mirror of
https://github.com/xenia-project/FFmpeg.git
synced 2024-11-28 14:01:27 +00:00
0ac8ff618c
Fixes the corner case in which the internal buffer size is larger than input buffer provided and resizing it before moving the left over samples would make it write to now unallocated memory. Bug-Id: 825 CC: libav-stable@libav.org Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
506 lines
17 KiB
C
506 lines
17 KiB
C
/*
|
|
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
|
|
* Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/libm.h"
|
|
#include "libavutil/log.h"
|
|
#include "internal.h"
|
|
#include "resample.h"
|
|
#include "audio_data.h"
|
|
|
|
|
|
/* double template */
|
|
#define CONFIG_RESAMPLE_DBL
|
|
#include "resample_template.c"
|
|
#undef CONFIG_RESAMPLE_DBL
|
|
|
|
/* float template */
|
|
#define CONFIG_RESAMPLE_FLT
|
|
#include "resample_template.c"
|
|
#undef CONFIG_RESAMPLE_FLT
|
|
|
|
/* s32 template */
|
|
#define CONFIG_RESAMPLE_S32
|
|
#include "resample_template.c"
|
|
#undef CONFIG_RESAMPLE_S32
|
|
|
|
/* s16 template */
|
|
#include "resample_template.c"
|
|
|
|
|
|
/* 0th order modified bessel function of the first kind. */
|
|
static double bessel(double x)
|
|
{
|
|
double v = 1;
|
|
double lastv = 0;
|
|
double t = 1;
|
|
int i;
|
|
|
|
x = x * x / 4;
|
|
for (i = 1; v != lastv; i++) {
|
|
lastv = v;
|
|
t *= x / (i * i);
|
|
v += t;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/* Build a polyphase filterbank. */
|
|
static int build_filter(ResampleContext *c, double factor)
|
|
{
|
|
int ph, i;
|
|
double x, y, w;
|
|
double *tab;
|
|
int tap_count = c->filter_length;
|
|
int phase_count = 1 << c->phase_shift;
|
|
const int center = (tap_count - 1) / 2;
|
|
|
|
tab = av_malloc(tap_count * sizeof(*tab));
|
|
if (!tab)
|
|
return AVERROR(ENOMEM);
|
|
|
|
for (ph = 0; ph < phase_count; ph++) {
|
|
double norm = 0;
|
|
for (i = 0; i < tap_count; i++) {
|
|
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
|
|
if (x == 0) y = 1.0;
|
|
else y = sin(x) / x;
|
|
switch (c->filter_type) {
|
|
case AV_RESAMPLE_FILTER_TYPE_CUBIC: {
|
|
const float d = -0.5; //first order derivative = -0.5
|
|
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
|
|
if (x < 1.0) y = 1 - 3 * x*x + 2 * x*x*x + d * ( -x*x + x*x*x);
|
|
else y = d * (-4 + 8 * x - 5 * x*x + x*x*x);
|
|
break;
|
|
}
|
|
case AV_RESAMPLE_FILTER_TYPE_BLACKMAN_NUTTALL:
|
|
w = 2.0 * x / (factor * tap_count) + M_PI;
|
|
y *= 0.3635819 - 0.4891775 * cos( w) +
|
|
0.1365995 * cos(2 * w) -
|
|
0.0106411 * cos(3 * w);
|
|
break;
|
|
case AV_RESAMPLE_FILTER_TYPE_KAISER:
|
|
w = 2.0 * x / (factor * tap_count * M_PI);
|
|
y *= bessel(c->kaiser_beta * sqrt(FFMAX(1 - w * w, 0)));
|
|
break;
|
|
}
|
|
|
|
tab[i] = y;
|
|
norm += y;
|
|
}
|
|
/* normalize so that an uniform color remains the same */
|
|
for (i = 0; i < tap_count; i++)
|
|
tab[i] = tab[i] / norm;
|
|
|
|
c->set_filter(c->filter_bank, tab, ph, tap_count);
|
|
}
|
|
|
|
av_free(tab);
|
|
return 0;
|
|
}
|
|
|
|
ResampleContext *ff_audio_resample_init(AVAudioResampleContext *avr)
|
|
{
|
|
ResampleContext *c;
|
|
int out_rate = avr->out_sample_rate;
|
|
int in_rate = avr->in_sample_rate;
|
|
double factor = FFMIN(out_rate * avr->cutoff / in_rate, 1.0);
|
|
int phase_count = 1 << avr->phase_shift;
|
|
int felem_size;
|
|
|
|
if (avr->internal_sample_fmt != AV_SAMPLE_FMT_S16P &&
|
|
avr->internal_sample_fmt != AV_SAMPLE_FMT_S32P &&
|
|
avr->internal_sample_fmt != AV_SAMPLE_FMT_FLTP &&
|
|
avr->internal_sample_fmt != AV_SAMPLE_FMT_DBLP) {
|
|
av_log(avr, AV_LOG_ERROR, "Unsupported internal format for "
|
|
"resampling: %s\n",
|
|
av_get_sample_fmt_name(avr->internal_sample_fmt));
|
|
return NULL;
|
|
}
|
|
c = av_mallocz(sizeof(*c));
|
|
if (!c)
|
|
return NULL;
|
|
|
|
c->avr = avr;
|
|
c->phase_shift = avr->phase_shift;
|
|
c->phase_mask = phase_count - 1;
|
|
c->linear = avr->linear_interp;
|
|
c->filter_length = FFMAX((int)ceil(avr->filter_size / factor), 1);
|
|
c->filter_type = avr->filter_type;
|
|
c->kaiser_beta = avr->kaiser_beta;
|
|
|
|
switch (avr->internal_sample_fmt) {
|
|
case AV_SAMPLE_FMT_DBLP:
|
|
c->resample_one = c->linear ? resample_linear_dbl : resample_one_dbl;
|
|
c->resample_nearest = resample_nearest_dbl;
|
|
c->set_filter = set_filter_dbl;
|
|
break;
|
|
case AV_SAMPLE_FMT_FLTP:
|
|
c->resample_one = c->linear ? resample_linear_flt : resample_one_flt;
|
|
c->resample_nearest = resample_nearest_flt;
|
|
c->set_filter = set_filter_flt;
|
|
break;
|
|
case AV_SAMPLE_FMT_S32P:
|
|
c->resample_one = c->linear ? resample_linear_s32 : resample_one_s32;
|
|
c->resample_nearest = resample_nearest_s32;
|
|
c->set_filter = set_filter_s32;
|
|
break;
|
|
case AV_SAMPLE_FMT_S16P:
|
|
c->resample_one = c->linear ? resample_linear_s16 : resample_one_s16;
|
|
c->resample_nearest = resample_nearest_s16;
|
|
c->set_filter = set_filter_s16;
|
|
break;
|
|
}
|
|
|
|
if (ARCH_AARCH64)
|
|
ff_audio_resample_init_aarch64(c, avr->internal_sample_fmt);
|
|
if (ARCH_ARM)
|
|
ff_audio_resample_init_arm(c, avr->internal_sample_fmt);
|
|
|
|
felem_size = av_get_bytes_per_sample(avr->internal_sample_fmt);
|
|
c->filter_bank = av_mallocz(c->filter_length * (phase_count + 1) * felem_size);
|
|
if (!c->filter_bank)
|
|
goto error;
|
|
|
|
if (build_filter(c, factor) < 0)
|
|
goto error;
|
|
|
|
memcpy(&c->filter_bank[(c->filter_length * phase_count + 1) * felem_size],
|
|
c->filter_bank, (c->filter_length - 1) * felem_size);
|
|
memcpy(&c->filter_bank[c->filter_length * phase_count * felem_size],
|
|
&c->filter_bank[(c->filter_length - 1) * felem_size], felem_size);
|
|
|
|
c->compensation_distance = 0;
|
|
if (!av_reduce(&c->src_incr, &c->dst_incr, out_rate,
|
|
in_rate * (int64_t)phase_count, INT32_MAX / 2))
|
|
goto error;
|
|
c->ideal_dst_incr = c->dst_incr;
|
|
|
|
c->padding_size = (c->filter_length - 1) / 2;
|
|
c->initial_padding_filled = 0;
|
|
c->index = 0;
|
|
c->frac = 0;
|
|
|
|
/* allocate internal buffer */
|
|
c->buffer = ff_audio_data_alloc(avr->resample_channels, c->padding_size,
|
|
avr->internal_sample_fmt,
|
|
"resample buffer");
|
|
if (!c->buffer)
|
|
goto error;
|
|
c->buffer->nb_samples = c->padding_size;
|
|
c->initial_padding_samples = c->padding_size;
|
|
|
|
av_log(avr, AV_LOG_DEBUG, "resample: %s from %d Hz to %d Hz\n",
|
|
av_get_sample_fmt_name(avr->internal_sample_fmt),
|
|
avr->in_sample_rate, avr->out_sample_rate);
|
|
|
|
return c;
|
|
|
|
error:
|
|
ff_audio_data_free(&c->buffer);
|
|
av_free(c->filter_bank);
|
|
av_free(c);
|
|
return NULL;
|
|
}
|
|
|
|
void ff_audio_resample_free(ResampleContext **c)
|
|
{
|
|
if (!*c)
|
|
return;
|
|
ff_audio_data_free(&(*c)->buffer);
|
|
av_free((*c)->filter_bank);
|
|
av_freep(c);
|
|
}
|
|
|
|
int avresample_set_compensation(AVAudioResampleContext *avr, int sample_delta,
|
|
int compensation_distance)
|
|
{
|
|
ResampleContext *c;
|
|
AudioData *fifo_buf = NULL;
|
|
int ret = 0;
|
|
|
|
if (compensation_distance < 0)
|
|
return AVERROR(EINVAL);
|
|
if (!compensation_distance && sample_delta)
|
|
return AVERROR(EINVAL);
|
|
|
|
if (!avr->resample_needed) {
|
|
#if FF_API_RESAMPLE_CLOSE_OPEN
|
|
/* if resampling was not enabled previously, re-initialize the
|
|
AVAudioResampleContext and force resampling */
|
|
int fifo_samples;
|
|
int restore_matrix = 0;
|
|
double matrix[AVRESAMPLE_MAX_CHANNELS * AVRESAMPLE_MAX_CHANNELS] = { 0 };
|
|
|
|
/* buffer any remaining samples in the output FIFO before closing */
|
|
fifo_samples = av_audio_fifo_size(avr->out_fifo);
|
|
if (fifo_samples > 0) {
|
|
fifo_buf = ff_audio_data_alloc(avr->out_channels, fifo_samples,
|
|
avr->out_sample_fmt, NULL);
|
|
if (!fifo_buf)
|
|
return AVERROR(EINVAL);
|
|
ret = ff_audio_data_read_from_fifo(avr->out_fifo, fifo_buf,
|
|
fifo_samples);
|
|
if (ret < 0)
|
|
goto reinit_fail;
|
|
}
|
|
/* save the channel mixing matrix */
|
|
if (avr->am) {
|
|
ret = avresample_get_matrix(avr, matrix, AVRESAMPLE_MAX_CHANNELS);
|
|
if (ret < 0)
|
|
goto reinit_fail;
|
|
restore_matrix = 1;
|
|
}
|
|
|
|
/* close the AVAudioResampleContext */
|
|
avresample_close(avr);
|
|
|
|
avr->force_resampling = 1;
|
|
|
|
/* restore the channel mixing matrix */
|
|
if (restore_matrix) {
|
|
ret = avresample_set_matrix(avr, matrix, AVRESAMPLE_MAX_CHANNELS);
|
|
if (ret < 0)
|
|
goto reinit_fail;
|
|
}
|
|
|
|
/* re-open the AVAudioResampleContext */
|
|
ret = avresample_open(avr);
|
|
if (ret < 0)
|
|
goto reinit_fail;
|
|
|
|
/* restore buffered samples to the output FIFO */
|
|
if (fifo_samples > 0) {
|
|
ret = ff_audio_data_add_to_fifo(avr->out_fifo, fifo_buf, 0,
|
|
fifo_samples);
|
|
if (ret < 0)
|
|
goto reinit_fail;
|
|
ff_audio_data_free(&fifo_buf);
|
|
}
|
|
#else
|
|
av_log(avr, AV_LOG_ERROR, "Unable to set resampling compensation\n");
|
|
return AVERROR(EINVAL);
|
|
#endif
|
|
}
|
|
c = avr->resample;
|
|
c->compensation_distance = compensation_distance;
|
|
if (compensation_distance) {
|
|
c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr *
|
|
(int64_t)sample_delta / compensation_distance;
|
|
} else {
|
|
c->dst_incr = c->ideal_dst_incr;
|
|
}
|
|
return 0;
|
|
|
|
reinit_fail:
|
|
ff_audio_data_free(&fifo_buf);
|
|
return ret;
|
|
}
|
|
|
|
static int resample(ResampleContext *c, void *dst, const void *src,
|
|
int *consumed, int src_size, int dst_size, int update_ctx,
|
|
int nearest_neighbour)
|
|
{
|
|
int dst_index;
|
|
unsigned int index = c->index;
|
|
int frac = c->frac;
|
|
int dst_incr_frac = c->dst_incr % c->src_incr;
|
|
int dst_incr = c->dst_incr / c->src_incr;
|
|
int compensation_distance = c->compensation_distance;
|
|
|
|
if (!dst != !src)
|
|
return AVERROR(EINVAL);
|
|
|
|
if (nearest_neighbour) {
|
|
uint64_t index2 = ((uint64_t)index) << 32;
|
|
int64_t incr = (1LL << 32) * c->dst_incr / c->src_incr;
|
|
dst_size = FFMIN(dst_size,
|
|
(src_size-1-index) * (int64_t)c->src_incr /
|
|
c->dst_incr);
|
|
|
|
if (dst) {
|
|
for(dst_index = 0; dst_index < dst_size; dst_index++) {
|
|
c->resample_nearest(dst, dst_index, src, index2 >> 32);
|
|
index2 += incr;
|
|
}
|
|
} else {
|
|
dst_index = dst_size;
|
|
}
|
|
index += dst_index * dst_incr;
|
|
index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
|
|
frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
|
|
} else {
|
|
for (dst_index = 0; dst_index < dst_size; dst_index++) {
|
|
int sample_index = index >> c->phase_shift;
|
|
|
|
if (sample_index + c->filter_length > src_size)
|
|
break;
|
|
|
|
if (dst)
|
|
c->resample_one(c, dst, dst_index, src, index, frac);
|
|
|
|
frac += dst_incr_frac;
|
|
index += dst_incr;
|
|
if (frac >= c->src_incr) {
|
|
frac -= c->src_incr;
|
|
index++;
|
|
}
|
|
if (dst_index + 1 == compensation_distance) {
|
|
compensation_distance = 0;
|
|
dst_incr_frac = c->ideal_dst_incr % c->src_incr;
|
|
dst_incr = c->ideal_dst_incr / c->src_incr;
|
|
}
|
|
}
|
|
}
|
|
if (consumed)
|
|
*consumed = index >> c->phase_shift;
|
|
|
|
if (update_ctx) {
|
|
index &= c->phase_mask;
|
|
|
|
if (compensation_distance) {
|
|
compensation_distance -= dst_index;
|
|
if (compensation_distance <= 0)
|
|
return AVERROR_BUG;
|
|
}
|
|
c->frac = frac;
|
|
c->index = index;
|
|
c->dst_incr = dst_incr_frac + c->src_incr*dst_incr;
|
|
c->compensation_distance = compensation_distance;
|
|
}
|
|
|
|
return dst_index;
|
|
}
|
|
|
|
int ff_audio_resample(ResampleContext *c, AudioData *dst, AudioData *src)
|
|
{
|
|
int ch, in_samples, in_leftover, consumed = 0, out_samples = 0;
|
|
int ret = AVERROR(EINVAL);
|
|
int nearest_neighbour = (c->compensation_distance == 0 &&
|
|
c->filter_length == 1 &&
|
|
c->phase_shift == 0);
|
|
|
|
in_samples = src ? src->nb_samples : 0;
|
|
in_leftover = c->buffer->nb_samples;
|
|
|
|
/* add input samples to the internal buffer */
|
|
if (src) {
|
|
ret = ff_audio_data_combine(c->buffer, in_leftover, src, 0, in_samples);
|
|
if (ret < 0)
|
|
return ret;
|
|
} else if (in_leftover <= c->final_padding_samples) {
|
|
/* no remaining samples to flush */
|
|
return 0;
|
|
}
|
|
|
|
if (!c->initial_padding_filled) {
|
|
int bps = av_get_bytes_per_sample(c->avr->internal_sample_fmt);
|
|
int i;
|
|
|
|
if (src && c->buffer->nb_samples < 2 * c->padding_size)
|
|
return 0;
|
|
|
|
for (i = 0; i < c->padding_size; i++)
|
|
for (ch = 0; ch < c->buffer->channels; ch++) {
|
|
if (c->buffer->nb_samples > 2 * c->padding_size - i) {
|
|
memcpy(c->buffer->data[ch] + bps * i,
|
|
c->buffer->data[ch] + bps * (2 * c->padding_size - i), bps);
|
|
} else {
|
|
memset(c->buffer->data[ch] + bps * i, 0, bps);
|
|
}
|
|
}
|
|
c->initial_padding_filled = 1;
|
|
}
|
|
|
|
if (!src && !c->final_padding_filled) {
|
|
int bps = av_get_bytes_per_sample(c->avr->internal_sample_fmt);
|
|
int i;
|
|
|
|
ret = ff_audio_data_realloc(c->buffer,
|
|
FFMAX(in_samples, in_leftover) +
|
|
c->padding_size);
|
|
if (ret < 0) {
|
|
av_log(c->avr, AV_LOG_ERROR, "Error reallocating resampling buffer\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
for (i = 0; i < c->padding_size; i++)
|
|
for (ch = 0; ch < c->buffer->channels; ch++) {
|
|
if (in_leftover > i) {
|
|
memcpy(c->buffer->data[ch] + bps * (in_leftover + i),
|
|
c->buffer->data[ch] + bps * (in_leftover - i - 1),
|
|
bps);
|
|
} else {
|
|
memset(c->buffer->data[ch] + bps * (in_leftover + i),
|
|
0, bps);
|
|
}
|
|
}
|
|
c->buffer->nb_samples += c->padding_size;
|
|
c->final_padding_samples = c->padding_size;
|
|
c->final_padding_filled = 1;
|
|
}
|
|
|
|
|
|
/* calculate output size and reallocate output buffer if needed */
|
|
/* TODO: try to calculate this without the dummy resample() run */
|
|
if (!dst->read_only && dst->allow_realloc) {
|
|
out_samples = resample(c, NULL, NULL, NULL, c->buffer->nb_samples,
|
|
INT_MAX, 0, nearest_neighbour);
|
|
ret = ff_audio_data_realloc(dst, out_samples);
|
|
if (ret < 0) {
|
|
av_log(c->avr, AV_LOG_ERROR, "error reallocating output\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* resample each channel plane */
|
|
for (ch = 0; ch < c->buffer->channels; ch++) {
|
|
out_samples = resample(c, (void *)dst->data[ch],
|
|
(const void *)c->buffer->data[ch], &consumed,
|
|
c->buffer->nb_samples, dst->allocated_samples,
|
|
ch + 1 == c->buffer->channels, nearest_neighbour);
|
|
}
|
|
if (out_samples < 0) {
|
|
av_log(c->avr, AV_LOG_ERROR, "error during resampling\n");
|
|
return out_samples;
|
|
}
|
|
|
|
/* drain consumed samples from the internal buffer */
|
|
ff_audio_data_drain(c->buffer, consumed);
|
|
c->initial_padding_samples = FFMAX(c->initial_padding_samples - consumed, 0);
|
|
|
|
av_log(c->avr, AV_LOG_TRACE, "resampled %d in + %d leftover to %d out + %d leftover\n",
|
|
in_samples, in_leftover, out_samples, c->buffer->nb_samples);
|
|
|
|
dst->nb_samples = out_samples;
|
|
return 0;
|
|
}
|
|
|
|
int avresample_get_delay(AVAudioResampleContext *avr)
|
|
{
|
|
ResampleContext *c = avr->resample;
|
|
|
|
if (!avr->resample_needed || !avr->resample)
|
|
return 0;
|
|
|
|
return FFMAX(c->buffer->nb_samples - c->padding_size, 0);
|
|
}
|