FFmpeg/libavcodec/mjpeg.c
Alex Beregszaszi 4ea385bbbc compile mjpeg parser if requested
Originally committed as revision 8766 to svn://svn.ffmpeg.org/ffmpeg/trunk
2007-04-21 00:36:53 +00:00

2644 lines
83 KiB
C

/*
* MJPEG encoder and decoder
* Copyright (c) 2000, 2001 Fabrice Bellard.
* Copyright (c) 2003 Alex Beregszaszi
* Copyright (c) 2003-2004 Michael Niedermayer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Support for external huffman table, various fixes (AVID workaround),
* aspecting, new decode_frame mechanism and apple mjpeg-b support
* by Alex Beregszaszi
*/
/**
* @file mjpeg.c
* MJPEG encoder and decoder.
*/
//#define DEBUG
#include <assert.h>
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"
#include "bytestream.h"
/* use two quantizer tables (one for luminance and one for chrominance) */
/* not yet working */
#undef TWOMATRIXES
typedef struct MJpegContext {
uint8_t huff_size_dc_luminance[12]; //FIXME use array [3] instead of lumi / chrom, for easier addressing
uint16_t huff_code_dc_luminance[12];
uint8_t huff_size_dc_chrominance[12];
uint16_t huff_code_dc_chrominance[12];
uint8_t huff_size_ac_luminance[256];
uint16_t huff_code_ac_luminance[256];
uint8_t huff_size_ac_chrominance[256];
uint16_t huff_code_ac_chrominance[256];
} MJpegContext;
/* JPEG marker codes */
typedef enum {
/* start of frame */
SOF0 = 0xc0, /* baseline */
SOF1 = 0xc1, /* extended sequential, huffman */
SOF2 = 0xc2, /* progressive, huffman */
SOF3 = 0xc3, /* lossless, huffman */
SOF5 = 0xc5, /* differential sequential, huffman */
SOF6 = 0xc6, /* differential progressive, huffman */
SOF7 = 0xc7, /* differential lossless, huffman */
JPG = 0xc8, /* reserved for JPEG extension */
SOF9 = 0xc9, /* extended sequential, arithmetic */
SOF10 = 0xca, /* progressive, arithmetic */
SOF11 = 0xcb, /* lossless, arithmetic */
SOF13 = 0xcd, /* differential sequential, arithmetic */
SOF14 = 0xce, /* differential progressive, arithmetic */
SOF15 = 0xcf, /* differential lossless, arithmetic */
DHT = 0xc4, /* define huffman tables */
DAC = 0xcc, /* define arithmetic-coding conditioning */
/* restart with modulo 8 count "m" */
RST0 = 0xd0,
RST1 = 0xd1,
RST2 = 0xd2,
RST3 = 0xd3,
RST4 = 0xd4,
RST5 = 0xd5,
RST6 = 0xd6,
RST7 = 0xd7,
SOI = 0xd8, /* start of image */
EOI = 0xd9, /* end of image */
SOS = 0xda, /* start of scan */
DQT = 0xdb, /* define quantization tables */
DNL = 0xdc, /* define number of lines */
DRI = 0xdd, /* define restart interval */
DHP = 0xde, /* define hierarchical progression */
EXP = 0xdf, /* expand reference components */
APP0 = 0xe0,
APP1 = 0xe1,
APP2 = 0xe2,
APP3 = 0xe3,
APP4 = 0xe4,
APP5 = 0xe5,
APP6 = 0xe6,
APP7 = 0xe7,
APP8 = 0xe8,
APP9 = 0xe9,
APP10 = 0xea,
APP11 = 0xeb,
APP12 = 0xec,
APP13 = 0xed,
APP14 = 0xee,
APP15 = 0xef,
JPG0 = 0xf0,
JPG1 = 0xf1,
JPG2 = 0xf2,
JPG3 = 0xf3,
JPG4 = 0xf4,
JPG5 = 0xf5,
JPG6 = 0xf6,
SOF48 = 0xf7, ///< JPEG-LS
LSE = 0xf8, ///< JPEG-LS extension parameters
JPG9 = 0xf9,
JPG10 = 0xfa,
JPG11 = 0xfb,
JPG12 = 0xfc,
JPG13 = 0xfd,
COM = 0xfe, /* comment */
TEM = 0x01, /* temporary private use for arithmetic coding */
/* 0x02 -> 0xbf reserved */
} JPEG_MARKER;
#if 0
/* These are the sample quantization tables given in JPEG spec section K.1.
* The spec says that the values given produce "good" quality, and
* when divided by 2, "very good" quality.
*/
static const unsigned char std_luminance_quant_tbl[64] = {
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99
};
static const unsigned char std_chrominance_quant_tbl[64] = {
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
};
#endif
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
/* IMPORTANT: these are only valid for 8-bit data precision! */
static const uint8_t bits_dc_luminance[17] =
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
static const uint8_t val_dc_luminance[] =
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
static const uint8_t bits_dc_chrominance[17] =
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
static const uint8_t val_dc_chrominance[] =
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
static const uint8_t bits_ac_luminance[17] =
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
static const uint8_t val_ac_luminance[] =
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
static const uint8_t bits_ac_chrominance[17] =
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
static const uint8_t val_ac_chrominance[] =
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
/* isn't this function nicer than the one in the libjpeg ? */
static void build_huffman_codes(uint8_t *huff_size, uint16_t *huff_code,
const uint8_t *bits_table, const uint8_t *val_table)
{
int i, j, k,nb, code, sym;
code = 0;
k = 0;
for(i=1;i<=16;i++) {
nb = bits_table[i];
for(j=0;j<nb;j++) {
sym = val_table[k++];
huff_size[sym] = i;
huff_code[sym] = code;
code++;
}
code <<= 1;
}
}
#ifdef CONFIG_ENCODERS
int mjpeg_init(MpegEncContext *s)
{
MJpegContext *m;
m = av_malloc(sizeof(MJpegContext));
if (!m)
return -1;
s->min_qcoeff=-1023;
s->max_qcoeff= 1023;
/* build all the huffman tables */
build_huffman_codes(m->huff_size_dc_luminance,
m->huff_code_dc_luminance,
bits_dc_luminance,
val_dc_luminance);
build_huffman_codes(m->huff_size_dc_chrominance,
m->huff_code_dc_chrominance,
bits_dc_chrominance,
val_dc_chrominance);
build_huffman_codes(m->huff_size_ac_luminance,
m->huff_code_ac_luminance,
bits_ac_luminance,
val_ac_luminance);
build_huffman_codes(m->huff_size_ac_chrominance,
m->huff_code_ac_chrominance,
bits_ac_chrominance,
val_ac_chrominance);
s->mjpeg_ctx = m;
return 0;
}
void mjpeg_close(MpegEncContext *s)
{
av_free(s->mjpeg_ctx);
}
#endif //CONFIG_ENCODERS
#define PREDICT(ret, topleft, top, left, predictor)\
switch(predictor){\
case 1: ret= left; break;\
case 2: ret= top; break;\
case 3: ret= topleft; break;\
case 4: ret= left + top - topleft; break;\
case 5: ret= left + ((top - topleft)>>1); break;\
case 6: ret= top + ((left - topleft)>>1); break;\
default:\
case 7: ret= (left + top)>>1; break;\
}
#ifdef CONFIG_ENCODERS
static inline void put_marker(PutBitContext *p, int code)
{
put_bits(p, 8, 0xff);
put_bits(p, 8, code);
}
/* table_class: 0 = DC coef, 1 = AC coefs */
static int put_huffman_table(MpegEncContext *s, int table_class, int table_id,
const uint8_t *bits_table, const uint8_t *value_table)
{
PutBitContext *p = &s->pb;
int n, i;
put_bits(p, 4, table_class);
put_bits(p, 4, table_id);
n = 0;
for(i=1;i<=16;i++) {
n += bits_table[i];
put_bits(p, 8, bits_table[i]);
}
for(i=0;i<n;i++)
put_bits(p, 8, value_table[i]);
return n + 17;
}
static void jpeg_table_header(MpegEncContext *s)
{
PutBitContext *p = &s->pb;
int i, j, size;
uint8_t *ptr;
/* quant matrixes */
put_marker(p, DQT);
#ifdef TWOMATRIXES
put_bits(p, 16, 2 + 2 * (1 + 64));
#else
put_bits(p, 16, 2 + 1 * (1 + 64));
#endif
put_bits(p, 4, 0); /* 8 bit precision */
put_bits(p, 4, 0); /* table 0 */
for(i=0;i<64;i++) {
j = s->intra_scantable.permutated[i];
put_bits(p, 8, s->intra_matrix[j]);
}
#ifdef TWOMATRIXES
put_bits(p, 4, 0); /* 8 bit precision */
put_bits(p, 4, 1); /* table 1 */
for(i=0;i<64;i++) {
j = s->intra_scantable.permutated[i];
put_bits(p, 8, s->chroma_intra_matrix[j]);
}
#endif
/* huffman table */
put_marker(p, DHT);
flush_put_bits(p);
ptr = pbBufPtr(p);
put_bits(p, 16, 0); /* patched later */
size = 2;
size += put_huffman_table(s, 0, 0, bits_dc_luminance, val_dc_luminance);
size += put_huffman_table(s, 0, 1, bits_dc_chrominance, val_dc_chrominance);
size += put_huffman_table(s, 1, 0, bits_ac_luminance, val_ac_luminance);
size += put_huffman_table(s, 1, 1, bits_ac_chrominance, val_ac_chrominance);
ptr[0] = size >> 8;
ptr[1] = size;
}
static void jpeg_put_comments(MpegEncContext *s)
{
PutBitContext *p = &s->pb;
int size;
uint8_t *ptr;
if (s->aspect_ratio_info /* && !lossless */)
{
/* JFIF header */
put_marker(p, APP0);
put_bits(p, 16, 16);
ff_put_string(p, "JFIF", 1); /* this puts the trailing zero-byte too */
put_bits(p, 16, 0x0201); /* v 1.02 */
put_bits(p, 8, 0); /* units type: 0 - aspect ratio */
put_bits(p, 16, s->avctx->sample_aspect_ratio.num);
put_bits(p, 16, s->avctx->sample_aspect_ratio.den);
put_bits(p, 8, 0); /* thumbnail width */
put_bits(p, 8, 0); /* thumbnail height */
}
/* comment */
if(!(s->flags & CODEC_FLAG_BITEXACT)){
put_marker(p, COM);
flush_put_bits(p);
ptr = pbBufPtr(p);
put_bits(p, 16, 0); /* patched later */
ff_put_string(p, LIBAVCODEC_IDENT, 1);
size = strlen(LIBAVCODEC_IDENT)+3;
ptr[0] = size >> 8;
ptr[1] = size;
}
if( s->avctx->pix_fmt == PIX_FMT_YUV420P
||s->avctx->pix_fmt == PIX_FMT_YUV422P
||s->avctx->pix_fmt == PIX_FMT_YUV444P){
put_marker(p, COM);
flush_put_bits(p);
ptr = pbBufPtr(p);
put_bits(p, 16, 0); /* patched later */
ff_put_string(p, "CS=ITU601", 1);
size = strlen("CS=ITU601")+3;
ptr[0] = size >> 8;
ptr[1] = size;
}
}
void mjpeg_picture_header(MpegEncContext *s)
{
const int lossless= s->avctx->codec_id != CODEC_ID_MJPEG;
const int ls = s->avctx->codec_id == CODEC_ID_JPEGLS;
assert(!(ls && s->mjpeg_write_tables));
put_marker(&s->pb, SOI);
if (!s->mjpeg_data_only_frames)
{
jpeg_put_comments(s);
if (s->mjpeg_write_tables) jpeg_table_header(s);
switch(s->avctx->codec_id){
case CODEC_ID_MJPEG: put_marker(&s->pb, SOF0 ); break;
case CODEC_ID_LJPEG: put_marker(&s->pb, SOF3 ); break;
case CODEC_ID_JPEGLS: put_marker(&s->pb, SOF48); break;
default: assert(0);
}
put_bits(&s->pb, 16, 17);
if(lossless && s->avctx->pix_fmt == PIX_FMT_RGB32)
put_bits(&s->pb, 8, 9); /* 9 bits/component RCT */
else
put_bits(&s->pb, 8, 8); /* 8 bits/component */
put_bits(&s->pb, 16, s->height);
put_bits(&s->pb, 16, s->width);
put_bits(&s->pb, 8, 3); /* 3 components */
/* Y component */
put_bits(&s->pb, 8, 1); /* component number */
put_bits(&s->pb, 4, s->mjpeg_hsample[0]); /* H factor */
put_bits(&s->pb, 4, s->mjpeg_vsample[0]); /* V factor */
put_bits(&s->pb, 8, 0); /* select matrix */
/* Cb component */
put_bits(&s->pb, 8, 2); /* component number */
put_bits(&s->pb, 4, s->mjpeg_hsample[1]); /* H factor */
put_bits(&s->pb, 4, s->mjpeg_vsample[1]); /* V factor */
#ifdef TWOMATRIXES
put_bits(&s->pb, 8, lossless ? 0 : 1); /* select matrix */
#else
put_bits(&s->pb, 8, 0); /* select matrix */
#endif
/* Cr component */
put_bits(&s->pb, 8, 3); /* component number */
put_bits(&s->pb, 4, s->mjpeg_hsample[2]); /* H factor */
put_bits(&s->pb, 4, s->mjpeg_vsample[2]); /* V factor */
#ifdef TWOMATRIXES
put_bits(&s->pb, 8, lossless ? 0 : 1); /* select matrix */
#else
put_bits(&s->pb, 8, 0); /* select matrix */
#endif
}
/* scan header */
put_marker(&s->pb, SOS);
put_bits(&s->pb, 16, 12); /* length */
put_bits(&s->pb, 8, 3); /* 3 components */
/* Y component */
put_bits(&s->pb, 8, 1); /* index */
put_bits(&s->pb, 4, 0); /* DC huffman table index */
put_bits(&s->pb, 4, 0); /* AC huffman table index */
/* Cb component */
put_bits(&s->pb, 8, 2); /* index */
put_bits(&s->pb, 4, 1); /* DC huffman table index */
put_bits(&s->pb, 4, lossless ? 0 : 1); /* AC huffman table index */
/* Cr component */
put_bits(&s->pb, 8, 3); /* index */
put_bits(&s->pb, 4, 1); /* DC huffman table index */
put_bits(&s->pb, 4, lossless ? 0 : 1); /* AC huffman table index */
put_bits(&s->pb, 8, (lossless && !ls) ? s->avctx->prediction_method+1 : 0); /* Ss (not used) */
switch(s->avctx->codec_id){
case CODEC_ID_MJPEG: put_bits(&s->pb, 8, 63); break; /* Se (not used) */
case CODEC_ID_LJPEG: put_bits(&s->pb, 8, 0); break; /* not used */
case CODEC_ID_JPEGLS: put_bits(&s->pb, 8, 1); break; /* ILV = line interleaved */
default: assert(0);
}
put_bits(&s->pb, 8, 0); /* Ah/Al (not used) */
//FIXME DC/AC entropy table selectors stuff in jpegls
}
static void escape_FF(MpegEncContext *s, int start)
{
int size= put_bits_count(&s->pb) - start*8;
int i, ff_count;
uint8_t *buf= s->pb.buf + start;
int align= (-(size_t)(buf))&3;
assert((size&7) == 0);
size >>= 3;
ff_count=0;
for(i=0; i<size && i<align; i++){
if(buf[i]==0xFF) ff_count++;
}
for(; i<size-15; i+=16){
int acc, v;
v= *(uint32_t*)(&buf[i]);
acc= (((v & (v>>4))&0x0F0F0F0F)+0x01010101)&0x10101010;
v= *(uint32_t*)(&buf[i+4]);
acc+=(((v & (v>>4))&0x0F0F0F0F)+0x01010101)&0x10101010;
v= *(uint32_t*)(&buf[i+8]);
acc+=(((v & (v>>4))&0x0F0F0F0F)+0x01010101)&0x10101010;
v= *(uint32_t*)(&buf[i+12]);
acc+=(((v & (v>>4))&0x0F0F0F0F)+0x01010101)&0x10101010;
acc>>=4;
acc+= (acc>>16);
acc+= (acc>>8);
ff_count+= acc&0xFF;
}
for(; i<size; i++){
if(buf[i]==0xFF) ff_count++;
}
if(ff_count==0) return;
/* skip put bits */
for(i=0; i<ff_count-3; i+=4)
put_bits(&s->pb, 32, 0);
put_bits(&s->pb, (ff_count-i)*8, 0);
flush_put_bits(&s->pb);
for(i=size-1; ff_count; i--){
int v= buf[i];
if(v==0xFF){
//printf("%d %d\n", i, ff_count);
buf[i+ff_count]= 0;
ff_count--;
}
buf[i+ff_count]= v;
}
}
void ff_mjpeg_stuffing(PutBitContext * pbc)
{
int length;
length= (-put_bits_count(pbc))&7;
if(length) put_bits(pbc, length, (1<<length)-1);
}
void mjpeg_picture_trailer(MpegEncContext *s)
{
ff_mjpeg_stuffing(&s->pb);
flush_put_bits(&s->pb);
assert((s->header_bits&7)==0);
escape_FF(s, s->header_bits>>3);
put_marker(&s->pb, EOI);
}
static inline void mjpeg_encode_dc(MpegEncContext *s, int val,
uint8_t *huff_size, uint16_t *huff_code)
{
int mant, nbits;
if (val == 0) {
put_bits(&s->pb, huff_size[0], huff_code[0]);
} else {
mant = val;
if (val < 0) {
val = -val;
mant--;
}
nbits= av_log2_16bit(val) + 1;
put_bits(&s->pb, huff_size[nbits], huff_code[nbits]);
put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
}
}
static void encode_block(MpegEncContext *s, DCTELEM *block, int n)
{
int mant, nbits, code, i, j;
int component, dc, run, last_index, val;
MJpegContext *m = s->mjpeg_ctx;
uint8_t *huff_size_ac;
uint16_t *huff_code_ac;
/* DC coef */
component = (n <= 3 ? 0 : (n&1) + 1);
dc = block[0]; /* overflow is impossible */
val = dc - s->last_dc[component];
if (n < 4) {
mjpeg_encode_dc(s, val, m->huff_size_dc_luminance, m->huff_code_dc_luminance);
huff_size_ac = m->huff_size_ac_luminance;
huff_code_ac = m->huff_code_ac_luminance;
} else {
mjpeg_encode_dc(s, val, m->huff_size_dc_chrominance, m->huff_code_dc_chrominance);
huff_size_ac = m->huff_size_ac_chrominance;
huff_code_ac = m->huff_code_ac_chrominance;
}
s->last_dc[component] = dc;
/* AC coefs */
run = 0;
last_index = s->block_last_index[n];
for(i=1;i<=last_index;i++) {
j = s->intra_scantable.permutated[i];
val = block[j];
if (val == 0) {
run++;
} else {
while (run >= 16) {
put_bits(&s->pb, huff_size_ac[0xf0], huff_code_ac[0xf0]);
run -= 16;
}
mant = val;
if (val < 0) {
val = -val;
mant--;
}
nbits= av_log2(val) + 1;
code = (run << 4) | nbits;
put_bits(&s->pb, huff_size_ac[code], huff_code_ac[code]);
put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
run = 0;
}
}
/* output EOB only if not already 64 values */
if (last_index < 63 || run != 0)
put_bits(&s->pb, huff_size_ac[0], huff_code_ac[0]);
}
void mjpeg_encode_mb(MpegEncContext *s,
DCTELEM block[6][64])
{
int i;
for(i=0;i<5;i++) {
encode_block(s, block[i], i);
}
if (s->chroma_format == CHROMA_420) {
encode_block(s, block[5], 5);
} else {
encode_block(s, block[6], 6);
encode_block(s, block[5], 5);
encode_block(s, block[7], 7);
}
}
static int encode_picture_lossless(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
MpegEncContext * const s = avctx->priv_data;
MJpegContext * const m = s->mjpeg_ctx;
AVFrame *pict = data;
const int width= s->width;
const int height= s->height;
AVFrame * const p= (AVFrame*)&s->current_picture;
const int predictor= avctx->prediction_method+1;
init_put_bits(&s->pb, buf, buf_size);
*p = *pict;
p->pict_type= FF_I_TYPE;
p->key_frame= 1;
mjpeg_picture_header(s);
s->header_bits= put_bits_count(&s->pb);
if(avctx->pix_fmt == PIX_FMT_RGB32){
int x, y, i;
const int linesize= p->linesize[0];
uint16_t (*buffer)[4]= (void *) s->rd_scratchpad;
int left[3], top[3], topleft[3];
for(i=0; i<3; i++){
buffer[0][i]= 1 << (9 - 1);
}
for(y = 0; y < height; y++) {
const int modified_predictor= y ? predictor : 1;
uint8_t *ptr = p->data[0] + (linesize * y);
if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < width*3*4){
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
for(i=0; i<3; i++){
top[i]= left[i]= topleft[i]= buffer[0][i];
}
for(x = 0; x < width; x++) {
buffer[x][1] = ptr[4*x+0] - ptr[4*x+1] + 0x100;
buffer[x][2] = ptr[4*x+2] - ptr[4*x+1] + 0x100;
buffer[x][0] = (ptr[4*x+0] + 2*ptr[4*x+1] + ptr[4*x+2])>>2;
for(i=0;i<3;i++) {
int pred, diff;
PREDICT(pred, topleft[i], top[i], left[i], modified_predictor);
topleft[i]= top[i];
top[i]= buffer[x+1][i];
left[i]= buffer[x][i];
diff= ((left[i] - pred + 0x100)&0x1FF) - 0x100;
if(i==0)
mjpeg_encode_dc(s, diff, m->huff_size_dc_luminance, m->huff_code_dc_luminance); //FIXME ugly
else
mjpeg_encode_dc(s, diff, m->huff_size_dc_chrominance, m->huff_code_dc_chrominance);
}
}
}
}else{
int mb_x, mb_y, i;
const int mb_width = (width + s->mjpeg_hsample[0] - 1) / s->mjpeg_hsample[0];
const int mb_height = (height + s->mjpeg_vsample[0] - 1) / s->mjpeg_vsample[0];
for(mb_y = 0; mb_y < mb_height; mb_y++) {
if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < mb_width * 4 * 3 * s->mjpeg_hsample[0] * s->mjpeg_vsample[0]){
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
for(mb_x = 0; mb_x < mb_width; mb_x++) {
if(mb_x==0 || mb_y==0){
for(i=0;i<3;i++) {
uint8_t *ptr;
int x, y, h, v, linesize;
h = s->mjpeg_hsample[i];
v = s->mjpeg_vsample[i];
linesize= p->linesize[i];
for(y=0; y<v; y++){
for(x=0; x<h; x++){
int pred;
ptr = p->data[i] + (linesize * (v * mb_y + y)) + (h * mb_x + x); //FIXME optimize this crap
if(y==0 && mb_y==0){
if(x==0 && mb_x==0){
pred= 128;
}else{
pred= ptr[-1];
}
}else{
if(x==0 && mb_x==0){
pred= ptr[-linesize];
}else{
PREDICT(pred, ptr[-linesize-1], ptr[-linesize], ptr[-1], predictor);
}
}
if(i==0)
mjpeg_encode_dc(s, (int8_t)(*ptr - pred), m->huff_size_dc_luminance, m->huff_code_dc_luminance); //FIXME ugly
else
mjpeg_encode_dc(s, (int8_t)(*ptr - pred), m->huff_size_dc_chrominance, m->huff_code_dc_chrominance);
}
}
}
}else{
for(i=0;i<3;i++) {
uint8_t *ptr;
int x, y, h, v, linesize;
h = s->mjpeg_hsample[i];
v = s->mjpeg_vsample[i];
linesize= p->linesize[i];
for(y=0; y<v; y++){
for(x=0; x<h; x++){
int pred;
ptr = p->data[i] + (linesize * (v * mb_y + y)) + (h * mb_x + x); //FIXME optimize this crap
//printf("%d %d %d %d %8X\n", mb_x, mb_y, x, y, ptr);
PREDICT(pred, ptr[-linesize-1], ptr[-linesize], ptr[-1], predictor);
if(i==0)
mjpeg_encode_dc(s, (int8_t)(*ptr - pred), m->huff_size_dc_luminance, m->huff_code_dc_luminance); //FIXME ugly
else
mjpeg_encode_dc(s, (int8_t)(*ptr - pred), m->huff_size_dc_chrominance, m->huff_code_dc_chrominance);
}
}
}
}
}
}
}
emms_c();
mjpeg_picture_trailer(s);
s->picture_number++;
flush_put_bits(&s->pb);
return pbBufPtr(&s->pb) - s->pb.buf;
// return (put_bits_count(&f->pb)+7)/8;
}
#endif //CONFIG_ENCODERS
/******************************************/
/* decoding */
#define MAX_COMPONENTS 4
typedef struct MJpegDecodeContext {
AVCodecContext *avctx;
GetBitContext gb;
int start_code; /* current start code */
int buffer_size;
uint8_t *buffer;
int16_t quant_matrixes[4][64];
VLC vlcs[2][4];
int qscale[4]; ///< quantizer scale calculated from quant_matrixes
int org_height; /* size given at codec init */
int first_picture; /* true if decoding first picture */
int interlaced; /* true if interlaced */
int bottom_field; /* true if bottom field */
int lossless;
int ls;
int progressive;
int rgb;
int rct; /* standard rct */
int pegasus_rct; /* pegasus reversible colorspace transform */
int bits; /* bits per component */
int maxval;
int near; ///< near lossless bound (si 0 for lossless)
int t1,t2,t3;
int reset; ///< context halfing intervall ?rename
int width, height;
int mb_width, mb_height;
int nb_components;
int component_id[MAX_COMPONENTS];
int h_count[MAX_COMPONENTS]; /* horizontal and vertical count for each component */
int v_count[MAX_COMPONENTS];
int comp_index[MAX_COMPONENTS];
int dc_index[MAX_COMPONENTS];
int ac_index[MAX_COMPONENTS];
int nb_blocks[MAX_COMPONENTS];
int h_scount[MAX_COMPONENTS];
int v_scount[MAX_COMPONENTS];
int h_max, v_max; /* maximum h and v counts */
int quant_index[4]; /* quant table index for each component */
int last_dc[MAX_COMPONENTS]; /* last DEQUANTIZED dc (XXX: am I right to do that ?) */
AVFrame picture; /* picture structure */
int linesize[MAX_COMPONENTS]; ///< linesize << interlaced
int8_t *qscale_table;
DECLARE_ALIGNED_8(DCTELEM, block[64]);
ScanTable scantable;
DSPContext dsp;
int restart_interval;
int restart_count;
int buggy_avid;
int cs_itu601;
int interlace_polarity;
int mjpb_skiptosod;
int cur_scan; /* current scan, used by JPEG-LS */
} MJpegDecodeContext;
#include "jpeg_ls.c" //FIXME make jpeg-ls more independent
static int mjpeg_decode_dht(MJpegDecodeContext *s);
static int build_vlc(VLC *vlc, const uint8_t *bits_table, const uint8_t *val_table,
int nb_codes, int use_static, int is_ac)
{
uint8_t huff_size[256+16];
uint16_t huff_code[256+16];
assert(nb_codes <= 256);
memset(huff_size, 0, sizeof(huff_size));
build_huffman_codes(huff_size, huff_code, bits_table, val_table);
if(is_ac){
memmove(huff_size+16, huff_size, sizeof(uint8_t)*nb_codes);
memmove(huff_code+16, huff_code, sizeof(uint16_t)*nb_codes);
memset(huff_size, 0, sizeof(uint8_t)*16);
memset(huff_code, 0, sizeof(uint16_t)*16);
nb_codes += 16;
}
return init_vlc(vlc, 9, nb_codes, huff_size, 1, 1, huff_code, 2, 2, use_static);
}
static int mjpeg_decode_init(AVCodecContext *avctx)
{
MJpegDecodeContext *s = avctx->priv_data;
s->avctx = avctx;
dsputil_init(&s->dsp, avctx);
ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
s->buffer_size = 0;
s->buffer = NULL;
s->start_code = -1;
s->first_picture = 1;
s->org_height = avctx->coded_height;
build_vlc(&s->vlcs[0][0], bits_dc_luminance, val_dc_luminance, 12, 0, 0);
build_vlc(&s->vlcs[0][1], bits_dc_chrominance, val_dc_chrominance, 12, 0, 0);
build_vlc(&s->vlcs[1][0], bits_ac_luminance, val_ac_luminance, 251, 0, 1);
build_vlc(&s->vlcs[1][1], bits_ac_chrominance, val_ac_chrominance, 251, 0, 1);
if (avctx->flags & CODEC_FLAG_EXTERN_HUFF)
{
av_log(avctx, AV_LOG_INFO, "mjpeg: using external huffman table\n");
init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size*8);
mjpeg_decode_dht(s);
/* should check for error - but dunno */
}
if (avctx->extradata_size > 9 &&
AV_RL32(avctx->extradata + 4) == MKTAG('f','i','e','l')) {
if (avctx->extradata[9] == 6) { /* quicktime icefloe 019 */
s->interlace_polarity = 1; /* bottom field first */
av_log(avctx, AV_LOG_DEBUG, "mjpeg bottom field first\n");
}
}
return 0;
}
/**
* finds the end of the current frame in the bitstream.
* @return the position of the first byte of the next frame, or -1
*/
static int find_frame_end(ParseContext *pc, const uint8_t *buf, int buf_size){
int vop_found, i;
uint16_t state;
vop_found= pc->frame_start_found;
state= pc->state;
i=0;
if(!vop_found){
for(i=0; i<buf_size; i++){
state= (state<<8) | buf[i];
if(state == 0xFFD8){
i++;
vop_found=1;
break;
}
}
}
if(vop_found){
/* EOF considered as end of frame */
if (buf_size == 0)
return 0;
for(; i<buf_size; i++){
state= (state<<8) | buf[i];
if(state == 0xFFD8){
pc->frame_start_found=0;
pc->state=0;
return i-1;
}
}
}
pc->frame_start_found= vop_found;
pc->state= state;
return END_NOT_FOUND;
}
static int jpeg_parse(AVCodecParserContext *s,
AVCodecContext *avctx,
uint8_t **poutbuf, int *poutbuf_size,
const uint8_t *buf, int buf_size)
{
ParseContext *pc = s->priv_data;
int next;
next= find_frame_end(pc, buf, buf_size);
if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) {
*poutbuf = NULL;
*poutbuf_size = 0;
return buf_size;
}
*poutbuf = (uint8_t *)buf;
*poutbuf_size = buf_size;
return next;
}
/* quantize tables */
static int mjpeg_decode_dqt(MJpegDecodeContext *s)
{
int len, index, i, j;
len = get_bits(&s->gb, 16) - 2;
while (len >= 65) {
/* only 8 bit precision handled */
if (get_bits(&s->gb, 4) != 0)
{
av_log(s->avctx, AV_LOG_ERROR, "dqt: 16bit precision\n");
return -1;
}
index = get_bits(&s->gb, 4);
if (index >= 4)
return -1;
av_log(s->avctx, AV_LOG_DEBUG, "index=%d\n", index);
/* read quant table */
for(i=0;i<64;i++) {
j = s->scantable.permutated[i];
s->quant_matrixes[index][j] = get_bits(&s->gb, 8);
}
//XXX FIXME finetune, and perhaps add dc too
s->qscale[index]= FFMAX(
s->quant_matrixes[index][s->scantable.permutated[1]],
s->quant_matrixes[index][s->scantable.permutated[8]]) >> 1;
av_log(s->avctx, AV_LOG_DEBUG, "qscale[%d]: %d\n", index, s->qscale[index]);
len -= 65;
}
return 0;
}
/* decode huffman tables and build VLC decoders */
static int mjpeg_decode_dht(MJpegDecodeContext *s)
{
int len, index, i, class, n, v, code_max;
uint8_t bits_table[17];
uint8_t val_table[256];
len = get_bits(&s->gb, 16) - 2;
while (len > 0) {
if (len < 17)
return -1;
class = get_bits(&s->gb, 4);
if (class >= 2)
return -1;
index = get_bits(&s->gb, 4);
if (index >= 4)
return -1;
n = 0;
for(i=1;i<=16;i++) {
bits_table[i] = get_bits(&s->gb, 8);
n += bits_table[i];
}
len -= 17;
if (len < n || n > 256)
return -1;
code_max = 0;
for(i=0;i<n;i++) {
v = get_bits(&s->gb, 8);
if (v > code_max)
code_max = v;
val_table[i] = v;
}
len -= n;
/* build VLC and flush previous vlc if present */
free_vlc(&s->vlcs[class][index]);
av_log(s->avctx, AV_LOG_DEBUG, "class=%d index=%d nb_codes=%d\n",
class, index, code_max + 1);
if(build_vlc(&s->vlcs[class][index], bits_table, val_table, code_max + 1, 0, class > 0) < 0){
return -1;
}
}
return 0;
}
static int mjpeg_decode_sof(MJpegDecodeContext *s)
{
int len, nb_components, i, width, height, pix_fmt_id;
/* XXX: verify len field validity */
len = get_bits(&s->gb, 16);
s->bits= get_bits(&s->gb, 8);
if(s->pegasus_rct) s->bits=9;
if(s->bits==9 && !s->pegasus_rct) s->rct=1; //FIXME ugly
if (s->bits != 8 && !s->lossless){
av_log(s->avctx, AV_LOG_ERROR, "only 8 bits/component accepted\n");
return -1;
}
height = get_bits(&s->gb, 16);
width = get_bits(&s->gb, 16);
//HACK for odd_height.mov
if(s->interlaced && s->width == width && s->height == height + 1)
height= s->height;
av_log(s->avctx, AV_LOG_DEBUG, "sof0: picture: %dx%d\n", width, height);
if(avcodec_check_dimensions(s->avctx, width, height))
return -1;
nb_components = get_bits(&s->gb, 8);
if (nb_components <= 0 ||
nb_components > MAX_COMPONENTS)
return -1;
if (s->ls && !(s->bits <= 8 || nb_components == 1)){
av_log(s->avctx, AV_LOG_ERROR, "only <= 8 bits/component or 16-bit gray accepted for JPEG-LS\n");
return -1;
}
s->nb_components = nb_components;
s->h_max = 1;
s->v_max = 1;
for(i=0;i<nb_components;i++) {
/* component id */
s->component_id[i] = get_bits(&s->gb, 8) - 1;
s->h_count[i] = get_bits(&s->gb, 4);
s->v_count[i] = get_bits(&s->gb, 4);
/* compute hmax and vmax (only used in interleaved case) */
if (s->h_count[i] > s->h_max)
s->h_max = s->h_count[i];
if (s->v_count[i] > s->v_max)
s->v_max = s->v_count[i];
s->quant_index[i] = get_bits(&s->gb, 8);
if (s->quant_index[i] >= 4)
return -1;
av_log(s->avctx, AV_LOG_DEBUG, "component %d %d:%d id: %d quant:%d\n", i, s->h_count[i],
s->v_count[i], s->component_id[i], s->quant_index[i]);
}
if(s->ls && (s->h_max > 1 || s->v_max > 1)) {
av_log(s->avctx, AV_LOG_ERROR, "Subsampling in JPEG-LS is not supported.\n");
return -1;
}
if(s->v_max==1 && s->h_max==1 && s->lossless==1) s->rgb=1;
/* if different size, realloc/alloc picture */
/* XXX: also check h_count and v_count */
if (width != s->width || height != s->height) {
av_freep(&s->qscale_table);
s->width = width;
s->height = height;
s->interlaced = 0;
/* test interlaced mode */
if (s->first_picture &&
s->org_height != 0 &&
s->height < ((s->org_height * 3) / 4)) {
s->interlaced = 1;
s->bottom_field = s->interlace_polarity;
s->picture.interlaced_frame = 1;
s->picture.top_field_first = !s->interlace_polarity;
height *= 2;
}
avcodec_set_dimensions(s->avctx, width, height);
s->qscale_table= av_mallocz((s->width+15)/16);
s->first_picture = 0;
}
if(s->interlaced && (s->bottom_field == !s->interlace_polarity))
return 0;
/* XXX: not complete test ! */
pix_fmt_id = (s->h_count[0] << 20) | (s->v_count[0] << 16) |
(s->h_count[1] << 12) | (s->v_count[1] << 8) |
(s->h_count[2] << 4) | s->v_count[2];
av_log(s->avctx, AV_LOG_DEBUG, "pix fmt id %x\n", pix_fmt_id);
switch(pix_fmt_id){
case 0x222222:
case 0x111111:
if(s->rgb){
s->avctx->pix_fmt = PIX_FMT_RGB32;
}else if(s->nb_components==3)
s->avctx->pix_fmt = s->cs_itu601 ? PIX_FMT_YUV444P : PIX_FMT_YUVJ444P;
else
s->avctx->pix_fmt = PIX_FMT_GRAY8;
break;
case 0x211111:
case 0x221212:
s->avctx->pix_fmt = s->cs_itu601 ? PIX_FMT_YUV422P : PIX_FMT_YUVJ422P;
break;
default:
case 0x221111:
s->avctx->pix_fmt = s->cs_itu601 ? PIX_FMT_YUV420P : PIX_FMT_YUVJ420P;
break;
}
if(s->ls){
if(s->nb_components > 1)
s->avctx->pix_fmt = PIX_FMT_RGB24;
else if(s->bits <= 8)
s->avctx->pix_fmt = PIX_FMT_GRAY8;
else
s->avctx->pix_fmt = PIX_FMT_GRAY16;
}
if(s->picture.data[0])
s->avctx->release_buffer(s->avctx, &s->picture);
s->picture.reference= 0;
if(s->avctx->get_buffer(s->avctx, &s->picture) < 0){
av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
s->picture.pict_type= I_TYPE;
s->picture.key_frame= 1;
for(i=0; i<3; i++){
s->linesize[i]= s->picture.linesize[i] << s->interlaced;
}
// printf("%d %d %d %d %d %d\n", s->width, s->height, s->linesize[0], s->linesize[1], s->interlaced, s->avctx->height);
if (len != (8+(3*nb_components)))
{
av_log(s->avctx, AV_LOG_DEBUG, "decode_sof0: error, len(%d) mismatch\n", len);
}
/* totally blank picture as progressive JPEG will only add details to it */
if(s->progressive){
memset(s->picture.data[0], 0, s->picture.linesize[0] * s->height);
memset(s->picture.data[1], 0, s->picture.linesize[1] * s->height >> (s->v_max - s->v_count[1]));
memset(s->picture.data[2], 0, s->picture.linesize[2] * s->height >> (s->v_max - s->v_count[2]));
}
return 0;
}
static inline int mjpeg_decode_dc(MJpegDecodeContext *s, int dc_index)
{
int code;
code = get_vlc2(&s->gb, s->vlcs[0][dc_index].table, 9, 2);
if (code < 0)
{
av_log(s->avctx, AV_LOG_WARNING, "mjpeg_decode_dc: bad vlc: %d:%d (%p)\n", 0, dc_index,
&s->vlcs[0][dc_index]);
return 0xffff;
}
if(code)
return get_xbits(&s->gb, code);
else
return 0;
}
/* decode block and dequantize */
static int decode_block(MJpegDecodeContext *s, DCTELEM *block,
int component, int dc_index, int ac_index, int16_t *quant_matrix)
{
int code, i, j, level, val;
/* DC coef */
val = mjpeg_decode_dc(s, dc_index);
if (val == 0xffff) {
av_log(s->avctx, AV_LOG_ERROR, "error dc\n");
return -1;
}
val = val * quant_matrix[0] + s->last_dc[component];
s->last_dc[component] = val;
block[0] = val;
/* AC coefs */
i = 0;
{OPEN_READER(re, &s->gb)
for(;;) {
UPDATE_CACHE(re, &s->gb);
GET_VLC(code, re, &s->gb, s->vlcs[1][ac_index].table, 9, 2)
/* EOB */
if (code == 0x10)
break;
i += ((unsigned)code) >> 4;
if(code != 0x100){
code &= 0xf;
if(code > MIN_CACHE_BITS - 16){
UPDATE_CACHE(re, &s->gb)
}
{
int cache=GET_CACHE(re,&s->gb);
int sign=(~cache)>>31;
level = (NEG_USR32(sign ^ cache,code) ^ sign) - sign;
}
LAST_SKIP_BITS(re, &s->gb, code)
if (i >= 63) {
if(i == 63){
j = s->scantable.permutated[63];
block[j] = level * quant_matrix[j];
break;
}
av_log(s->avctx, AV_LOG_ERROR, "error count: %d\n", i);
return -1;
}
j = s->scantable.permutated[i];
block[j] = level * quant_matrix[j];
}
}
CLOSE_READER(re, &s->gb)}
return 0;
}
/* decode block and dequantize - progressive JPEG version */
static int decode_block_progressive(MJpegDecodeContext *s, DCTELEM *block,
int component, int dc_index, int ac_index, int16_t *quant_matrix,
int ss, int se, int Ah, int Al, int *EOBRUN)
{
int code, i, j, level, val, run;
/* DC coef */
if(!ss){
val = mjpeg_decode_dc(s, dc_index);
if (val == 0xffff) {
av_log(s->avctx, AV_LOG_ERROR, "error dc\n");
return -1;
}
val = (val * quant_matrix[0] << Al) + s->last_dc[component];
}else
val = 0;
s->last_dc[component] = val;
block[0] = val;
if(!se) return 0;
/* AC coefs */
if(*EOBRUN){
(*EOBRUN)--;
return 0;
}
{OPEN_READER(re, &s->gb)
for(i=ss;;i++) {
UPDATE_CACHE(re, &s->gb);
GET_VLC(code, re, &s->gb, s->vlcs[1][ac_index].table, 9, 2)
/* Progressive JPEG use AC coeffs from zero and this decoder sets offset 16 by default */
code -= 16;
if(code & 0xF) {
i += ((unsigned) code) >> 4;
code &= 0xf;
if(code > MIN_CACHE_BITS - 16){
UPDATE_CACHE(re, &s->gb)
}
{
int cache=GET_CACHE(re,&s->gb);
int sign=(~cache)>>31;
level = (NEG_USR32(sign ^ cache,code) ^ sign) - sign;
}
LAST_SKIP_BITS(re, &s->gb, code)
if (i >= se) {
if(i == se){
j = s->scantable.permutated[se];
block[j] = level * quant_matrix[j] << Al;
break;
}
av_log(s->avctx, AV_LOG_ERROR, "error count: %d\n", i);
return -1;
}
j = s->scantable.permutated[i];
block[j] = level * quant_matrix[j] << Al;
}else{
run = ((unsigned) code) >> 4;
if(run == 0xF){// ZRL - skip 15 coefficients
i += 15;
}else{
val = run;
run = (1 << run);
UPDATE_CACHE(re, &s->gb);
run += (GET_CACHE(re, &s->gb) >> (32 - val)) & (run - 1);
if(val)
LAST_SKIP_BITS(re, &s->gb, val);
*EOBRUN = run - 1;
break;
}
}
}
CLOSE_READER(re, &s->gb)}
return 0;
}
static int ljpeg_decode_rgb_scan(MJpegDecodeContext *s, int predictor, int point_transform){
int i, mb_x, mb_y;
uint16_t buffer[32768][4];
int left[3], top[3], topleft[3];
const int linesize= s->linesize[0];
const int mask= (1<<s->bits)-1;
if((unsigned)s->mb_width > 32768) //dynamic alloc
return -1;
for(i=0; i<3; i++){
buffer[0][i]= 1 << (s->bits + point_transform - 1);
}
for(mb_y = 0; mb_y < s->mb_height; mb_y++) {
const int modified_predictor= mb_y ? predictor : 1;
uint8_t *ptr = s->picture.data[0] + (linesize * mb_y);
if (s->interlaced && s->bottom_field)
ptr += linesize >> 1;
for(i=0; i<3; i++){
top[i]= left[i]= topleft[i]= buffer[0][i];
}
for(mb_x = 0; mb_x < s->mb_width; mb_x++) {
if (s->restart_interval && !s->restart_count)
s->restart_count = s->restart_interval;
for(i=0;i<3;i++) {
int pred;
topleft[i]= top[i];
top[i]= buffer[mb_x][i];
PREDICT(pred, topleft[i], top[i], left[i], modified_predictor);
left[i]=
buffer[mb_x][i]= mask & (pred + (mjpeg_decode_dc(s, s->dc_index[i]) << point_transform));
}
if (s->restart_interval && !--s->restart_count) {
align_get_bits(&s->gb);
skip_bits(&s->gb, 16); /* skip RSTn */
}
}
if(s->rct){
for(mb_x = 0; mb_x < s->mb_width; mb_x++) {
ptr[4*mb_x+1] = buffer[mb_x][0] - ((buffer[mb_x][1] + buffer[mb_x][2] - 0x200)>>2);
ptr[4*mb_x+0] = buffer[mb_x][1] + ptr[4*mb_x+1];
ptr[4*mb_x+2] = buffer[mb_x][2] + ptr[4*mb_x+1];
}
}else if(s->pegasus_rct){
for(mb_x = 0; mb_x < s->mb_width; mb_x++) {
ptr[4*mb_x+1] = buffer[mb_x][0] - ((buffer[mb_x][1] + buffer[mb_x][2])>>2);
ptr[4*mb_x+0] = buffer[mb_x][1] + ptr[4*mb_x+1];
ptr[4*mb_x+2] = buffer[mb_x][2] + ptr[4*mb_x+1];
}
}else{
for(mb_x = 0; mb_x < s->mb_width; mb_x++) {
ptr[4*mb_x+0] = buffer[mb_x][0];
ptr[4*mb_x+1] = buffer[mb_x][1];
ptr[4*mb_x+2] = buffer[mb_x][2];
}
}
}
return 0;
}
static int ljpeg_decode_yuv_scan(MJpegDecodeContext *s, int predictor, int point_transform){
int i, mb_x, mb_y;
const int nb_components=3;
for(mb_y = 0; mb_y < s->mb_height; mb_y++) {
for(mb_x = 0; mb_x < s->mb_width; mb_x++) {
if (s->restart_interval && !s->restart_count)
s->restart_count = s->restart_interval;
if(mb_x==0 || mb_y==0 || s->interlaced){
for(i=0;i<nb_components;i++) {
uint8_t *ptr;
int n, h, v, x, y, c, j, linesize;
n = s->nb_blocks[i];
c = s->comp_index[i];
h = s->h_scount[i];
v = s->v_scount[i];
x = 0;
y = 0;
linesize= s->linesize[c];
for(j=0; j<n; j++) {
int pred;
ptr = s->picture.data[c] + (linesize * (v * mb_y + y)) + (h * mb_x + x); //FIXME optimize this crap
if(y==0 && mb_y==0){
if(x==0 && mb_x==0){
pred= 128 << point_transform;
}else{
pred= ptr[-1];
}
}else{
if(x==0 && mb_x==0){
pred= ptr[-linesize];
}else{
PREDICT(pred, ptr[-linesize-1], ptr[-linesize], ptr[-1], predictor);
}
}
if (s->interlaced && s->bottom_field)
ptr += linesize >> 1;
*ptr= pred + (mjpeg_decode_dc(s, s->dc_index[i]) << point_transform);
if (++x == h) {
x = 0;
y++;
}
}
}
}else{
for(i=0;i<nb_components;i++) {
uint8_t *ptr;
int n, h, v, x, y, c, j, linesize;
n = s->nb_blocks[i];
c = s->comp_index[i];
h = s->h_scount[i];
v = s->v_scount[i];
x = 0;
y = 0;
linesize= s->linesize[c];
for(j=0; j<n; j++) {
int pred;
ptr = s->picture.data[c] + (linesize * (v * mb_y + y)) + (h * mb_x + x); //FIXME optimize this crap
PREDICT(pred, ptr[-linesize-1], ptr[-linesize], ptr[-1], predictor);
*ptr= pred + (mjpeg_decode_dc(s, s->dc_index[i]) << point_transform);
if (++x == h) {
x = 0;
y++;
}
}
}
}
if (s->restart_interval && !--s->restart_count) {
align_get_bits(&s->gb);
skip_bits(&s->gb, 16); /* skip RSTn */
}
}
}
return 0;
}
static int mjpeg_decode_scan(MJpegDecodeContext *s, int nb_components, int ss, int se, int Ah, int Al){
int i, mb_x, mb_y;
int EOBRUN = 0;
if(Ah) return 0; /* TODO decode refinement planes too */
for(mb_y = 0; mb_y < s->mb_height; mb_y++) {
for(mb_x = 0; mb_x < s->mb_width; mb_x++) {
if (s->restart_interval && !s->restart_count)
s->restart_count = s->restart_interval;
for(i=0;i<nb_components;i++) {
uint8_t *ptr;
int n, h, v, x, y, c, j;
n = s->nb_blocks[i];
c = s->comp_index[i];
h = s->h_scount[i];
v = s->v_scount[i];
x = 0;
y = 0;
for(j=0;j<n;j++) {
memset(s->block, 0, sizeof(s->block));
if (!s->progressive && decode_block(s, s->block, i,
s->dc_index[i], s->ac_index[i],
s->quant_matrixes[ s->quant_index[c] ]) < 0) {
av_log(s->avctx, AV_LOG_ERROR, "error y=%d x=%d\n", mb_y, mb_x);
return -1;
}
if (s->progressive && decode_block_progressive(s, s->block, i,
s->dc_index[i], s->ac_index[i],
s->quant_matrixes[ s->quant_index[c] ], ss, se, Ah, Al, &EOBRUN) < 0) {
av_log(s->avctx, AV_LOG_ERROR, "error y=%d x=%d\n", mb_y, mb_x);
return -1;
}
// av_log(s->avctx, AV_LOG_DEBUG, "mb: %d %d processed\n", mb_y, mb_x);
ptr = s->picture.data[c] +
(((s->linesize[c] * (v * mb_y + y) * 8) +
(h * mb_x + x) * 8) >> s->avctx->lowres);
if (s->interlaced && s->bottom_field)
ptr += s->linesize[c] >> 1;
//av_log(NULL, AV_LOG_DEBUG, "%d %d %d %d %d %d %d %d \n", mb_x, mb_y, x, y, c, s->bottom_field, (v * mb_y + y) * 8, (h * mb_x + x) * 8);
if(!s->progressive)
s->dsp.idct_put(ptr, s->linesize[c], s->block);
else
s->dsp.idct_add(ptr, s->linesize[c], s->block);
if (++x == h) {
x = 0;
y++;
}
}
}
/* (< 1350) buggy workaround for Spectralfan.mov, should be fixed */
if (s->restart_interval && (s->restart_interval < 1350) &&
!--s->restart_count) {
align_get_bits(&s->gb);
skip_bits(&s->gb, 16); /* skip RSTn */
for (i=0; i<nb_components; i++) /* reset dc */
s->last_dc[i] = 1024;
}
}
}
return 0;
}
static int mjpeg_decode_sos(MJpegDecodeContext *s)
{
int len, nb_components, i, h, v, predictor, point_transform;
int vmax, hmax, index, id;
const int block_size= s->lossless ? 1 : 8;
int ilv, prev_shift;
/* XXX: verify len field validity */
len = get_bits(&s->gb, 16);
nb_components = get_bits(&s->gb, 8);
if (len != 6+2*nb_components)
{
av_log(s->avctx, AV_LOG_ERROR, "decode_sos: invalid len (%d)\n", len);
return -1;
}
vmax = 0;
hmax = 0;
for(i=0;i<nb_components;i++) {
id = get_bits(&s->gb, 8) - 1;
av_log(s->avctx, AV_LOG_DEBUG, "component: %d\n", id);
/* find component index */
for(index=0;index<s->nb_components;index++)
if (id == s->component_id[index])
break;
if (index == s->nb_components)
{
av_log(s->avctx, AV_LOG_ERROR, "decode_sos: index(%d) out of components\n", index);
return -1;
}
s->comp_index[i] = index;
s->nb_blocks[i] = s->h_count[index] * s->v_count[index];
s->h_scount[i] = s->h_count[index];
s->v_scount[i] = s->v_count[index];
s->dc_index[i] = get_bits(&s->gb, 4);
s->ac_index[i] = get_bits(&s->gb, 4);
if (s->dc_index[i] < 0 || s->ac_index[i] < 0 ||
s->dc_index[i] >= 4 || s->ac_index[i] >= 4)
goto out_of_range;
#if 0 //buggy
switch(s->start_code)
{
case SOF0:
if (dc_index[i] > 1 || ac_index[i] > 1)
goto out_of_range;
break;
case SOF1:
case SOF2:
if (dc_index[i] > 3 || ac_index[i] > 3)
goto out_of_range;
break;
case SOF3:
if (dc_index[i] > 3 || ac_index[i] != 0)
goto out_of_range;
break;
}
#endif
}
predictor= get_bits(&s->gb, 8); /* JPEG Ss / lossless JPEG predictor /JPEG-LS NEAR */
ilv= get_bits(&s->gb, 8); /* JPEG Se / JPEG-LS ILV */
prev_shift = get_bits(&s->gb, 4); /* Ah */
point_transform= get_bits(&s->gb, 4); /* Al */
for(i=0;i<nb_components;i++)
s->last_dc[i] = 1024;
if (nb_components > 1) {
/* interleaved stream */
s->mb_width = (s->width + s->h_max * block_size - 1) / (s->h_max * block_size);
s->mb_height = (s->height + s->v_max * block_size - 1) / (s->v_max * block_size);
} else if(!s->ls) { /* skip this for JPEG-LS */
h = s->h_max / s->h_scount[0];
v = s->v_max / s->v_scount[0];
s->mb_width = (s->width + h * block_size - 1) / (h * block_size);
s->mb_height = (s->height + v * block_size - 1) / (v * block_size);
s->nb_blocks[0] = 1;
s->h_scount[0] = 1;
s->v_scount[0] = 1;
}
if(s->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_DEBUG, "%s %s p:%d >>:%d ilv:%d bits:%d %s\n", s->lossless ? "lossless" : "sequencial DCT", s->rgb ? "RGB" : "",
predictor, point_transform, ilv, s->bits,
s->pegasus_rct ? "PRCT" : (s->rct ? "RCT" : ""));
/* mjpeg-b can have padding bytes between sos and image data, skip them */
for (i = s->mjpb_skiptosod; i > 0; i--)
skip_bits(&s->gb, 8);
if(s->lossless){
if(s->ls){
// for(){
// reset_ls_coding_parameters(s, 0);
ls_decode_picture(s, predictor, point_transform, ilv);
}else{
if(s->rgb){
if(ljpeg_decode_rgb_scan(s, predictor, point_transform) < 0)
return -1;
}else{
if(ljpeg_decode_yuv_scan(s, predictor, point_transform) < 0)
return -1;
}
}
}else{
if(mjpeg_decode_scan(s, nb_components, predictor, ilv, prev_shift, point_transform) < 0)
return -1;
}
emms_c();
return 0;
out_of_range:
av_log(s->avctx, AV_LOG_ERROR, "decode_sos: ac/dc index out of range\n");
return -1;
}
static int mjpeg_decode_dri(MJpegDecodeContext *s)
{
if (get_bits(&s->gb, 16) != 4)
return -1;
s->restart_interval = get_bits(&s->gb, 16);
s->restart_count = 0;
av_log(s->avctx, AV_LOG_DEBUG, "restart interval: %d\n", s->restart_interval);
return 0;
}
static int mjpeg_decode_app(MJpegDecodeContext *s)
{
int len, id, i;
len = get_bits(&s->gb, 16);
if (len < 5)
return -1;
if(8*len + get_bits_count(&s->gb) > s->gb.size_in_bits)
return -1;
id = (get_bits(&s->gb, 16) << 16) | get_bits(&s->gb, 16);
id = be2me_32(id);
len -= 6;
if(s->avctx->debug & FF_DEBUG_STARTCODE){
av_log(s->avctx, AV_LOG_DEBUG, "APPx %8X\n", id);
}
/* buggy AVID, it puts EOI only at every 10th frame */
/* also this fourcc is used by non-avid files too, it holds some
informations, but it's always present in AVID creates files */
if (id == ff_get_fourcc("AVI1"))
{
/* structure:
4bytes AVI1
1bytes polarity
1bytes always zero
4bytes field_size
4bytes field_size_less_padding
*/
s->buggy_avid = 1;
// if (s->first_picture)
// printf("mjpeg: workarounding buggy AVID\n");
i = get_bits(&s->gb, 8);
if (i==2) s->bottom_field= 1;
else if(i==1) s->bottom_field= 0;
#if 0
skip_bits(&s->gb, 8);
skip_bits(&s->gb, 32);
skip_bits(&s->gb, 32);
len -= 10;
#endif
// if (s->interlace_polarity)
// printf("mjpeg: interlace polarity: %d\n", s->interlace_polarity);
goto out;
}
// len -= 2;
if (id == ff_get_fourcc("JFIF"))
{
int t_w, t_h, v1, v2;
skip_bits(&s->gb, 8); /* the trailing zero-byte */
v1= get_bits(&s->gb, 8);
v2= get_bits(&s->gb, 8);
skip_bits(&s->gb, 8);
s->avctx->sample_aspect_ratio.num= get_bits(&s->gb, 16);
s->avctx->sample_aspect_ratio.den= get_bits(&s->gb, 16);
if (s->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_INFO, "mjpeg: JFIF header found (version: %x.%x) SAR=%d/%d\n",
v1, v2,
s->avctx->sample_aspect_ratio.num,
s->avctx->sample_aspect_ratio.den
);
t_w = get_bits(&s->gb, 8);
t_h = get_bits(&s->gb, 8);
if (t_w && t_h)
{
/* skip thumbnail */
if (len-10-(t_w*t_h*3) > 0)
len -= t_w*t_h*3;
}
len -= 10;
goto out;
}
if (id == ff_get_fourcc("Adob") && (get_bits(&s->gb, 8) == 'e'))
{
if (s->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_INFO, "mjpeg: Adobe header found\n");
skip_bits(&s->gb, 16); /* version */
skip_bits(&s->gb, 16); /* flags0 */
skip_bits(&s->gb, 16); /* flags1 */
skip_bits(&s->gb, 8); /* transform */
len -= 7;
goto out;
}
if (id == ff_get_fourcc("LJIF")){
if (s->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_INFO, "Pegasus lossless jpeg header found\n");
skip_bits(&s->gb, 16); /* version ? */
skip_bits(&s->gb, 16); /* unknwon always 0? */
skip_bits(&s->gb, 16); /* unknwon always 0? */
skip_bits(&s->gb, 16); /* unknwon always 0? */
switch( get_bits(&s->gb, 8)){
case 1:
s->rgb= 1;
s->pegasus_rct=0;
break;
case 2:
s->rgb= 1;
s->pegasus_rct=1;
break;
default:
av_log(s->avctx, AV_LOG_ERROR, "unknown colorspace\n");
}
len -= 9;
goto out;
}
/* Apple MJPEG-A */
if ((s->start_code == APP1) && (len > (0x28 - 8)))
{
id = (get_bits(&s->gb, 16) << 16) | get_bits(&s->gb, 16);
id = be2me_32(id);
len -= 4;
if (id == ff_get_fourcc("mjpg")) /* Apple MJPEG-A */
{
#if 0
skip_bits(&s->gb, 32); /* field size */
skip_bits(&s->gb, 32); /* pad field size */
skip_bits(&s->gb, 32); /* next off */
skip_bits(&s->gb, 32); /* quant off */
skip_bits(&s->gb, 32); /* huff off */
skip_bits(&s->gb, 32); /* image off */
skip_bits(&s->gb, 32); /* scan off */
skip_bits(&s->gb, 32); /* data off */
#endif
if (s->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_INFO, "mjpeg: Apple MJPEG-A header found\n");
}
}
out:
/* slow but needed for extreme adobe jpegs */
if (len < 0)
av_log(s->avctx, AV_LOG_ERROR, "mjpeg: error, decode_app parser read over the end\n");
while(--len > 0)
skip_bits(&s->gb, 8);
return 0;
}
static int mjpeg_decode_com(MJpegDecodeContext *s)
{
int len = get_bits(&s->gb, 16);
if (len >= 2 && 8*len - 16 + get_bits_count(&s->gb) <= s->gb.size_in_bits) {
char *cbuf = av_malloc(len - 1);
if (cbuf) {
int i;
for (i = 0; i < len - 2; i++)
cbuf[i] = get_bits(&s->gb, 8);
if (i > 0 && cbuf[i-1] == '\n')
cbuf[i-1] = 0;
else
cbuf[i] = 0;
if(s->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_INFO, "mjpeg comment: '%s'\n", cbuf);
/* buggy avid, it puts EOI only at every 10th frame */
if (!strcmp(cbuf, "AVID"))
{
s->buggy_avid = 1;
// if (s->first_picture)
// printf("mjpeg: workarounding buggy AVID\n");
}
else if(!strcmp(cbuf, "CS=ITU601")){
s->cs_itu601= 1;
}
av_free(cbuf);
}
}
return 0;
}
#if 0
static int valid_marker_list[] =
{
/* 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f */
/* 0 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 1 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 2 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 3 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 4 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 5 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 6 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 7 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 8 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 9 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* a */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* b */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* c */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
/* d */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
/* e */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
/* f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
}
#endif
/* return the 8 bit start code value and update the search
state. Return -1 if no start code found */
static int find_marker(uint8_t **pbuf_ptr, uint8_t *buf_end)
{
uint8_t *buf_ptr;
unsigned int v, v2;
int val;
#ifdef DEBUG
int skipped=0;
#endif
buf_ptr = *pbuf_ptr;
while (buf_ptr < buf_end) {
v = *buf_ptr++;
v2 = *buf_ptr;
if ((v == 0xff) && (v2 >= 0xc0) && (v2 <= 0xfe) && buf_ptr < buf_end) {
val = *buf_ptr++;
goto found;
}
#ifdef DEBUG
skipped++;
#endif
}
val = -1;
found:
#ifdef DEBUG
av_log(NULL, AV_LOG_VERBOSE, "find_marker skipped %d bytes\n", skipped);
#endif
*pbuf_ptr = buf_ptr;
return val;
}
static int mjpeg_decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
uint8_t *buf, int buf_size)
{
MJpegDecodeContext *s = avctx->priv_data;
uint8_t *buf_end, *buf_ptr;
int start_code;
AVFrame *picture = data;
buf_ptr = buf;
buf_end = buf + buf_size;
while (buf_ptr < buf_end) {
/* find start next marker */
start_code = find_marker(&buf_ptr, buf_end);
{
/* EOF */
if (start_code < 0) {
goto the_end;
} else {
av_log(avctx, AV_LOG_DEBUG, "marker=%x avail_size_in_buf=%d\n", start_code, buf_end - buf_ptr);
if ((buf_end - buf_ptr) > s->buffer_size)
{
av_free(s->buffer);
s->buffer_size = buf_end-buf_ptr;
s->buffer = av_malloc(s->buffer_size + FF_INPUT_BUFFER_PADDING_SIZE);
av_log(avctx, AV_LOG_DEBUG, "buffer too small, expanding to %d bytes\n",
s->buffer_size);
}
/* unescape buffer of SOS, use special treatment for JPEG-LS */
if (start_code == SOS && !s->ls)
{
uint8_t *src = buf_ptr;
uint8_t *dst = s->buffer;
while (src<buf_end)
{
uint8_t x = *(src++);
*(dst++) = x;
if (avctx->codec_id != CODEC_ID_THP)
{
if (x == 0xff) {
while (src < buf_end && x == 0xff)
x = *(src++);
if (x >= 0xd0 && x <= 0xd7)
*(dst++) = x;
else if (x)
break;
}
}
}
init_get_bits(&s->gb, s->buffer, (dst - s->buffer)*8);
av_log(avctx, AV_LOG_DEBUG, "escaping removed %d bytes\n",
(buf_end - buf_ptr) - (dst - s->buffer));
}
else if(start_code == SOS && s->ls){
uint8_t *src = buf_ptr;
uint8_t *dst = s->buffer;
int bit_count = 0;
int t = 0, b = 0;
PutBitContext pb;
s->cur_scan++;
/* find marker */
while (src + t < buf_end){
uint8_t x = src[t++];
if (x == 0xff){
while((src + t < buf_end) && x == 0xff)
x = src[t++];
if (x & 0x80) {
t -= 2;
break;
}
}
}
bit_count = t * 8;
init_put_bits(&pb, dst, t);
/* unescape bitstream */
while(b < t){
uint8_t x = src[b++];
put_bits(&pb, 8, x);
if(x == 0xFF){
x = src[b++];
put_bits(&pb, 7, x);
bit_count--;
}
}
flush_put_bits(&pb);
init_get_bits(&s->gb, dst, bit_count);
}
else
init_get_bits(&s->gb, buf_ptr, (buf_end - buf_ptr)*8);
s->start_code = start_code;
if(s->avctx->debug & FF_DEBUG_STARTCODE){
av_log(avctx, AV_LOG_DEBUG, "startcode: %X\n", start_code);
}
/* process markers */
if (start_code >= 0xd0 && start_code <= 0xd7) {
av_log(avctx, AV_LOG_DEBUG, "restart marker: %d\n", start_code&0x0f);
/* APP fields */
} else if (start_code >= APP0 && start_code <= APP15) {
mjpeg_decode_app(s);
/* Comment */
} else if (start_code == COM){
mjpeg_decode_com(s);
}
switch(start_code) {
case SOI:
s->restart_interval = 0;
s->restart_count = 0;
/* nothing to do on SOI */
break;
case DQT:
mjpeg_decode_dqt(s);
break;
case DHT:
if(mjpeg_decode_dht(s) < 0){
av_log(avctx, AV_LOG_ERROR, "huffman table decode error\n");
return -1;
}
break;
case SOF0:
s->lossless=0;
s->ls=0;
s->progressive=0;
if (mjpeg_decode_sof(s) < 0)
return -1;
break;
case SOF2:
s->lossless=0;
s->ls=0;
s->progressive=1;
if (mjpeg_decode_sof(s) < 0)
return -1;
break;
case SOF3:
s->lossless=1;
s->ls=0;
s->progressive=0;
if (mjpeg_decode_sof(s) < 0)
return -1;
break;
case SOF48:
s->lossless=1;
s->ls=1;
s->progressive=0;
if (mjpeg_decode_sof(s) < 0)
return -1;
break;
case LSE:
if (decode_lse(s) < 0)
return -1;
break;
case EOI:
s->cur_scan = 0;
if ((s->buggy_avid && !s->interlaced) || s->restart_interval)
break;
eoi_parser:
{
if (s->interlaced) {
s->bottom_field ^= 1;
/* if not bottom field, do not output image yet */
if (s->bottom_field == !s->interlace_polarity)
goto not_the_end;
}
*picture = s->picture;
*data_size = sizeof(AVFrame);
if(!s->lossless){
picture->quality= FFMAX(FFMAX(s->qscale[0], s->qscale[1]), s->qscale[2]);
picture->qstride= 0;
picture->qscale_table= s->qscale_table;
memset(picture->qscale_table, picture->quality, (s->width+15)/16);
if(avctx->debug & FF_DEBUG_QP)
av_log(avctx, AV_LOG_DEBUG, "QP: %d\n", picture->quality);
picture->quality*= FF_QP2LAMBDA;
}
goto the_end;
}
break;
case SOS:
mjpeg_decode_sos(s);
/* buggy avid puts EOI every 10-20th frame */
/* if restart period is over process EOI */
if ((s->buggy_avid && !s->interlaced) || s->restart_interval)
goto eoi_parser;
break;
case DRI:
mjpeg_decode_dri(s);
break;
case SOF1:
case SOF5:
case SOF6:
case SOF7:
case SOF9:
case SOF10:
case SOF11:
case SOF13:
case SOF14:
case SOF15:
case JPG:
av_log(avctx, AV_LOG_ERROR, "mjpeg: unsupported coding type (%x)\n", start_code);
break;
// default:
// printf("mjpeg: unsupported marker (%x)\n", start_code);
// break;
}
not_the_end:
/* eof process start code */
buf_ptr += (get_bits_count(&s->gb)+7)/8;
av_log(avctx, AV_LOG_DEBUG, "marker parser used %d bytes (%d bits)\n",
(get_bits_count(&s->gb)+7)/8, get_bits_count(&s->gb));
}
}
}
the_end:
av_log(avctx, AV_LOG_DEBUG, "mjpeg decode frame unused %d bytes\n", buf_end - buf_ptr);
// return buf_end - buf_ptr;
return buf_ptr - buf;
}
static int mjpegb_decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
uint8_t *buf, int buf_size)
{
MJpegDecodeContext *s = avctx->priv_data;
uint8_t *buf_end, *buf_ptr;
AVFrame *picture = data;
GetBitContext hgb; /* for the header */
uint32_t dqt_offs, dht_offs, sof_offs, sos_offs, second_field_offs;
uint32_t field_size, sod_offs;
buf_ptr = buf;
buf_end = buf + buf_size;
read_header:
/* reset on every SOI */
s->restart_interval = 0;
s->restart_count = 0;
s->mjpb_skiptosod = 0;
init_get_bits(&hgb, buf_ptr, /*buf_size*/(buf_end - buf_ptr)*8);
skip_bits(&hgb, 32); /* reserved zeros */
if (get_bits_long(&hgb, 32) != MKBETAG('m','j','p','g'))
{
av_log(avctx, AV_LOG_WARNING, "not mjpeg-b (bad fourcc)\n");
return 0;
}
field_size = get_bits_long(&hgb, 32); /* field size */
av_log(avctx, AV_LOG_DEBUG, "field size: 0x%x\n", field_size);
skip_bits(&hgb, 32); /* padded field size */
second_field_offs = get_bits_long(&hgb, 32);
av_log(avctx, AV_LOG_DEBUG, "second field offs: 0x%x\n", second_field_offs);
dqt_offs = get_bits_long(&hgb, 32);
av_log(avctx, AV_LOG_DEBUG, "dqt offs: 0x%x\n", dqt_offs);
if (dqt_offs)
{
init_get_bits(&s->gb, buf+dqt_offs, (buf_end - (buf+dqt_offs))*8);
s->start_code = DQT;
mjpeg_decode_dqt(s);
}
dht_offs = get_bits_long(&hgb, 32);
av_log(avctx, AV_LOG_DEBUG, "dht offs: 0x%x\n", dht_offs);
if (dht_offs)
{
init_get_bits(&s->gb, buf+dht_offs, (buf_end - (buf+dht_offs))*8);
s->start_code = DHT;
mjpeg_decode_dht(s);
}
sof_offs = get_bits_long(&hgb, 32);
av_log(avctx, AV_LOG_DEBUG, "sof offs: 0x%x\n", sof_offs);
if (sof_offs)
{
init_get_bits(&s->gb, buf+sof_offs, (buf_end - (buf+sof_offs))*8);
s->start_code = SOF0;
if (mjpeg_decode_sof(s) < 0)
return -1;
}
sos_offs = get_bits_long(&hgb, 32);
av_log(avctx, AV_LOG_DEBUG, "sos offs: 0x%x\n", sos_offs);
sod_offs = get_bits_long(&hgb, 32);
av_log(avctx, AV_LOG_DEBUG, "sod offs: 0x%x\n", sod_offs);
if (sos_offs)
{
// init_get_bits(&s->gb, buf+sos_offs, (buf_end - (buf+sos_offs))*8);
init_get_bits(&s->gb, buf+sos_offs, field_size*8);
s->mjpb_skiptosod = (sod_offs - sos_offs - show_bits(&s->gb, 16));
s->start_code = SOS;
mjpeg_decode_sos(s);
}
if (s->interlaced) {
s->bottom_field ^= 1;
/* if not bottom field, do not output image yet */
if (s->bottom_field && second_field_offs)
{
buf_ptr = buf + second_field_offs;
second_field_offs = 0;
goto read_header;
}
}
//XXX FIXME factorize, this looks very similar to the EOI code
*picture= s->picture;
*data_size = sizeof(AVFrame);
if(!s->lossless){
picture->quality= FFMAX(FFMAX(s->qscale[0], s->qscale[1]), s->qscale[2]);
picture->qstride= 0;
picture->qscale_table= s->qscale_table;
memset(picture->qscale_table, picture->quality, (s->width+15)/16);
if(avctx->debug & FF_DEBUG_QP)
av_log(avctx, AV_LOG_DEBUG, "QP: %d\n", picture->quality);
picture->quality*= FF_QP2LAMBDA;
}
return buf_ptr - buf;
}
#include "sp5x.h"
static int sp5x_decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
uint8_t *buf, int buf_size)
{
#if 0
MJpegDecodeContext *s = avctx->priv_data;
#endif
const int qscale = 5;
uint8_t *buf_ptr, *buf_end, *recoded;
int i = 0, j = 0;
if (!avctx->width || !avctx->height)
return -1;
buf_ptr = buf;
buf_end = buf + buf_size;
#if 1
recoded = av_mallocz(buf_size + 1024);
if (!recoded)
return -1;
/* SOI */
recoded[j++] = 0xFF;
recoded[j++] = 0xD8;
memcpy(recoded+j, &sp5x_data_dqt[0], sizeof(sp5x_data_dqt));
memcpy(recoded+j+5, &sp5x_quant_table[qscale * 2], 64);
memcpy(recoded+j+70, &sp5x_quant_table[(qscale * 2) + 1], 64);
j += sizeof(sp5x_data_dqt);
memcpy(recoded+j, &sp5x_data_dht[0], sizeof(sp5x_data_dht));
j += sizeof(sp5x_data_dht);
memcpy(recoded+j, &sp5x_data_sof[0], sizeof(sp5x_data_sof));
recoded[j+5] = (avctx->coded_height >> 8) & 0xFF;
recoded[j+6] = avctx->coded_height & 0xFF;
recoded[j+7] = (avctx->coded_width >> 8) & 0xFF;
recoded[j+8] = avctx->coded_width & 0xFF;
j += sizeof(sp5x_data_sof);
memcpy(recoded+j, &sp5x_data_sos[0], sizeof(sp5x_data_sos));
j += sizeof(sp5x_data_sos);
for (i = 14; i < buf_size && j < buf_size+1024-2; i++)
{
recoded[j++] = buf[i];
if (buf[i] == 0xff)
recoded[j++] = 0;
}
/* EOI */
recoded[j++] = 0xFF;
recoded[j++] = 0xD9;
i = mjpeg_decode_frame(avctx, data, data_size, recoded, j);
av_free(recoded);
#else
/* SOF */
s->bits = 8;
s->width = avctx->coded_width;
s->height = avctx->coded_height;
s->nb_components = 3;
s->component_id[0] = 0;
s->h_count[0] = 2;
s->v_count[0] = 2;
s->quant_index[0] = 0;
s->component_id[1] = 1;
s->h_count[1] = 1;
s->v_count[1] = 1;
s->quant_index[1] = 1;
s->component_id[2] = 2;
s->h_count[2] = 1;
s->v_count[2] = 1;
s->quant_index[2] = 1;
s->h_max = 2;
s->v_max = 2;
s->qscale_table = av_mallocz((s->width+15)/16);
avctx->pix_fmt = s->cs_itu601 ? PIX_FMT_YUV420P : PIX_FMT_YUVJ420;
s->interlaced = 0;
s->picture.reference = 0;
if (avctx->get_buffer(avctx, &s->picture) < 0)
{
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
s->picture.pict_type = I_TYPE;
s->picture.key_frame = 1;
for (i = 0; i < 3; i++)
s->linesize[i] = s->picture.linesize[i] << s->interlaced;
/* DQT */
for (i = 0; i < 64; i++)
{
j = s->scantable.permutated[i];
s->quant_matrixes[0][j] = sp5x_quant_table[(qscale * 2) + i];
}
s->qscale[0] = FFMAX(
s->quant_matrixes[0][s->scantable.permutated[1]],
s->quant_matrixes[0][s->scantable.permutated[8]]) >> 1;
for (i = 0; i < 64; i++)
{
j = s->scantable.permutated[i];
s->quant_matrixes[1][j] = sp5x_quant_table[(qscale * 2) + 1 + i];
}
s->qscale[1] = FFMAX(
s->quant_matrixes[1][s->scantable.permutated[1]],
s->quant_matrixes[1][s->scantable.permutated[8]]) >> 1;
/* DHT */
/* SOS */
s->comp_index[0] = 0;
s->nb_blocks[0] = s->h_count[0] * s->v_count[0];
s->h_scount[0] = s->h_count[0];
s->v_scount[0] = s->v_count[0];
s->dc_index[0] = 0;
s->ac_index[0] = 0;
s->comp_index[1] = 1;
s->nb_blocks[1] = s->h_count[1] * s->v_count[1];
s->h_scount[1] = s->h_count[1];
s->v_scount[1] = s->v_count[1];
s->dc_index[1] = 1;
s->ac_index[1] = 1;
s->comp_index[2] = 2;
s->nb_blocks[2] = s->h_count[2] * s->v_count[2];
s->h_scount[2] = s->h_count[2];
s->v_scount[2] = s->v_count[2];
s->dc_index[2] = 1;
s->ac_index[2] = 1;
for (i = 0; i < 3; i++)
s->last_dc[i] = 1024;
s->mb_width = (s->width * s->h_max * 8 -1) / (s->h_max * 8);
s->mb_height = (s->height * s->v_max * 8 -1) / (s->v_max * 8);
init_get_bits(&s->gb, buf+14, (buf_size-14)*8);
return mjpeg_decode_scan(s);
#endif
return i;
}
static int mjpeg_decode_end(AVCodecContext *avctx)
{
MJpegDecodeContext *s = avctx->priv_data;
int i, j;
av_free(s->buffer);
av_free(s->qscale_table);
for(i=0;i<2;i++) {
for(j=0;j<4;j++)
free_vlc(&s->vlcs[i][j]);
}
return 0;
}
static int mjpega_dump_header(AVBitStreamFilterContext *bsfc, AVCodecContext *avctx, const char *args,
uint8_t **poutbuf, int *poutbuf_size,
const uint8_t *buf, int buf_size, int keyframe)
{
uint8_t *poutbufp;
int i;
if (avctx->codec_id != CODEC_ID_MJPEG) {
av_log(avctx, AV_LOG_ERROR, "mjpega bitstream filter only applies to mjpeg codec\n");
return 0;
}
*poutbuf_size = 0;
*poutbuf = av_malloc(buf_size + 44 + FF_INPUT_BUFFER_PADDING_SIZE);
poutbufp = *poutbuf;
bytestream_put_byte(&poutbufp, 0xff);
bytestream_put_byte(&poutbufp, SOI);
bytestream_put_byte(&poutbufp, 0xff);
bytestream_put_byte(&poutbufp, APP1);
bytestream_put_be16(&poutbufp, 42); /* size */
bytestream_put_be32(&poutbufp, 0);
bytestream_put_buffer(&poutbufp, "mjpg", 4);
bytestream_put_be32(&poutbufp, buf_size + 44); /* field size */
bytestream_put_be32(&poutbufp, buf_size + 44); /* pad field size */
bytestream_put_be32(&poutbufp, 0); /* next ptr */
for (i = 0; i < buf_size - 1; i++) {
if (buf[i] == 0xff) {
switch (buf[i + 1]) {
case DQT: /* quant off */
case DHT: /* huff off */
case SOF0: /* image off */
bytestream_put_be32(&poutbufp, i + 46);
break;
case SOS:
bytestream_put_be32(&poutbufp, i + 46); /* scan off */
bytestream_put_be32(&poutbufp, i + 46 + AV_RB16(buf + i + 2)); /* data off */
bytestream_put_buffer(&poutbufp, buf + 2, buf_size - 2); /* skip already written SOI */
*poutbuf_size = poutbufp - *poutbuf;
return 1;
case APP1:
if (i + 8 < buf_size && AV_RL32(buf + i + 8) == ff_get_fourcc("mjpg")) {
av_log(avctx, AV_LOG_ERROR, "bitstream already formatted\n");
memcpy(*poutbuf, buf, buf_size);
*poutbuf_size = buf_size;
return 1;
}
}
}
}
av_freep(poutbuf);
av_log(avctx, AV_LOG_ERROR, "could not find SOS marker in bitstream\n");
return 0;
}
AVCodec mjpeg_decoder = {
"mjpeg",
CODEC_TYPE_VIDEO,
CODEC_ID_MJPEG,
sizeof(MJpegDecodeContext),
mjpeg_decode_init,
NULL,
mjpeg_decode_end,
mjpeg_decode_frame,
CODEC_CAP_DR1,
NULL
};
AVCodec thp_decoder = {
"thp",
CODEC_TYPE_VIDEO,
CODEC_ID_THP,
sizeof(MJpegDecodeContext),
mjpeg_decode_init,
NULL,
mjpeg_decode_end,
mjpeg_decode_frame,
CODEC_CAP_DR1,
NULL
};
AVCodec mjpegb_decoder = {
"mjpegb",
CODEC_TYPE_VIDEO,
CODEC_ID_MJPEGB,
sizeof(MJpegDecodeContext),
mjpeg_decode_init,
NULL,
mjpeg_decode_end,
mjpegb_decode_frame,
CODEC_CAP_DR1,
NULL
};
AVCodec sp5x_decoder = {
"sp5x",
CODEC_TYPE_VIDEO,
CODEC_ID_SP5X,
sizeof(MJpegDecodeContext),
mjpeg_decode_init,
NULL,
mjpeg_decode_end,
sp5x_decode_frame,
CODEC_CAP_DR1,
NULL
};
#ifdef CONFIG_ENCODERS
AVCodec ljpeg_encoder = { //FIXME avoid MPV_* lossless jpeg shouldnt need them
"ljpeg",
CODEC_TYPE_VIDEO,
CODEC_ID_LJPEG,
sizeof(MpegEncContext),
MPV_encode_init,
encode_picture_lossless,
MPV_encode_end,
};
#endif
#ifdef CONFIG_MJPEG_PARSER
AVCodecParser mjpeg_parser = {
{ CODEC_ID_MJPEG },
sizeof(ParseContext),
NULL,
jpeg_parse,
ff_parse_close,
};
#endif
AVBitStreamFilter mjpega_dump_header_bsf = {
"mjpegadump",
0,
mjpega_dump_header,
};