mirror of
https://github.com/xenia-project/FFmpeg.git
synced 2024-11-24 20:19:55 +00:00
169514c440
Internally chroma planes have multiple of four height while allocated image planes might be smaller if CODEC_FLAG_EMU_EDGE is set. Thus we should not output more lines of chroma than frame can accept. Also the decoder can be safely switched to direct rendering now.
1118 lines
40 KiB
C
1118 lines
40 KiB
C
/*
|
|
* Indeo Video v3 compatible decoder
|
|
* Copyright (c) 2009 - 2011 Maxim Poliakovski
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* This is a decoder for Intel Indeo Video v3.
|
|
* It is based on vector quantization, run-length coding and motion compensation.
|
|
* Known container formats: .avi and .mov
|
|
* Known FOURCCs: 'IV31', 'IV32'
|
|
*
|
|
* @see http://wiki.multimedia.cx/index.php?title=Indeo_3
|
|
*/
|
|
|
|
#include "libavutil/imgutils.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "avcodec.h"
|
|
#include "dsputil.h"
|
|
#include "bytestream.h"
|
|
#include "get_bits.h"
|
|
|
|
#include "indeo3data.h"
|
|
|
|
/* RLE opcodes. */
|
|
enum {
|
|
RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
|
|
RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
|
|
RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
|
|
RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
|
|
RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
|
|
RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
|
|
RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
|
|
};
|
|
|
|
|
|
/* Some constants for parsing frame bitstream flags. */
|
|
#define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
|
|
#define BS_KEYFRAME (1 << 2) ///< intra frame indicator
|
|
#define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
|
|
#define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
|
|
#define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
|
|
#define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
|
|
|
|
|
|
typedef struct Plane {
|
|
uint8_t *buffers[2];
|
|
uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
|
|
uint32_t width;
|
|
uint32_t height;
|
|
uint32_t pitch;
|
|
} Plane;
|
|
|
|
#define CELL_STACK_MAX 20
|
|
|
|
typedef struct Cell {
|
|
int16_t xpos; ///< cell coordinates in 4x4 blocks
|
|
int16_t ypos;
|
|
int16_t width; ///< cell width in 4x4 blocks
|
|
int16_t height; ///< cell height in 4x4 blocks
|
|
uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
|
|
const int8_t *mv_ptr; ///< ptr to the motion vector if any
|
|
} Cell;
|
|
|
|
typedef struct Indeo3DecodeContext {
|
|
AVCodecContext *avctx;
|
|
AVFrame frame;
|
|
DSPContext dsp;
|
|
|
|
GetBitContext gb;
|
|
int need_resync;
|
|
int skip_bits;
|
|
const uint8_t *next_cell_data;
|
|
const uint8_t *last_byte;
|
|
const int8_t *mc_vectors;
|
|
unsigned num_vectors; ///< number of motion vectors in mc_vectors
|
|
|
|
int16_t width, height;
|
|
uint32_t frame_num; ///< current frame number (zero-based)
|
|
uint32_t data_size; ///< size of the frame data in bytes
|
|
uint16_t frame_flags; ///< frame properties
|
|
uint8_t cb_offset; ///< needed for selecting VQ tables
|
|
uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
|
|
const uint8_t *y_data_ptr;
|
|
const uint8_t *v_data_ptr;
|
|
const uint8_t *u_data_ptr;
|
|
int32_t y_data_size;
|
|
int32_t v_data_size;
|
|
int32_t u_data_size;
|
|
const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
|
|
Plane planes[3];
|
|
} Indeo3DecodeContext;
|
|
|
|
|
|
static uint8_t requant_tab[8][128];
|
|
|
|
/*
|
|
* Build the static requantization table.
|
|
* This table is used to remap pixel values according to a specific
|
|
* quant index and thus avoid overflows while adding deltas.
|
|
*/
|
|
static av_cold void build_requant_tab(void)
|
|
{
|
|
static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
|
|
static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
|
|
|
|
int i, j, step;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
step = i + 2;
|
|
for (j = 0; j < 128; j++)
|
|
requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
|
|
}
|
|
|
|
/* some last elements calculated above will have values >= 128 */
|
|
/* pixel values shall never exceed 127 so set them to non-overflowing values */
|
|
/* according with the quantization step of the respective section */
|
|
requant_tab[0][127] = 126;
|
|
requant_tab[1][119] = 118;
|
|
requant_tab[1][120] = 118;
|
|
requant_tab[2][126] = 124;
|
|
requant_tab[2][127] = 124;
|
|
requant_tab[6][124] = 120;
|
|
requant_tab[6][125] = 120;
|
|
requant_tab[6][126] = 120;
|
|
requant_tab[6][127] = 120;
|
|
|
|
/* Patch for compatibility with the Intel's binary decoders */
|
|
requant_tab[1][7] = 10;
|
|
requant_tab[4][8] = 10;
|
|
}
|
|
|
|
|
|
static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
|
|
AVCodecContext *avctx)
|
|
{
|
|
int p, luma_width, luma_height, chroma_width, chroma_height;
|
|
int luma_pitch, chroma_pitch, luma_size, chroma_size;
|
|
|
|
luma_width = ctx->width;
|
|
luma_height = ctx->height;
|
|
|
|
if (luma_width < 16 || luma_width > 640 ||
|
|
luma_height < 16 || luma_height > 480 ||
|
|
luma_width & 3 || luma_height & 3) {
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
|
|
luma_width, luma_height);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
chroma_width = FFALIGN(luma_width >> 2, 4);
|
|
chroma_height = FFALIGN(luma_height >> 2, 4);
|
|
|
|
luma_pitch = FFALIGN(luma_width, 16);
|
|
chroma_pitch = FFALIGN(chroma_width, 16);
|
|
|
|
/* Calculate size of the luminance plane. */
|
|
/* Add one line more for INTRA prediction. */
|
|
luma_size = luma_pitch * (luma_height + 1);
|
|
|
|
/* Calculate size of a chrominance planes. */
|
|
/* Add one line more for INTRA prediction. */
|
|
chroma_size = chroma_pitch * (chroma_height + 1);
|
|
|
|
/* allocate frame buffers */
|
|
for (p = 0; p < 3; p++) {
|
|
ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
|
|
ctx->planes[p].width = !p ? luma_width : chroma_width;
|
|
ctx->planes[p].height = !p ? luma_height : chroma_height;
|
|
|
|
ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
|
|
ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
|
|
|
|
/* fill the INTRA prediction lines with the middle pixel value = 64 */
|
|
memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
|
|
memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
|
|
|
|
/* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
|
|
ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
|
|
ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
|
|
memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
|
|
memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
|
|
{
|
|
int p;
|
|
|
|
for (p = 0; p < 3; p++) {
|
|
av_freep(&ctx->planes[p].buffers[0]);
|
|
av_freep(&ctx->planes[p].buffers[1]);
|
|
ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
|
|
* the cell(x, y) in the current frame.
|
|
*
|
|
* @param ctx pointer to the decoder context
|
|
* @param plane pointer to the plane descriptor
|
|
* @param cell pointer to the cell descriptor
|
|
*/
|
|
static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
|
|
{
|
|
int h, w, mv_x, mv_y, offset, offset_dst;
|
|
uint8_t *src, *dst;
|
|
|
|
/* setup output and reference pointers */
|
|
offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
|
|
dst = plane->pixels[ctx->buf_sel] + offset_dst;
|
|
mv_y = cell->mv_ptr[0];
|
|
mv_x = cell->mv_ptr[1];
|
|
offset = offset_dst + mv_y * plane->pitch + mv_x;
|
|
src = plane->pixels[ctx->buf_sel ^ 1] + offset;
|
|
|
|
h = cell->height << 2;
|
|
|
|
for (w = cell->width; w > 0;) {
|
|
/* copy using 16xH blocks */
|
|
if (!((cell->xpos << 2) & 15) && w >= 4) {
|
|
for (; w >= 4; src += 16, dst += 16, w -= 4)
|
|
ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
|
|
}
|
|
|
|
/* copy using 8xH blocks */
|
|
if (!((cell->xpos << 2) & 7) && w >= 2) {
|
|
ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
|
|
w -= 2;
|
|
src += 8;
|
|
dst += 8;
|
|
}
|
|
|
|
if (w >= 1) {
|
|
copy_block4(dst, src, plane->pitch, plane->pitch, h);
|
|
w--;
|
|
src += 4;
|
|
dst += 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Average 4/8 pixels at once without rounding using SWAR */
|
|
#define AVG_32(dst, src, ref) \
|
|
AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
|
|
|
|
#define AVG_64(dst, src, ref) \
|
|
AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
|
|
|
|
|
|
/*
|
|
* Replicate each even pixel as follows:
|
|
* ABCDEFGH -> AACCEEGG
|
|
*/
|
|
static inline uint64_t replicate64(uint64_t a) {
|
|
#if HAVE_BIGENDIAN
|
|
a &= 0xFF00FF00FF00FF00ULL;
|
|
a |= a >> 8;
|
|
#else
|
|
a &= 0x00FF00FF00FF00FFULL;
|
|
a |= a << 8;
|
|
#endif
|
|
return a;
|
|
}
|
|
|
|
static inline uint32_t replicate32(uint32_t a) {
|
|
#if HAVE_BIGENDIAN
|
|
a &= 0xFF00FF00UL;
|
|
a |= a >> 8;
|
|
#else
|
|
a &= 0x00FF00FFUL;
|
|
a |= a << 8;
|
|
#endif
|
|
return a;
|
|
}
|
|
|
|
|
|
/* Fill n lines with 64bit pixel value pix */
|
|
static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
|
|
int32_t row_offset)
|
|
{
|
|
for (; n > 0; dst += row_offset, n--)
|
|
AV_WN64A(dst, pix);
|
|
}
|
|
|
|
|
|
/* Error codes for cell decoding. */
|
|
enum {
|
|
IV3_NOERR = 0,
|
|
IV3_BAD_RLE = 1,
|
|
IV3_BAD_DATA = 2,
|
|
IV3_BAD_COUNTER = 3,
|
|
IV3_UNSUPPORTED = 4,
|
|
IV3_OUT_OF_DATA = 5
|
|
};
|
|
|
|
|
|
#define BUFFER_PRECHECK \
|
|
if (*data_ptr >= last_ptr) \
|
|
return IV3_OUT_OF_DATA; \
|
|
|
|
#define RLE_BLOCK_COPY \
|
|
if (cell->mv_ptr || !skip_flag) \
|
|
copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
|
|
|
|
#define RLE_BLOCK_COPY_8 \
|
|
pix64 = AV_RN64A(ref);\
|
|
if (is_first_row) {/* special prediction case: top line of a cell */\
|
|
pix64 = replicate64(pix64);\
|
|
fill_64(dst + row_offset, pix64, 7, row_offset);\
|
|
AVG_64(dst, ref, dst + row_offset);\
|
|
} else \
|
|
fill_64(dst, pix64, 8, row_offset)
|
|
|
|
#define RLE_LINES_COPY \
|
|
copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
|
|
|
|
#define RLE_LINES_COPY_M10 \
|
|
pix64 = AV_RN64A(ref);\
|
|
if (is_top_of_cell) {\
|
|
pix64 = replicate64(pix64);\
|
|
fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
|
|
AVG_64(dst, ref, dst + row_offset);\
|
|
} else \
|
|
fill_64(dst, pix64, num_lines << 1, row_offset)
|
|
|
|
#define APPLY_DELTA_4 \
|
|
AV_WN16A(dst + line_offset ,\
|
|
(AV_RN16A(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
|
|
AV_WN16A(dst + line_offset + 2,\
|
|
(AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
|
|
if (mode >= 3) {\
|
|
if (is_top_of_cell && !cell->ypos) {\
|
|
AV_COPY32(dst, dst + row_offset);\
|
|
} else {\
|
|
AVG_32(dst, ref, dst + row_offset);\
|
|
}\
|
|
}
|
|
|
|
#define APPLY_DELTA_8 \
|
|
/* apply two 32-bit VQ deltas to next even line */\
|
|
if (is_top_of_cell) { \
|
|
AV_WN32A(dst + row_offset , \
|
|
(replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
|
|
AV_WN32A(dst + row_offset + 4, \
|
|
(replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
|
|
} else { \
|
|
AV_WN32A(dst + row_offset , \
|
|
(AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
|
|
AV_WN32A(dst + row_offset + 4, \
|
|
(AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
|
|
} \
|
|
/* odd lines are not coded but rather interpolated/replicated */\
|
|
/* first line of the cell on the top of image? - replicate */\
|
|
/* otherwise - interpolate */\
|
|
if (is_top_of_cell && !cell->ypos) {\
|
|
AV_COPY64(dst, dst + row_offset);\
|
|
} else \
|
|
AVG_64(dst, ref, dst + row_offset);
|
|
|
|
|
|
#define APPLY_DELTA_1011_INTER \
|
|
if (mode == 10) { \
|
|
AV_WN32A(dst , \
|
|
(AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
|
|
AV_WN32A(dst + 4 , \
|
|
(AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
|
|
AV_WN32A(dst + row_offset , \
|
|
(AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
|
|
AV_WN32A(dst + row_offset + 4, \
|
|
(AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
|
|
} else { \
|
|
AV_WN16A(dst , \
|
|
(AV_RN16A(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
|
|
AV_WN16A(dst + 2 , \
|
|
(AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
|
|
AV_WN16A(dst + row_offset , \
|
|
(AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
|
|
AV_WN16A(dst + row_offset + 2, \
|
|
(AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
|
|
}
|
|
|
|
|
|
static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
|
|
int pitch, int h_zoom, int v_zoom, int mode,
|
|
const vqEntry *delta[2], int swap_quads[2],
|
|
const uint8_t **data_ptr, const uint8_t *last_ptr)
|
|
{
|
|
int x, y, line, num_lines;
|
|
int rle_blocks = 0;
|
|
uint8_t code, *dst, *ref;
|
|
const vqEntry *delta_tab;
|
|
unsigned int dyad1, dyad2;
|
|
uint64_t pix64;
|
|
int skip_flag = 0, is_top_of_cell, is_first_row = 1;
|
|
int row_offset, blk_row_offset, line_offset;
|
|
|
|
row_offset = pitch;
|
|
blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
|
|
line_offset = v_zoom ? row_offset : 0;
|
|
|
|
if (cell->height & v_zoom || cell->width & h_zoom)
|
|
return IV3_BAD_DATA;
|
|
|
|
for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
|
|
for (x = 0; x < cell->width; x += 1 + h_zoom) {
|
|
ref = ref_block;
|
|
dst = block;
|
|
|
|
if (rle_blocks > 0) {
|
|
if (mode <= 4) {
|
|
RLE_BLOCK_COPY;
|
|
} else if (mode == 10 && !cell->mv_ptr) {
|
|
RLE_BLOCK_COPY_8;
|
|
}
|
|
rle_blocks--;
|
|
} else {
|
|
for (line = 0; line < 4;) {
|
|
num_lines = 1;
|
|
is_top_of_cell = is_first_row && !line;
|
|
|
|
/* select primary VQ table for odd, secondary for even lines */
|
|
if (mode <= 4)
|
|
delta_tab = delta[line & 1];
|
|
else
|
|
delta_tab = delta[1];
|
|
BUFFER_PRECHECK;
|
|
code = bytestream_get_byte(data_ptr);
|
|
if (code < 248) {
|
|
if (code < delta_tab->num_dyads) {
|
|
BUFFER_PRECHECK;
|
|
dyad1 = bytestream_get_byte(data_ptr);
|
|
dyad2 = code;
|
|
if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
|
|
return IV3_BAD_DATA;
|
|
} else {
|
|
/* process QUADS */
|
|
code -= delta_tab->num_dyads;
|
|
dyad1 = code / delta_tab->quad_exp;
|
|
dyad2 = code % delta_tab->quad_exp;
|
|
if (swap_quads[line & 1])
|
|
FFSWAP(unsigned int, dyad1, dyad2);
|
|
}
|
|
if (mode <= 4) {
|
|
APPLY_DELTA_4;
|
|
} else if (mode == 10 && !cell->mv_ptr) {
|
|
APPLY_DELTA_8;
|
|
} else {
|
|
APPLY_DELTA_1011_INTER;
|
|
}
|
|
} else {
|
|
/* process RLE codes */
|
|
switch (code) {
|
|
case RLE_ESC_FC:
|
|
skip_flag = 0;
|
|
rle_blocks = 1;
|
|
code = 253;
|
|
/* FALLTHROUGH */
|
|
case RLE_ESC_FF:
|
|
case RLE_ESC_FE:
|
|
case RLE_ESC_FD:
|
|
num_lines = 257 - code - line;
|
|
if (num_lines <= 0)
|
|
return IV3_BAD_RLE;
|
|
if (mode <= 4) {
|
|
RLE_LINES_COPY;
|
|
} else if (mode == 10 && !cell->mv_ptr) {
|
|
RLE_LINES_COPY_M10;
|
|
}
|
|
break;
|
|
case RLE_ESC_FB:
|
|
BUFFER_PRECHECK;
|
|
code = bytestream_get_byte(data_ptr);
|
|
rle_blocks = (code & 0x1F) - 1; /* set block counter */
|
|
if (code >= 64 || rle_blocks < 0)
|
|
return IV3_BAD_COUNTER;
|
|
skip_flag = code & 0x20;
|
|
num_lines = 4 - line; /* enforce next block processing */
|
|
if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
|
|
if (mode <= 4) {
|
|
RLE_LINES_COPY;
|
|
} else if (mode == 10 && !cell->mv_ptr) {
|
|
RLE_LINES_COPY_M10;
|
|
}
|
|
}
|
|
break;
|
|
case RLE_ESC_F9:
|
|
skip_flag = 1;
|
|
rle_blocks = 1;
|
|
/* FALLTHROUGH */
|
|
case RLE_ESC_FA:
|
|
if (line)
|
|
return IV3_BAD_RLE;
|
|
num_lines = 4; /* enforce next block processing */
|
|
if (cell->mv_ptr) {
|
|
if (mode <= 4) {
|
|
RLE_LINES_COPY;
|
|
} else if (mode == 10 && !cell->mv_ptr) {
|
|
RLE_LINES_COPY_M10;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
return IV3_UNSUPPORTED;
|
|
}
|
|
}
|
|
|
|
line += num_lines;
|
|
ref += row_offset * (num_lines << v_zoom);
|
|
dst += row_offset * (num_lines << v_zoom);
|
|
}
|
|
}
|
|
|
|
/* move to next horizontal block */
|
|
block += 4 << h_zoom;
|
|
ref_block += 4 << h_zoom;
|
|
}
|
|
|
|
/* move to next line of blocks */
|
|
ref_block += blk_row_offset;
|
|
block += blk_row_offset;
|
|
}
|
|
return IV3_NOERR;
|
|
}
|
|
|
|
|
|
/**
|
|
* Decode a vector-quantized cell.
|
|
* It consists of several routines, each of which handles one or more "modes"
|
|
* with which a cell can be encoded.
|
|
*
|
|
* @param ctx pointer to the decoder context
|
|
* @param avctx ptr to the AVCodecContext
|
|
* @param plane pointer to the plane descriptor
|
|
* @param cell pointer to the cell descriptor
|
|
* @param data_ptr pointer to the compressed data
|
|
* @param last_ptr pointer to the last byte to catch reads past end of buffer
|
|
* @return number of consumed bytes or negative number in case of error
|
|
*/
|
|
static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
|
|
Plane *plane, Cell *cell, const uint8_t *data_ptr,
|
|
const uint8_t *last_ptr)
|
|
{
|
|
int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
|
|
int zoom_fac;
|
|
int offset, error = 0, swap_quads[2];
|
|
uint8_t code, *block, *ref_block = 0;
|
|
const vqEntry *delta[2];
|
|
const uint8_t *data_start = data_ptr;
|
|
|
|
/* get coding mode and VQ table index from the VQ descriptor byte */
|
|
code = *data_ptr++;
|
|
mode = code >> 4;
|
|
vq_index = code & 0xF;
|
|
|
|
/* setup output and reference pointers */
|
|
offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
|
|
block = plane->pixels[ctx->buf_sel] + offset;
|
|
if (!cell->mv_ptr) {
|
|
/* use previous line as reference for INTRA cells */
|
|
ref_block = block - plane->pitch;
|
|
} else if (mode >= 10) {
|
|
/* for mode 10 and 11 INTER first copy the predicted cell into the current one */
|
|
/* so we don't need to do data copying for each RLE code later */
|
|
copy_cell(ctx, plane, cell);
|
|
} else {
|
|
/* set the pointer to the reference pixels for modes 0-4 INTER */
|
|
mv_y = cell->mv_ptr[0];
|
|
mv_x = cell->mv_ptr[1];
|
|
offset += mv_y * plane->pitch + mv_x;
|
|
ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
|
|
}
|
|
|
|
/* select VQ tables as follows: */
|
|
/* modes 0 and 3 use only the primary table for all lines in a block */
|
|
/* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
|
|
if (mode == 1 || mode == 4) {
|
|
code = ctx->alt_quant[vq_index];
|
|
prim_indx = (code >> 4) + ctx->cb_offset;
|
|
second_indx = (code & 0xF) + ctx->cb_offset;
|
|
} else {
|
|
vq_index += ctx->cb_offset;
|
|
prim_indx = second_indx = vq_index;
|
|
}
|
|
|
|
if (prim_indx >= 24 || second_indx >= 24) {
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
|
|
prim_indx, second_indx);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
delta[0] = &vq_tab[second_indx];
|
|
delta[1] = &vq_tab[prim_indx];
|
|
swap_quads[0] = second_indx >= 16;
|
|
swap_quads[1] = prim_indx >= 16;
|
|
|
|
/* requantize the prediction if VQ index of this cell differs from VQ index */
|
|
/* of the predicted cell in order to avoid overflows. */
|
|
if (vq_index >= 8 && ref_block) {
|
|
for (x = 0; x < cell->width << 2; x++)
|
|
ref_block[x] = requant_tab[vq_index & 7][ref_block[x]];
|
|
}
|
|
|
|
error = IV3_NOERR;
|
|
|
|
switch (mode) {
|
|
case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
|
|
case 1:
|
|
case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
|
|
case 4:
|
|
if (mode >= 3 && cell->mv_ptr) {
|
|
av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
zoom_fac = mode >= 3;
|
|
error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
|
|
mode, delta, swap_quads, &data_ptr, last_ptr);
|
|
break;
|
|
case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
|
|
case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
|
|
if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
|
|
error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
|
|
mode, delta, swap_quads, &data_ptr, last_ptr);
|
|
} else { /* mode 10 and 11 INTER processing */
|
|
if (mode == 11 && !cell->mv_ptr) {
|
|
av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
zoom_fac = mode == 10;
|
|
error = decode_cell_data(cell, block, ref_block, plane->pitch,
|
|
zoom_fac, 1, mode, delta, swap_quads,
|
|
&data_ptr, last_ptr);
|
|
}
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
|
|
return AVERROR_INVALIDDATA;
|
|
}//switch mode
|
|
|
|
switch (error) {
|
|
case IV3_BAD_RLE:
|
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
|
|
mode, data_ptr[-1]);
|
|
return AVERROR_INVALIDDATA;
|
|
case IV3_BAD_DATA:
|
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
|
|
return AVERROR_INVALIDDATA;
|
|
case IV3_BAD_COUNTER:
|
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
|
|
return AVERROR_INVALIDDATA;
|
|
case IV3_UNSUPPORTED:
|
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
|
|
return AVERROR_INVALIDDATA;
|
|
case IV3_OUT_OF_DATA:
|
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
|
|
}
|
|
|
|
|
|
/* Binary tree codes. */
|
|
enum {
|
|
H_SPLIT = 0,
|
|
V_SPLIT = 1,
|
|
INTRA_NULL = 2,
|
|
INTER_DATA = 3
|
|
};
|
|
|
|
|
|
#define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
|
|
|
|
#define UPDATE_BITPOS(n) \
|
|
ctx->skip_bits += (n); \
|
|
ctx->need_resync = 1
|
|
|
|
#define RESYNC_BITSTREAM \
|
|
if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
|
|
skip_bits_long(&ctx->gb, ctx->skip_bits); \
|
|
ctx->skip_bits = 0; \
|
|
ctx->need_resync = 0; \
|
|
}
|
|
|
|
#define CHECK_CELL \
|
|
if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
|
|
curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
|
|
curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
|
|
return AVERROR_INVALIDDATA; \
|
|
}
|
|
|
|
|
|
static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
|
|
Plane *plane, int code, Cell *ref_cell,
|
|
const int depth, const int strip_width)
|
|
{
|
|
Cell curr_cell;
|
|
int bytes_used;
|
|
|
|
if (depth <= 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
|
|
return AVERROR_INVALIDDATA; // unwind recursion
|
|
}
|
|
|
|
curr_cell = *ref_cell; // clone parent cell
|
|
if (code == H_SPLIT) {
|
|
SPLIT_CELL(ref_cell->height, curr_cell.height);
|
|
ref_cell->ypos += curr_cell.height;
|
|
ref_cell->height -= curr_cell.height;
|
|
if (ref_cell->height <= 0 || curr_cell.height <= 0)
|
|
return AVERROR_INVALIDDATA;
|
|
} else if (code == V_SPLIT) {
|
|
if (curr_cell.width > strip_width) {
|
|
/* split strip */
|
|
curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
|
|
} else
|
|
SPLIT_CELL(ref_cell->width, curr_cell.width);
|
|
ref_cell->xpos += curr_cell.width;
|
|
ref_cell->width -= curr_cell.width;
|
|
if (ref_cell->width <= 0 || curr_cell.width <= 0)
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
while (1) { /* loop until return */
|
|
RESYNC_BITSTREAM;
|
|
switch (code = get_bits(&ctx->gb, 2)) {
|
|
case H_SPLIT:
|
|
case V_SPLIT:
|
|
if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
|
|
return AVERROR_INVALIDDATA;
|
|
break;
|
|
case INTRA_NULL:
|
|
if (!curr_cell.tree) { /* MC tree INTRA code */
|
|
curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
|
|
curr_cell.tree = 1; /* enter the VQ tree */
|
|
} else { /* VQ tree NULL code */
|
|
RESYNC_BITSTREAM;
|
|
code = get_bits(&ctx->gb, 2);
|
|
if (code >= 2) {
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (code == 1)
|
|
av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
|
|
|
|
CHECK_CELL
|
|
if (!curr_cell.mv_ptr)
|
|
return AVERROR_INVALIDDATA;
|
|
copy_cell(ctx, plane, &curr_cell);
|
|
return 0;
|
|
}
|
|
break;
|
|
case INTER_DATA:
|
|
if (!curr_cell.tree) { /* MC tree INTER code */
|
|
unsigned mv_idx;
|
|
/* get motion vector index and setup the pointer to the mv set */
|
|
if (!ctx->need_resync)
|
|
ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
|
|
mv_idx = *(ctx->next_cell_data++);
|
|
if (mv_idx >= ctx->num_vectors) {
|
|
av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
|
|
curr_cell.tree = 1; /* enter the VQ tree */
|
|
UPDATE_BITPOS(8);
|
|
} else { /* VQ tree DATA code */
|
|
if (!ctx->need_resync)
|
|
ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
|
|
|
|
CHECK_CELL
|
|
bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
|
|
ctx->next_cell_data, ctx->last_byte);
|
|
if (bytes_used < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
UPDATE_BITPOS(bytes_used << 3);
|
|
ctx->next_cell_data += bytes_used;
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
}//while
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
|
|
Plane *plane, const uint8_t *data, int32_t data_size,
|
|
int32_t strip_width)
|
|
{
|
|
Cell curr_cell;
|
|
unsigned num_vectors;
|
|
|
|
/* each plane data starts with mc_vector_count field, */
|
|
/* an optional array of motion vectors followed by the vq data */
|
|
num_vectors = bytestream_get_le32(&data);
|
|
if (num_vectors > 256) {
|
|
av_log(ctx->avctx, AV_LOG_ERROR,
|
|
"Read invalid number of motion vectors %d\n", num_vectors);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (num_vectors * 2 >= data_size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
ctx->num_vectors = num_vectors;
|
|
ctx->mc_vectors = num_vectors ? data : 0;
|
|
|
|
/* init the bitreader */
|
|
init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
|
|
ctx->skip_bits = 0;
|
|
ctx->need_resync = 0;
|
|
|
|
ctx->last_byte = data + data_size - 1;
|
|
|
|
/* initialize the 1st cell and set its dimensions to whole plane */
|
|
curr_cell.xpos = curr_cell.ypos = 0;
|
|
curr_cell.width = plane->width >> 2;
|
|
curr_cell.height = plane->height >> 2;
|
|
curr_cell.tree = 0; // we are in the MC tree now
|
|
curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
|
|
|
|
return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
|
|
}
|
|
|
|
|
|
#define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
|
|
|
|
static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
|
|
const uint8_t *buf, int buf_size)
|
|
{
|
|
const uint8_t *buf_ptr = buf, *bs_hdr;
|
|
uint32_t frame_num, word2, check_sum, data_size;
|
|
uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
|
|
uint16_t height, width;
|
|
int i, j;
|
|
|
|
/* parse and check the OS header */
|
|
frame_num = bytestream_get_le32(&buf_ptr);
|
|
word2 = bytestream_get_le32(&buf_ptr);
|
|
check_sum = bytestream_get_le32(&buf_ptr);
|
|
data_size = bytestream_get_le32(&buf_ptr);
|
|
|
|
if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
|
|
av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/* parse the bitstream header */
|
|
bs_hdr = buf_ptr;
|
|
|
|
if (bytestream_get_le16(&buf_ptr) != 32) {
|
|
av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
ctx->frame_num = frame_num;
|
|
ctx->frame_flags = bytestream_get_le16(&buf_ptr);
|
|
ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
|
|
ctx->cb_offset = *buf_ptr++;
|
|
|
|
if (ctx->data_size == 16)
|
|
return 4;
|
|
if (ctx->data_size > buf_size)
|
|
ctx->data_size = buf_size;
|
|
|
|
buf_ptr += 3; // skip reserved byte and checksum
|
|
|
|
/* check frame dimensions */
|
|
height = bytestream_get_le16(&buf_ptr);
|
|
width = bytestream_get_le16(&buf_ptr);
|
|
if (av_image_check_size(width, height, 0, avctx))
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if (width != ctx->width || height != ctx->height) {
|
|
int res;
|
|
|
|
av_dlog(avctx, "Frame dimensions changed!\n");
|
|
|
|
if (width < 16 || width > 640 ||
|
|
height < 16 || height > 480 ||
|
|
width & 3 || height & 3) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"Invalid picture dimensions: %d x %d!\n", width, height);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
ctx->width = width;
|
|
ctx->height = height;
|
|
|
|
free_frame_buffers(ctx);
|
|
if ((res = allocate_frame_buffers(ctx, avctx)) < 0)
|
|
return res;
|
|
avcodec_set_dimensions(avctx, width, height);
|
|
}
|
|
|
|
y_offset = bytestream_get_le32(&buf_ptr);
|
|
v_offset = bytestream_get_le32(&buf_ptr);
|
|
u_offset = bytestream_get_le32(&buf_ptr);
|
|
|
|
/* unfortunately there is no common order of planes in the buffer */
|
|
/* so we use that sorting algo for determining planes data sizes */
|
|
starts[0] = y_offset;
|
|
starts[1] = v_offset;
|
|
starts[2] = u_offset;
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
ends[j] = ctx->data_size;
|
|
for (i = 2; i >= 0; i--)
|
|
if (starts[i] < ends[j] && starts[i] > starts[j])
|
|
ends[j] = starts[i];
|
|
}
|
|
|
|
ctx->y_data_size = ends[0] - starts[0];
|
|
ctx->v_data_size = ends[1] - starts[1];
|
|
ctx->u_data_size = ends[2] - starts[2];
|
|
if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
|
|
FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
ctx->y_data_ptr = bs_hdr + y_offset;
|
|
ctx->v_data_ptr = bs_hdr + v_offset;
|
|
ctx->u_data_ptr = bs_hdr + u_offset;
|
|
ctx->alt_quant = buf_ptr + sizeof(uint32_t);
|
|
|
|
if (ctx->data_size == 16) {
|
|
av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
|
|
return 16;
|
|
}
|
|
|
|
if (ctx->frame_flags & BS_8BIT_PEL) {
|
|
av_log_ask_for_sample(avctx, "8-bit pixel format\n");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
|
|
av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Convert and output the current plane.
|
|
* All pixel values will be upsampled by shifting right by one bit.
|
|
*
|
|
* @param[in] plane pointer to the descriptor of the plane being processed
|
|
* @param[in] buf_sel indicates which frame buffer the input data stored in
|
|
* @param[out] dst pointer to the buffer receiving converted pixels
|
|
* @param[in] dst_pitch pitch for moving to the next y line
|
|
* @param[in] dst_height output plane height
|
|
*/
|
|
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
|
|
int dst_pitch, int dst_height)
|
|
{
|
|
int x,y;
|
|
const uint8_t *src = plane->pixels[buf_sel];
|
|
uint32_t pitch = plane->pitch;
|
|
|
|
dst_height = FFMIN(dst_height, plane->height);
|
|
for (y = 0; y < dst_height; y++) {
|
|
/* convert four pixels at once using SWAR */
|
|
for (x = 0; x < plane->width >> 2; x++) {
|
|
AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
|
|
src += 4;
|
|
dst += 4;
|
|
}
|
|
|
|
for (x <<= 2; x < plane->width; x++)
|
|
*dst++ = *src++ << 1;
|
|
|
|
src += pitch - plane->width;
|
|
dst += dst_pitch - plane->width;
|
|
}
|
|
}
|
|
|
|
|
|
static av_cold int decode_init(AVCodecContext *avctx)
|
|
{
|
|
Indeo3DecodeContext *ctx = avctx->priv_data;
|
|
|
|
ctx->avctx = avctx;
|
|
ctx->width = avctx->width;
|
|
ctx->height = avctx->height;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV410P;
|
|
|
|
build_requant_tab();
|
|
|
|
ff_dsputil_init(&ctx->dsp, avctx);
|
|
|
|
allocate_frame_buffers(ctx, avctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
|
|
AVPacket *avpkt)
|
|
{
|
|
Indeo3DecodeContext *ctx = avctx->priv_data;
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
int res;
|
|
|
|
res = decode_frame_headers(ctx, avctx, buf, buf_size);
|
|
if (res < 0)
|
|
return res;
|
|
|
|
/* skip sync(null) frames */
|
|
if (res) {
|
|
// we have processed 16 bytes but no data was decoded
|
|
*data_size = 0;
|
|
return buf_size;
|
|
}
|
|
|
|
/* skip droppable INTER frames if requested */
|
|
if (ctx->frame_flags & BS_NONREF &&
|
|
(avctx->skip_frame >= AVDISCARD_NONREF))
|
|
return 0;
|
|
|
|
/* skip INTER frames if requested */
|
|
if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
|
|
return 0;
|
|
|
|
/* use BS_BUFFER flag for buffer switching */
|
|
ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
|
|
|
|
/* decode luma plane */
|
|
if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
|
|
return res;
|
|
|
|
/* decode chroma planes */
|
|
if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
|
|
return res;
|
|
|
|
if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
|
|
return res;
|
|
|
|
if (ctx->frame.data[0])
|
|
avctx->release_buffer(avctx, &ctx->frame);
|
|
|
|
ctx->frame.reference = 0;
|
|
if ((res = avctx->get_buffer(avctx, &ctx->frame)) < 0) {
|
|
av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
|
|
return res;
|
|
}
|
|
|
|
output_plane(&ctx->planes[0], ctx->buf_sel,
|
|
ctx->frame.data[0], ctx->frame.linesize[0],
|
|
avctx->height);
|
|
output_plane(&ctx->planes[1], ctx->buf_sel,
|
|
ctx->frame.data[1], ctx->frame.linesize[1],
|
|
(avctx->height + 3) >> 2);
|
|
output_plane(&ctx->planes[2], ctx->buf_sel,
|
|
ctx->frame.data[2], ctx->frame.linesize[2],
|
|
(avctx->height + 3) >> 2);
|
|
|
|
*data_size = sizeof(AVFrame);
|
|
*(AVFrame*)data = ctx->frame;
|
|
|
|
return buf_size;
|
|
}
|
|
|
|
|
|
static av_cold int decode_close(AVCodecContext *avctx)
|
|
{
|
|
Indeo3DecodeContext *ctx = avctx->priv_data;
|
|
|
|
free_frame_buffers(avctx->priv_data);
|
|
|
|
if (ctx->frame.data[0])
|
|
avctx->release_buffer(avctx, &ctx->frame);
|
|
|
|
return 0;
|
|
}
|
|
|
|
AVCodec ff_indeo3_decoder = {
|
|
.name = "indeo3",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.id = AV_CODEC_ID_INDEO3,
|
|
.priv_data_size = sizeof(Indeo3DecodeContext),
|
|
.init = decode_init,
|
|
.close = decode_close,
|
|
.decode = decode_frame,
|
|
.capabilities = CODEC_CAP_DR1,
|
|
.long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
|
|
};
|