}
mb_type = MB_TYPE_SKIP;
} else {
mb_type = FFMIN(s->next_picture.mb_type[mb_xy], 6);
if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0)
return -1;
if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0)
return -1;
mb_type = MB_TYPE_16x16;
}
} else if (mb_type < 8) { /* INTER */
if (h->thirdpel_flag && h->halfpel_flag == !get_bits1 (&s->gb)) {
mode = THIRDPEL_MODE;
} else if (h->halfpel_flag && h->thirdpel_flag == !get_bits1 (&s->gb)) {
mode = HALFPEL_MODE;
} else {
mode = FULLPEL_MODE;
}
/* fill caches */
/* note ref_cache should contain here:
????????
???11111
N??11111
N??11111
N??11111
*/
for (m = 0; m < 2; m++) {
if (s->mb_x > 0 && h->intra4x4_pred_mode[mb_xy - 1][0] != -1) {
for (i = 0; i < 4; i++) {
*(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - 1 + i*h->b_stride];
}
} else {
for (i = 0; i < 4; i++) {
*(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
}
}
if (s->mb_y > 0) {
memcpy(h->mv_cache[m][scan8[0] - 1*8], s->current_picture.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
memset(&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1, 4);
if (s->mb_x < (s->mb_width - 1)) {
*(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride + 4];
h->ref_cache[m][scan8[0] + 4 - 1*8] =
(h->intra4x4_pred_mode[mb_xy - s->mb_stride + 1][0] == -1 ||
h->intra4x4_pred_mode[mb_xy - s->mb_stride ][4] == -1) ? PART_NOT_AVAILABLE : 1;
}else
h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
if (s->mb_x > 0) {
*(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride - 1];
h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] == -1) ? PART_NOT_AVAILABLE : 1;
}else
h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
}else
memset(&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
if (s->pict_type != FF_B_TYPE)
break;
}
/* decode motion vector(s) and form prediction(s) */
if (s->pict_type == FF_P_TYPE) {
if (svq3_mc_dir(h, (mb_type - 1), mode, 0, 0) < 0)
return -1;
} else { /* FF_B_TYPE */
if (mb_type != 2) {
if (svq3_mc_dir(h, 0, mode, 0, 0) < 0)
return -1;
} else {
for (i = 0; i < 4; i++) {
memset(s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
}
}
if (mb_type != 1) {
if (svq3_mc_dir(h, 0, mode, 1, (mb_type == 3)) < 0)
return -1;
} else {
for (i = 0; i < 4; i++) {
memset(s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
}
}
}
mb_type = MB_TYPE_16x16;
} else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
memset(h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
if (mb_type == 8) {
if (s->mb_x > 0) {
for (i = 0; i < 4; i++) {
h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[mb_xy - 1][i];
}
if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
h->left_samples_available = 0x5F5F;
}
}
if (s->mb_y > 0) {
h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][4];
h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][5];
h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][6];
h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][3];
if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
h->top_samples_available = 0x33FF;
}
}
/* decode prediction codes for luma blocks */
for (i = 0; i < 16; i+=2) {
vlc = svq3_get_ue_golomb(&s->gb);
if (vlc >= 25){
av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
return -1;
}
left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
if (left[1] == -1 || left[2] == -1){
av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
return -1;
}
}
} else { /* mb_type == 33, DC_128_PRED block type */
for (i = 0; i < 4; i++) {
memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
}
}
write_back_intra_pred_mode(h);
if (mb_type == 8) {
check_intra4x4_pred_mode(h);
h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
} else {
for (i = 0; i < 4; i++) {
memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
}
h->top_samples_available = 0x33FF;
h->left_samples_available = 0x5F5F;
}
mb_type = MB_TYPE_INTRA4x4;
} else { /* INTRA16x16 */
dir = i_mb_type_info[mb_type - 8].pred_mode;
dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
if ((h->intra16x16_pred_mode = check_intra_pred_mode(h, dir)) == -1){
av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
return -1;
}
cbp = i_mb_type_info[mb_type - 8].cbp;
mb_type = MB_TYPE_INTRA16x16;
}
if (!IS_INTER(mb_type) && s->pict_type != FF_I_TYPE) {
for (i = 0; i < 4; i++) {
memset(s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
}
if (s->pict_type == FF_B_TYPE) {
for (i = 0; i < 4; i++) {
memset(s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
}
}
}
if (!IS_INTRA4x4(mb_type)) {
memset(h->intra4x4_pred_mode[mb_xy], DC_PRED, 8);
}
if (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE) {
memset(h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t));
s->dsp.clear_blocks(h->mb);
}
if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE)) {
if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48){
av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
return -1;
}
cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc];
}
if (IS_INTRA16x16(mb_type) || (s->pict_type != FF_I_TYPE && s->adaptive_quant && cbp)) {
s->qscale += svq3_get_se_golomb(&s->gb);
if (s->qscale > 31){
av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
return -1;
}
}
if (IS_INTRA16x16(mb_type)) {
if (svq3_decode_block(&s->gb, h->mb, 0, 0)){
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n");
return -1;
}
}
if (cbp) {
const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
for (i = 0; i < 4; i++) {
if ((cbp & (1 << i))) {
for (j = 0; j < 4; j++) {
k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
h->non_zero_count_cache[ scan8[k] ] = 1;
if (svq3_decode_block(&s->gb, &h->mb[16*k], index, type)){
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n");
return -1;
}
}
}
}
if ((cbp & 0x30)) {
for (i = 0; i < 2; ++i) {
if (svq3_decode_block(&s->gb, &h->mb[16*(16 + 4*i)], 0, 3)){
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n");
return -1;
}
}
if ((cbp & 0x20)) {
for (i = 0; i < 8; i++) {
h->non_zero_count_cache[ scan8[16+i] ] = 1;
if (svq3_decode_block(&s->gb, &h->mb[16*(16 + i)], 1, 1)){
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n");
return -1;
}
}
}
}
}
h->cbp= cbp;
s->current_picture.mb_type[mb_xy] = mb_type;
if (IS_INTRA(mb_type)) {
h->chroma_pred_mode = check_intra_pred_mode(h, DC_PRED8x8);
}
return 0;
}
static int svq3_decode_slice_header(H264Context *h)
{
MpegEncContext *const s = (MpegEncContext *) h;
const int mb_xy = h->mb_xy;
int i, header;
header = get_bits(&s->gb, 8);
if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
/* TODO: what? */
av_log(h->s.avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
return -1;
} else {
int length = (header >> 5) & 3;
h->next_slice_index = get_bits_count(&s->gb) + 8*show_bits(&s->gb, 8*length) + 8*length;
if (h->next_slice_index > s->gb.size_in_bits) {
av_log(h->s.avctx, AV_LOG_ERROR, "slice after bitstream end\n");
return -1;
}
s->gb.size_in_bits = h->next_slice_index - 8*(length - 1);
skip_bits(&s->gb, 8);
if (h->svq3_watermark_key) {
uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1]);
AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1], header ^ h->svq3_watermark_key);
}
if (length > 0) {
memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
&s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
}
}
if ((i = svq3_get_ue_golomb(&s->gb)) == INVALID_VLC || i >= 3){
av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
return -1;
}
h->slice_type = golomb_to_pict_type[i];
if ((header & 0x9F) == 2) {
i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
s->mb_skip_run = get_bits(&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
} else {
skip_bits1(&s->gb);
s->mb_skip_run = 0;
}
h->slice_num = get_bits(&s->gb, 8);
s->qscale = get_bits(&s->gb, 5);
s->adaptive_quant = get_bits1(&s->gb);
/* unknown fields */
skip_bits1(&s->gb);
if (h->unknown_svq3_flag) {
skip_bits1(&s->gb);
}
skip_bits1(&s->gb);
skip_bits(&s->gb, 2);
while (get_bits1(&s->gb)) {
skip_bits(&s->gb, 8);
}
/* reset intra predictors and invalidate motion vector references */
if (s->mb_x > 0) {
memset(h->intra4x4_pred_mode[mb_xy - 1], -1, 4*sizeof(int8_t));
memset(h->intra4x4_pred_mode[mb_xy - s->mb_x], -1, 8*sizeof(int8_t)*s->mb_x);
}
if (s->mb_y > 0) {
memset(h->intra4x4_pred_mode[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
if (s->mb_x > 0) {
h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] = -1;
}
}
return 0;
}
static int svq3_decode_init(AVCodecContext *avctx)
{
MpegEncContext *const s = avctx->priv_data;
H264Context *const h = avctx->priv_data;
int m;
unsigned char *extradata;
unsigned int size;
if (decode_init(avctx) < 0)
return -1;
s->flags = avctx->flags;
s->flags2 = avctx->flags2;
s->unrestricted_mv = 1;
h->is_complex=1;
if (!s->context_initialized) {
s->width = avctx->width;
s->height = avctx->height;
h->halfpel_flag = 1;
h->thirdpel_flag = 1;
h->unknown_svq3_flag = 0;
h->chroma_qp[0] = h->chroma_qp[1] = 4;
if (MPV_common_init(s) < 0)
return -1;
h->b_stride = 4*s->mb_width;
alloc_tables(h);
/* prowl for the "SEQH" marker in the extradata */
extradata = (unsigned char *)avctx->extradata;
for (m = 0; m < avctx->extradata_size; m++) {
if (!memcmp(extradata, "SEQH", 4))
break;
extradata++;
}
/* if a match was found, parse the extra data */
if (extradata && !memcmp(extradata, "SEQH", 4)) {
GetBitContext gb;
size = AV_RB32(&extradata[4]);
init_get_bits(&gb, extradata + 8, size*8);
/* 'frame size code' and optional 'width, height' */
if (get_bits(&gb, 3) == 7) {
skip_bits(&gb, 12);
skip_bits(&gb, 12);
}
h->halfpel_flag = get_bits1(&gb);
h->thirdpel_flag = get_bits1(&gb);
/* unknown fields */
skip_bits1(&gb);
skip_bits1(&gb);
skip_bits1(&gb);
skip_bits1(&gb);
s->low_delay = get_bits1(&gb);
/* unknown field */
skip_bits1(&gb);
while (get_bits1(&gb)) {
skip_bits(&gb, 8);
}
h->unknown_svq3_flag = get_bits1(&gb);
avctx->has_b_frames = !s->low_delay;
if (h->unknown_svq3_flag) {
#if CONFIG_ZLIB
unsigned watermark_width = svq3_get_ue_golomb(&gb);
unsigned watermark_height = svq3_get_ue_golomb(&gb);
int u1 = svq3_get_ue_golomb(&gb);
int u2 = get_bits(&gb, 8);
int u3 = get_bits(&gb, 2);
int u4 = svq3_get_ue_golomb(&gb);
unsigned buf_len = watermark_width*watermark_height*4;
int offset = (get_bits_count(&gb)+7)>>3;
uint8_t *buf;
if ((uint64_t)watermark_width*4 > UINT_MAX/watermark_height)
return -1;
buf = av_malloc(buf_len);
av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n", watermark_width, watermark_height);
av_log(avctx, AV_LOG_DEBUG, "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n", u1, u2, u3, u4, offset);
if (uncompress(buf, (uLong*)&buf_len, extradata + 8 + offset, size - offset) != Z_OK) {
av_log(avctx, AV_LOG_ERROR, "could not uncompress watermark logo\n");
av_free(buf);
return -1;
}
h->svq3_watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
h->svq3_watermark_key = h->svq3_watermark_key << 16 | h->svq3_watermark_key;
av_log(avctx, AV_LOG_DEBUG, "watermark key %#x\n", h->svq3_watermark_key);
av_free(buf);
#else
av_log(avctx, AV_LOG_ERROR, "this svq3 file contains watermark which need zlib support compiled in\n");
return -1;
#endif
}
}
}
return 0;
}
static int svq3_decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
const uint8_t *buf, int buf_size)
{
MpegEncContext *const s = avctx->priv_data;
H264Context *const h = avctx->priv_data;
int m, mb_type;
/* special case for last picture */
if (buf_size == 0) {
if (s->next_picture_ptr && !s->low_delay) {
*(AVFrame *) data = *(AVFrame *) &s->next_picture;
s->next_picture_ptr = NULL;
*data_size = sizeof(AVFrame);
}
return 0;
}
init_get_bits (&s->gb, buf, 8*buf_size);
s->mb_x = s->mb_y = h->mb_xy = 0;
if (svq3_decode_slice_header(h))
return -1;
s->pict_type = h->slice_type;
s->picture_number = h->slice_num;
if (avctx->debug&FF_DEBUG_PICT_INFO){
av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
av_get_pict_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag,
s->adaptive_quant, s->qscale, h->slice_num);
}
/* for hurry_up == 5 */
s->current_picture.pict_type = s->pict_type;
s->current_picture.key_frame = (s->pict_type == FF_I_TYPE);
/* Skip B-frames if we do not have reference frames. */
if (s->last_picture_ptr == NULL && s->pict_type == FF_B_TYPE)
return 0;
/* Skip B-frames if we are in a hurry. */
if (avctx->hurry_up && s->pict_type == FF_B_TYPE)
return 0;
/* Skip everything if we are in a hurry >= 5. */
if (avctx->hurry_up >= 5)
return 0;
if ( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == FF_B_TYPE)
||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != FF_I_TYPE)
|| avctx->skip_frame >= AVDISCARD_ALL)
return 0;
if (s->next_p_frame_damaged) {
if (s->pict_type == FF_B_TYPE)
return 0;
else
s->next_p_frame_damaged = 0;
}
if (frame_start(h) < 0)
return -1;
if (s->pict_type == FF_B_TYPE) {
h->frame_num_offset = (h->slice_num - h->prev_frame_num);
if (h->frame_num_offset < 0) {
h->frame_num_offset += 256;
}
if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
return -1;
}
} else {
h->prev_frame_num = h->frame_num;
h->frame_num = h->slice_num;
h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
if (h->prev_frame_num_offset < 0) {
h->prev_frame_num_offset += 256;
}
}
for (m = 0; m < 2; m++){
int i;
for (i = 0; i < 4; i++){
int j;
for (j = -1; j < 4; j++)
h->ref_cache[m][scan8[0] + 8*i + j]= 1;
if (i < 3)
h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
}
}
for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
((get_bits_count(&s->gb) & 7) == 0 || show_bits(&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) {
skip_bits(&s->gb, h->next_slice_index - get_bits_count(&s->gb));
s->gb.size_in_bits = 8*buf_size;
if (svq3_decode_slice_header(h))
return -1;
/* TODO: support s->mb_skip_run */
}
mb_type = svq3_get_ue_golomb(&s->gb);
if (s->pict_type == FF_I_TYPE) {
mb_type += 8;
} else if (s->pict_type == FF_B_TYPE && mb_type >= 4) {
mb_type += 4;
}
if (mb_type > 33 || svq3_decode_mb(h, mb_type)) {
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
return -1;
}
if (mb_type != 0) {
hl_decode_mb (h);
}
if (s->pict_type != FF_B_TYPE && !s->low_delay) {
s->current_picture.mb_type[s->mb_x + s->mb_y*s->mb_stride] =
(s->pict_type == FF_P_TYPE && mb_type < 8) ? (mb_type - 1) : -1;
}
}
ff_draw_horiz_band(s, 16*s->mb_y, 16);
}
MPV_frame_end(s);
if (s->pict_type == FF_B_TYPE || s->low_delay) {
*(AVFrame *) data = *(AVFrame *) &s->current_picture;
} else {
*(AVFrame *) data = *(AVFrame *) &s->last_picture;
}
avctx->frame_number = s->picture_number - 1;
/* Do not output the last pic after seeking. */
if (s->last_picture_ptr || s->low_delay) {
*data_size = sizeof(AVFrame);
}
return buf_size;
}
AVCodec svq3_decoder = {
"svq3",
CODEC_TYPE_VIDEO,
CODEC_ID_SVQ3,
sizeof(H264Context),
svq3_decode_init,
NULL,
decode_end,
svq3_decode_frame,
CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY,
.long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3"),
};