Wolfgang Hesseler 0c9bbaec60 motion vector vissualization improvements patch by (Wolfgang Hesseler <qv at multimediaware dot com>)
Originally committed as revision 2636 to svn://svn.ffmpeg.org/ffmpeg/trunk
2003-12-30 02:12:12 +00:00

4413 lines
150 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/**
* @file h264.c
* H.264 / AVC / MPEG4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "common.h"
#include "dsputil.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "h264data.h"
#include "golomb.h"
#undef NDEBUG
#include <assert.h>
#define interlaced_dct interlaced_dct_is_a_bad_name
#define mb_intra mb_intra_isnt_initalized_see_mb_type
#define LUMA_DC_BLOCK_INDEX 25
#define CHROMA_DC_BLOCK_INDEX 26
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
#define COEFF_TOKEN_VLC_BITS 8
#define TOTAL_ZEROS_VLC_BITS 9
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
#define RUN_VLC_BITS 3
#define RUN7_VLC_BITS 6
#define MAX_SPS_COUNT 32
#define MAX_PPS_COUNT 256
#define MAX_MMCO_COUNT 66
/**
* Sequence parameter set
*/
typedef struct SPS{
int profile_idc;
int level_idc;
int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
int poc_type; ///< pic_order_cnt_type
int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
int delta_pic_order_always_zero_flag;
int offset_for_non_ref_pic;
int offset_for_top_to_bottom_field;
int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
int ref_frame_count; ///< num_ref_frames
int gaps_in_frame_num_allowed_flag;
int mb_width; ///< frame_width_in_mbs_minus1 + 1
int mb_height; ///< frame_height_in_mbs_minus1 + 1
int frame_mbs_only_flag;
int mb_aff; ///<mb_adaptive_frame_field_flag
int direct_8x8_inference_flag;
int crop; ///< frame_cropping_flag
int crop_left; ///< frame_cropping_rect_left_offset
int crop_right; ///< frame_cropping_rect_right_offset
int crop_top; ///< frame_cropping_rect_top_offset
int crop_bottom; ///< frame_cropping_rect_bottom_offset
int vui_parameters_present_flag;
AVRational sar;
short offset_for_ref_frame[256]; //FIXME dyn aloc?
}SPS;
/**
* Picture parameter set
*/
typedef struct PPS{
int sps_id;
int cabac; ///< entropy_coding_mode_flag
int pic_order_present; ///< pic_order_present_flag
int slice_group_count; ///< num_slice_groups_minus1 + 1
int mb_slice_group_map_type;
int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
int weighted_pred; ///< weighted_pred_flag
int weighted_bipred_idc;
int init_qp; ///< pic_init_qp_minus26 + 26
int init_qs; ///< pic_init_qs_minus26 + 26
int chroma_qp_index_offset;
int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
int constrained_intra_pred; ///< constrained_intra_pred_flag
int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
}PPS;
/**
* Memory management control operation opcode.
*/
typedef enum MMCOOpcode{
MMCO_END=0,
MMCO_SHORT2UNUSED,
MMCO_LONG2UNUSED,
MMCO_SHORT2LONG,
MMCO_SET_MAX_LONG,
MMCO_RESET,
MMCO_LONG,
} MMCOOpcode;
/**
* Memory management control operation.
*/
typedef struct MMCO{
MMCOOpcode opcode;
int short_frame_num;
int long_index;
} MMCO;
/**
* H264Context
*/
typedef struct H264Context{
MpegEncContext s;
int nal_ref_idc;
int nal_unit_type;
#define NAL_SLICE 1
#define NAL_DPA 2
#define NAL_DPB 3
#define NAL_DPC 4
#define NAL_IDR_SLICE 5
#define NAL_SEI 6
#define NAL_SPS 7
#define NAL_PPS 8
#define NAL_PICTURE_DELIMITER 9
#define NAL_FILTER_DATA 10
uint8_t *rbsp_buffer;
int rbsp_buffer_size;
int chroma_qp; //QPc
int prev_mb_skiped; //FIXME remove (IMHO not used)
//prediction stuff
int chroma_pred_mode;
int intra16x16_pred_mode;
int8_t intra4x4_pred_mode_cache[5*8];
int8_t (*intra4x4_pred_mode)[8];
void (*pred4x4 [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
void (*pred8x8 [4+3])(uint8_t *src, int stride);
void (*pred16x16[4+3])(uint8_t *src, int stride);
unsigned int topleft_samples_available;
unsigned int top_samples_available;
unsigned int topright_samples_available;
unsigned int left_samples_available;
/**
* non zero coeff count cache.
* is 64 if not available.
*/
uint8_t non_zero_count_cache[6*8];
uint8_t (*non_zero_count)[16];
/**
* Motion vector cache.
*/
int16_t mv_cache[2][5*8][2];
int8_t ref_cache[2][5*8];
#define LIST_NOT_USED -1 //FIXME rename?
#define PART_NOT_AVAILABLE -2
/**
* is 1 if the specific list MV&references are set to 0,0,-2.
*/
int mv_cache_clean[2];
int block_offset[16+8];
int chroma_subblock_offset[16]; //FIXME remove
uint16_t *mb2b_xy; //FIXME are these 4 a good idea?
uint16_t *mb2b8_xy;
int b_stride;
int b8_stride;
int halfpel_flag;
int thirdpel_flag;
int unknown_svq3_flag;
int next_slice_index;
SPS sps_buffer[MAX_SPS_COUNT];
SPS sps; ///< current sps
PPS pps_buffer[MAX_PPS_COUNT];
/**
* current pps
*/
PPS pps; //FIXME move tp Picture perhaps? (->no) do we need that?
int slice_num;
uint8_t *slice_table_base;
uint8_t *slice_table; ///< slice_table_base + mb_stride + 1
int slice_type;
int slice_type_fixed;
//interlacing specific flags
int mb_field_decoding_flag;
int sub_mb_type[4];
//POC stuff
int poc_lsb;
int poc_msb;
int delta_poc_bottom;
int delta_poc[2];
int frame_num;
int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
int frame_num_offset; ///< for POC type 2
int prev_frame_num_offset; ///< for POC type 2
int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
/**
* frame_num for frames or 2*frame_num for field pics.
*/
int curr_pic_num;
/**
* max_frame_num or 2*max_frame_num for field pics.
*/
int max_pic_num;
//Weighted pred stuff
int luma_log2_weight_denom;
int chroma_log2_weight_denom;
int luma_weight[2][16];
int luma_offset[2][16];
int chroma_weight[2][16][2];
int chroma_offset[2][16][2];
//deblock
int disable_deblocking_filter_idc;
int slice_alpha_c0_offset_div2;
int slice_beta_offset_div2;
int redundant_pic_count;
int direct_spatial_mv_pred;
/**
* num_ref_idx_l0/1_active_minus1 + 1
*/
int ref_count[2];// FIXME split for AFF
Picture *short_ref[16];
Picture *long_ref[16];
Picture default_ref_list[2][32];
Picture ref_list[2][32]; //FIXME size?
Picture field_ref_list[2][32]; //FIXME size?
/**
* memory management control operations buffer.
*/
MMCO mmco[MAX_MMCO_COUNT];
int mmco_index;
int long_ref_count; ///< number of actual long term references
int short_ref_count; ///< number of actual short term references
//data partitioning
GetBitContext intra_gb;
GetBitContext inter_gb;
GetBitContext *intra_gb_ptr;
GetBitContext *inter_gb_ptr;
DCTELEM mb[16*24] __align8;
}H264Context;
static VLC coeff_token_vlc[4];
static VLC chroma_dc_coeff_token_vlc;
static VLC total_zeros_vlc[15];
static VLC chroma_dc_total_zeros_vlc[3];
static VLC run_vlc[6];
static VLC run7_vlc;
static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
static inline uint32_t pack16to32(int a, int b){
#ifdef WORDS_BIGENDIAN
return (b&0xFFFF) + (a<<16);
#else
return (a&0xFFFF) + (b<<16);
#endif
}
/**
* fill a rectangle.
* @param h height of the recatangle, should be a constant
* @param w width of the recatangle, should be a constant
* @param size the size of val (1 or 4), should be a constant
*/
static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined
uint8_t *p= (uint8_t*)vp;
assert(size==1 || size==4);
w *= size;
stride *= size;
//FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
if(w==2 && h==2){
*(uint16_t*)(p + 0)=
*(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
}else if(w==2 && h==4){
*(uint16_t*)(p + 0*stride)=
*(uint16_t*)(p + 1*stride)=
*(uint16_t*)(p + 2*stride)=
*(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
}else if(w==4 && h==1){
*(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
}else if(w==4 && h==2){
*(uint32_t*)(p + 0*stride)=
*(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
}else if(w==4 && h==4){
*(uint32_t*)(p + 0*stride)=
*(uint32_t*)(p + 1*stride)=
*(uint32_t*)(p + 2*stride)=
*(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
}else if(w==8 && h==1){
*(uint32_t*)(p + 0)=
*(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
}else if(w==8 && h==2){
*(uint32_t*)(p + 0 + 0*stride)=
*(uint32_t*)(p + 4 + 0*stride)=
*(uint32_t*)(p + 0 + 1*stride)=
*(uint32_t*)(p + 4 + 1*stride)= size==4 ? val : val*0x01010101;
}else if(w==8 && h==4){
*(uint64_t*)(p + 0*stride)=
*(uint64_t*)(p + 1*stride)=
*(uint64_t*)(p + 2*stride)=
*(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
}else if(w==16 && h==2){
*(uint64_t*)(p + 0+0*stride)=
*(uint64_t*)(p + 8+0*stride)=
*(uint64_t*)(p + 0+1*stride)=
*(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
}else if(w==16 && h==4){
*(uint64_t*)(p + 0+0*stride)=
*(uint64_t*)(p + 8+0*stride)=
*(uint64_t*)(p + 0+1*stride)=
*(uint64_t*)(p + 8+1*stride)=
*(uint64_t*)(p + 0+2*stride)=
*(uint64_t*)(p + 8+2*stride)=
*(uint64_t*)(p + 0+3*stride)=
*(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
}else
assert(0);
}
static inline void fill_caches(H264Context *h, int mb_type){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
int topleft_xy, top_xy, topright_xy, left_xy[2];
int topleft_type, top_type, topright_type, left_type[2];
int left_block[4];
int i;
//wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it
if(h->sps.mb_aff){
//FIXME
topleft_xy = 0; /* avoid warning */
top_xy = 0; /* avoid warning */
topright_xy = 0; /* avoid warning */
}else{
topleft_xy = mb_xy-1 - s->mb_stride;
top_xy = mb_xy - s->mb_stride;
topright_xy= mb_xy+1 - s->mb_stride;
left_xy[0] = mb_xy-1;
left_xy[1] = mb_xy-1;
left_block[0]= 0;
left_block[1]= 1;
left_block[2]= 2;
left_block[3]= 3;
}
topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
if(IS_INTRA(mb_type)){
h->topleft_samples_available=
h->top_samples_available=
h->left_samples_available= 0xFFFF;
h->topright_samples_available= 0xEEEA;
if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
h->topleft_samples_available= 0xB3FF;
h->top_samples_available= 0x33FF;
h->topright_samples_available= 0x26EA;
}
for(i=0; i<2; i++){
if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
h->topleft_samples_available&= 0xDF5F;
h->left_samples_available&= 0x5F5F;
}
}
if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
h->topleft_samples_available&= 0x7FFF;
if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
h->topright_samples_available&= 0xFBFF;
if(IS_INTRA4x4(mb_type)){
if(IS_INTRA4x4(top_type)){
h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
}else{
int pred;
if(IS_INTRA16x16(top_type) || (IS_INTER(top_type) && !h->pps.constrained_intra_pred))
pred= 2;
else{
pred= -1;
}
h->intra4x4_pred_mode_cache[4+8*0]=
h->intra4x4_pred_mode_cache[5+8*0]=
h->intra4x4_pred_mode_cache[6+8*0]=
h->intra4x4_pred_mode_cache[7+8*0]= pred;
}
for(i=0; i<2; i++){
if(IS_INTRA4x4(left_type[i])){
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
}else{
int pred;
if(IS_INTRA16x16(left_type[i]) || (IS_INTER(left_type[i]) && !h->pps.constrained_intra_pred))
pred= 2;
else{
pred= -1;
}
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
}
}
}
}
/*
0 . T T. T T T T
1 L . .L . . . .
2 L . .L . . . .
3 . T TL . . . .
4 L . .L . . . .
5 L . .. . . . .
*/
//FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
if(top_type){
h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][0];
h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][1];
h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][2];
h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][7];
h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][10];
h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
}else{
h->non_zero_count_cache[4+8*0]=
h->non_zero_count_cache[5+8*0]=
h->non_zero_count_cache[6+8*0]=
h->non_zero_count_cache[7+8*0]=
h->non_zero_count_cache[1+8*0]=
h->non_zero_count_cache[2+8*0]=
h->non_zero_count_cache[1+8*3]=
h->non_zero_count_cache[2+8*3]= 64;
}
if(left_type[0]){
h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][6];
h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][5];
h->non_zero_count_cache[0+8*1]= h->non_zero_count[left_xy[0]][9]; //FIXME left_block
h->non_zero_count_cache[0+8*4]= h->non_zero_count[left_xy[0]][12];
}else{
h->non_zero_count_cache[3+8*1]=
h->non_zero_count_cache[3+8*2]=
h->non_zero_count_cache[0+8*1]=
h->non_zero_count_cache[0+8*4]= 64;
}
if(left_type[1]){
h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[1]][4];
h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[1]][3];
h->non_zero_count_cache[0+8*2]= h->non_zero_count[left_xy[1]][8];
h->non_zero_count_cache[0+8*5]= h->non_zero_count[left_xy[1]][11];
}else{
h->non_zero_count_cache[3+8*3]=
h->non_zero_count_cache[3+8*4]=
h->non_zero_count_cache[0+8*2]=
h->non_zero_count_cache[0+8*5]= 64;
}
#if 1
if(IS_INTER(mb_type)){
int list;
for(list=0; list<2; list++){
if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
/*if(!h->mv_cache_clean[list]){
memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
h->mv_cache_clean[list]= 1;
}*/
continue; //FIXME direct mode ...
}
h->mv_cache_clean[list]= 0;
if(IS_INTER(topleft_type)){
const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
}else{
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
}
if(IS_INTER(top_type)){
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
*(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
*(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
*(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
*(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
h->ref_cache[list][scan8[0] + 0 - 1*8]=
h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
h->ref_cache[list][scan8[0] + 2 - 1*8]=
h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
}else{
*(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
*(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
*(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
*(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
*(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
}
if(IS_INTER(topright_type)){
const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
*(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
}else{
*(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
}
//FIXME unify cleanup or sth
if(IS_INTER(left_type[0])){
const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
h->ref_cache[list][scan8[0] - 1 + 0*8]=
h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
}else{
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
h->ref_cache[list][scan8[0] - 1 + 0*8]=
h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
}
if(IS_INTER(left_type[1])){
const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
h->ref_cache[list][scan8[0] - 1 + 2*8]=
h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
}else{
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
h->ref_cache[list][scan8[0] - 1 + 2*8]=
h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
}
h->ref_cache[list][scan8[5 ]+1] =
h->ref_cache[list][scan8[7 ]+1] =
h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewher else)
h->ref_cache[list][scan8[4 ]] =
h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
*(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
*(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
*(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
*(uint32_t*)h->mv_cache [list][scan8[4 ]]=
*(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
}
//FIXME
}
#endif
}
static inline void write_back_intra_pred_mode(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
}
/**
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
*/
static inline int check_intra4x4_pred_mode(H264Context *h){
MpegEncContext * const s = &h->s;
static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
int i;
if(!(h->top_samples_available&0x8000)){
for(i=0; i<4; i++){
int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
if(status<0){
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
return -1;
} else if(status){
h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
}
}
}
if(!(h->left_samples_available&0x8000)){
for(i=0; i<4; i++){
int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
if(status<0){
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
return -1;
} else if(status){
h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
}
}
}
return 0;
} //FIXME cleanup like next
/**
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
*/
static inline int check_intra_pred_mode(H264Context *h, int mode){
MpegEncContext * const s = &h->s;
static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
if(!(h->top_samples_available&0x8000)){
mode= top[ mode ];
if(mode<0){
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
}
if(!(h->left_samples_available&0x8000)){
mode= left[ mode ];
if(mode<0){
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
}
return mode;
}
/**
* gets the predicted intra4x4 prediction mode.
*/
static inline int pred_intra_mode(H264Context *h, int n){
const int index8= scan8[n];
const int left= h->intra4x4_pred_mode_cache[index8 - 1];
const int top = h->intra4x4_pred_mode_cache[index8 - 8];
const int min= FFMIN(left, top);
tprintf("mode:%d %d min:%d\n", left ,top, min);
if(min<0) return DC_PRED;
else return min;
}
static inline void write_back_non_zero_count(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[4+8*4];
h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[5+8*4];
h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[6+8*4];
h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[7+8*3];
h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[7+8*2];
h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[7+8*1];
h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[1+8*2];
h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[2+8*1];
h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[1+8*5];
h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[2+8*4];
}
/**
* gets the predicted number of non zero coefficients.
* @param n block index
*/
static inline int pred_non_zero_count(H264Context *h, int n){
const int index8= scan8[n];
const int left= h->non_zero_count_cache[index8 - 1];
const int top = h->non_zero_count_cache[index8 - 8];
int i= left + top;
if(i<64) i= (i+1)>>1;
tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
return i&31;
}
static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
if(topright_ref != PART_NOT_AVAILABLE){
*C= h->mv_cache[list][ i - 8 + part_width ];
return topright_ref;
}else{
tprintf("topright MV not available\n");
*C= h->mv_cache[list][ i - 8 - 1 ];
return h->ref_cache[list][ i - 8 - 1 ];
}
}
/**
* gets the predicted MV.
* @param n the block index
* @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
const int index8= scan8[n];
const int top_ref= h->ref_cache[list][ index8 - 8 ];
const int left_ref= h->ref_cache[list][ index8 - 1 ];
const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
const int16_t * C;
int diagonal_ref, match_count;
assert(part_width==1 || part_width==2 || part_width==4);
/* mv_cache
B . . A T T T T
U . . L . . , .
U . . L . . . .
U . . L . . , .
. . . L . . . .
*/
diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
if(match_count > 1){ //most common
*mx= mid_pred(A[0], B[0], C[0]);
*my= mid_pred(A[1], B[1], C[1]);
}else if(match_count==1){
if(left_ref==ref){
*mx= A[0];
*my= A[1];
}else if(top_ref==ref){
*mx= B[0];
*my= B[1];
}else{
*mx= C[0];
*my= C[1];
}
}else{
if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
*mx= A[0];
*my= A[1];
}else{
*mx= mid_pred(A[0], B[0], C[0]);
*my= mid_pred(A[1], B[1], C[1]);
}
}
tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
}
/**
* gets the directionally predicted 16x8 MV.
* @param n the block index
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
if(n==0){
const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
if(top_ref == ref){
*mx= B[0];
*my= B[1];
return;
}
}else{
const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
if(left_ref == ref){
*mx= A[0];
*my= A[1];
return;
}
}
//RARE
pred_motion(h, n, 4, list, ref, mx, my);
}
/**
* gets the directionally predicted 8x16 MV.
* @param n the block index
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
if(n==0){
const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
if(left_ref == ref){
*mx= A[0];
*my= A[1];
return;
}
}else{
const int16_t * C;
int diagonal_ref;
diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
if(diagonal_ref == ref){
*mx= C[0];
*my= C[1];
return;
}
}
//RARE
pred_motion(h, n, 2, list, ref, mx, my);
}
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
tprintf("pred_pskip: (%d) (%d) at %2d %2d", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
|| (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
|| (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
*mx = *my = 0;
return;
}
pred_motion(h, 0, 4, 0, 0, mx, my);
return;
}
static inline void write_back_motion(H264Context *h, int mb_type){
MpegEncContext * const s = &h->s;
const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
int list;
for(list=0; list<2; list++){
int y;
if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
if(1){ //FIXME skip or never read if mb_type doesnt use it
for(y=0; y<4; y++){
*(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
*(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
}
for(y=0; y<2; y++){
*(uint16_t*)s->current_picture.motion_val[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101;
}
}
continue; //FIXME direct mode ...
}
for(y=0; y<4; y++){
*(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
*(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
}
for(y=0; y<2; y++){
s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
}
}
}
/**
* Decodes a network abstraction layer unit.
* @param consumed is the number of bytes used as input
* @param length is the length of the array
* @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
* @returns decoded bytes, might be src+1 if no escapes
*/
static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
int i, si, di;
uint8_t *dst;
// src[0]&0x80; //forbidden bit
h->nal_ref_idc= src[0]>>5;
h->nal_unit_type= src[0]&0x1F;
src++; length--;
#if 0
for(i=0; i<length; i++)
printf("%2X ", src[i]);
#endif
for(i=0; i+1<length; i+=2){
if(src[i]) continue;
if(i>0 && src[i-1]==0) i--;
if(i+2<length && src[i+1]==0 && src[i+2]<=3){
if(src[i+2]!=3){
/* startcode, so we must be past the end */
length=i;
}
break;
}
}
if(i>=length-1){ //no escaped 0
*dst_length= length;
*consumed= length+1; //+1 for the header
return src;
}
h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
dst= h->rbsp_buffer;
//printf("deoding esc\n");
si=di=0;
while(si<length){
//remove escapes (very rare 1:2^22)
if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
if(src[si+2]==3){ //escape
dst[di++]= 0;
dst[di++]= 0;
si+=3;
}else //next start code
break;
}
dst[di++]= src[si++];
}
*dst_length= di;
*consumed= si + 1;//+1 for the header
//FIXME store exact number of bits in the getbitcontext (its needed for decoding)
return dst;
}
/**
* @param src the data which should be escaped
* @param dst the target buffer, dst+1 == src is allowed as a special case
* @param length the length of the src data
* @param dst_length the length of the dst array
* @returns length of escaped data in bytes or -1 if an error occured
*/
static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
int i, escape_count, si, di;
uint8_t *temp;
assert(length>=0);
assert(dst_length>0);
dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
if(length==0) return 1;
escape_count= 0;
for(i=0; i<length; i+=2){
if(src[i]) continue;
if(i>0 && src[i-1]==0)
i--;
if(i+2<length && src[i+1]==0 && src[i+2]<=3){
escape_count++;
i+=2;
}
}
if(escape_count==0){
if(dst+1 != src)
memcpy(dst+1, src, length);
return length + 1;
}
if(length + escape_count + 1> dst_length)
return -1;
//this should be damn rare (hopefully)
h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
temp= h->rbsp_buffer;
//printf("encoding esc\n");
si= 0;
di= 0;
while(si < length){
if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
temp[di++]= 0; si++;
temp[di++]= 0; si++;
temp[di++]= 3;
temp[di++]= src[si++];
}
else
temp[di++]= src[si++];
}
memcpy(dst+1, temp, length+escape_count);
assert(di == length+escape_count);
return di + 1;
}
/**
* write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
*/
static void encode_rbsp_trailing(PutBitContext *pb){
int length;
put_bits(pb, 1, 1);
length= (-get_bit_count(pb))&7;
if(length) put_bits(pb, length, 0);
}
/**
* identifies the exact end of the bitstream
* @return the length of the trailing, or 0 if damaged
*/
static int decode_rbsp_trailing(uint8_t *src){
int v= *src;
int r;
tprintf("rbsp trailing %X\n", v);
for(r=1; r<9; r++){
if(v&1) return r;
v>>=1;
}
return 0;
}
/**
* idct tranforms the 16 dc values and dequantize them.
* @param qp quantization parameter
*/
static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
const int qmul= dequant_coeff[qp][0];
#define stride 16
int i;
int temp[16]; //FIXME check if this is a good idea
static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
//memset(block, 64, 2*256);
//return;
for(i=0; i<4; i++){
const int offset= y_offset[i];
const int z0= block[offset+stride*0] + block[offset+stride*4];
const int z1= block[offset+stride*0] - block[offset+stride*4];
const int z2= block[offset+stride*1] - block[offset+stride*5];
const int z3= block[offset+stride*1] + block[offset+stride*5];
temp[4*i+0]= z0+z3;
temp[4*i+1]= z1+z2;
temp[4*i+2]= z1-z2;
temp[4*i+3]= z0-z3;
}
for(i=0; i<4; i++){
const int offset= x_offset[i];
const int z0= temp[4*0+i] + temp[4*2+i];
const int z1= temp[4*0+i] - temp[4*2+i];
const int z2= temp[4*1+i] - temp[4*3+i];
const int z3= temp[4*1+i] + temp[4*3+i];
block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual
block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2;
block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2;
block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2;
}
}
/**
* dct tranforms the 16 dc values.
* @param qp quantization parameter ??? FIXME
*/
static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
// const int qmul= dequant_coeff[qp][0];
int i;
int temp[16]; //FIXME check if this is a good idea
static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
for(i=0; i<4; i++){
const int offset= y_offset[i];
const int z0= block[offset+stride*0] + block[offset+stride*4];
const int z1= block[offset+stride*0] - block[offset+stride*4];
const int z2= block[offset+stride*1] - block[offset+stride*5];
const int z3= block[offset+stride*1] + block[offset+stride*5];
temp[4*i+0]= z0+z3;
temp[4*i+1]= z1+z2;
temp[4*i+2]= z1-z2;
temp[4*i+3]= z0-z3;
}
for(i=0; i<4; i++){
const int offset= x_offset[i];
const int z0= temp[4*0+i] + temp[4*2+i];
const int z1= temp[4*0+i] - temp[4*2+i];
const int z2= temp[4*1+i] - temp[4*3+i];
const int z3= temp[4*1+i] + temp[4*3+i];
block[stride*0 +offset]= (z0 + z3)>>1;
block[stride*2 +offset]= (z1 + z2)>>1;
block[stride*8 +offset]= (z1 - z2)>>1;
block[stride*10+offset]= (z0 - z3)>>1;
}
}
#undef xStride
#undef stride
static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){
const int qmul= dequant_coeff[qp][0];
const int stride= 16*2;
const int xStride= 16;
int a,b,c,d,e;
a= block[stride*0 + xStride*0];
b= block[stride*0 + xStride*1];
c= block[stride*1 + xStride*0];
d= block[stride*1 + xStride*1];
e= a-b;
a= a+b;
b= c-d;
c= c+d;
block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1;
block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1;
block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1;
block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1;
}
static void chroma_dc_dct_c(DCTELEM *block){
const int stride= 16*2;
const int xStride= 16;
int a,b,c,d,e;
a= block[stride*0 + xStride*0];
b= block[stride*0 + xStride*1];
c= block[stride*1 + xStride*0];
d= block[stride*1 + xStride*1];
e= a-b;
a= a+b;
b= c-d;
c= c+d;
block[stride*0 + xStride*0]= (a+c);
block[stride*0 + xStride*1]= (e+b);
block[stride*1 + xStride*0]= (a-c);
block[stride*1 + xStride*1]= (e-b);
}
/**
* gets the chroma qp.
*/
static inline int get_chroma_qp(H264Context *h, int qscale){
return chroma_qp[clip(qscale + h->pps.chroma_qp_index_offset, 0, 51)];
}
/**
*
*/
static void h264_add_idct_c(uint8_t *dst, DCTELEM *block, int stride){
int i;
uint8_t *cm = cropTbl + MAX_NEG_CROP;
block[0] += 32;
#if 1
for(i=0; i<4; i++){
const int z0= block[i + 4*0] + block[i + 4*2];
const int z1= block[i + 4*0] - block[i + 4*2];
const int z2= (block[i + 4*1]>>1) - block[i + 4*3];
const int z3= block[i + 4*1] + (block[i + 4*3]>>1);
block[i + 4*0]= z0 + z3;
block[i + 4*1]= z1 + z2;
block[i + 4*2]= z1 - z2;
block[i + 4*3]= z0 - z3;
}
for(i=0; i<4; i++){
const int z0= block[0 + 4*i] + block[2 + 4*i];
const int z1= block[0 + 4*i] - block[2 + 4*i];
const int z2= (block[1 + 4*i]>>1) - block[3 + 4*i];
const int z3= block[1 + 4*i] + (block[3 + 4*i]>>1);
dst[0 + i*stride]= cm[ dst[0 + i*stride] + ((z0 + z3) >> 6) ];
dst[1 + i*stride]= cm[ dst[1 + i*stride] + ((z1 + z2) >> 6) ];
dst[2 + i*stride]= cm[ dst[2 + i*stride] + ((z1 - z2) >> 6) ];
dst[3 + i*stride]= cm[ dst[3 + i*stride] + ((z0 - z3) >> 6) ];
}
#else
for(i=0; i<4; i++){
const int z0= block[0 + 4*i] + block[2 + 4*i];
const int z1= block[0 + 4*i] - block[2 + 4*i];
const int z2= (block[1 + 4*i]>>1) - block[3 + 4*i];
const int z3= block[1 + 4*i] + (block[3 + 4*i]>>1);
block[0 + 4*i]= z0 + z3;
block[1 + 4*i]= z1 + z2;
block[2 + 4*i]= z1 - z2;
block[3 + 4*i]= z0 - z3;
}
for(i=0; i<4; i++){
const int z0= block[i + 4*0] + block[i + 4*2];
const int z1= block[i + 4*0] - block[i + 4*2];
const int z2= (block[i + 4*1]>>1) - block[i + 4*3];
const int z3= block[i + 4*1] + (block[i + 4*3]>>1);
dst[i + 0*stride]= cm[ dst[i + 0*stride] + ((z0 + z3) >> 6) ];
dst[i + 1*stride]= cm[ dst[i + 1*stride] + ((z1 + z2) >> 6) ];
dst[i + 2*stride]= cm[ dst[i + 2*stride] + ((z1 - z2) >> 6) ];
dst[i + 3*stride]= cm[ dst[i + 3*stride] + ((z0 - z3) >> 6) ];
}
#endif
}
static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
int i;
//FIXME try int temp instead of block
for(i=0; i<4; i++){
const int d0= src1[0 + i*stride] - src2[0 + i*stride];
const int d1= src1[1 + i*stride] - src2[1 + i*stride];
const int d2= src1[2 + i*stride] - src2[2 + i*stride];
const int d3= src1[3 + i*stride] - src2[3 + i*stride];
const int z0= d0 + d3;
const int z3= d0 - d3;
const int z1= d1 + d2;
const int z2= d1 - d2;
block[0 + 4*i]= z0 + z1;
block[1 + 4*i]= 2*z3 + z2;
block[2 + 4*i]= z0 - z1;
block[3 + 4*i]= z3 - 2*z2;
}
for(i=0; i<4; i++){
const int z0= block[0*4 + i] + block[3*4 + i];
const int z3= block[0*4 + i] - block[3*4 + i];
const int z1= block[1*4 + i] + block[2*4 + i];
const int z2= block[1*4 + i] - block[2*4 + i];
block[0*4 + i]= z0 + z1;
block[1*4 + i]= 2*z3 + z2;
block[2*4 + i]= z0 - z1;
block[3*4 + i]= z3 - 2*z2;
}
}
//FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
//FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
int i;
const int * const quant_table= quant_coeff[qscale];
const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
const unsigned int threshold2= (threshold1<<1);
int last_non_zero;
if(seperate_dc){
if(qscale<=18){
//avoid overflows
const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
const unsigned int dc_threshold2= (dc_threshold1<<1);
int level= block[0]*quant_coeff[qscale+18][0];
if(((unsigned)(level+dc_threshold1))>dc_threshold2){
if(level>0){
level= (dc_bias + level)>>(QUANT_SHIFT-2);
block[0]= level;
}else{
level= (dc_bias - level)>>(QUANT_SHIFT-2);
block[0]= -level;
}
// last_non_zero = i;
}else{
block[0]=0;
}
}else{
const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
const unsigned int dc_threshold2= (dc_threshold1<<1);
int level= block[0]*quant_table[0];
if(((unsigned)(level+dc_threshold1))>dc_threshold2){
if(level>0){
level= (dc_bias + level)>>(QUANT_SHIFT+1);
block[0]= level;
}else{
level= (dc_bias - level)>>(QUANT_SHIFT+1);
block[0]= -level;
}
// last_non_zero = i;
}else{
block[0]=0;
}
}
last_non_zero= 0;
i=1;
}else{
last_non_zero= -1;
i=0;
}
for(; i<16; i++){
const int j= scantable[i];
int level= block[j]*quant_table[j];
// if( bias+level >= (1<<(QMAT_SHIFT - 3))
// || bias-level >= (1<<(QMAT_SHIFT - 3))){
if(((unsigned)(level+threshold1))>threshold2){
if(level>0){
level= (bias + level)>>QUANT_SHIFT;
block[j]= level;
}else{
level= (bias - level)>>QUANT_SHIFT;
block[j]= -level;
}
last_non_zero = i;
}else{
block[j]=0;
}
}
return last_non_zero;
}
static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
const uint32_t a= ((uint32_t*)(src-stride))[0];
((uint32_t*)(src+0*stride))[0]= a;
((uint32_t*)(src+1*stride))[0]= a;
((uint32_t*)(src+2*stride))[0]= a;
((uint32_t*)(src+3*stride))[0]= a;
}
static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
}
static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
+ src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
((uint32_t*)(src+0*stride))[0]=
((uint32_t*)(src+1*stride))[0]=
((uint32_t*)(src+2*stride))[0]=
((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
}
static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
((uint32_t*)(src+0*stride))[0]=
((uint32_t*)(src+1*stride))[0]=
((uint32_t*)(src+2*stride))[0]=
((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
}
static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
((uint32_t*)(src+0*stride))[0]=
((uint32_t*)(src+1*stride))[0]=
((uint32_t*)(src+2*stride))[0]=
((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
}
static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
((uint32_t*)(src+0*stride))[0]=
((uint32_t*)(src+1*stride))[0]=
((uint32_t*)(src+2*stride))[0]=
((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
}
#define LOAD_TOP_RIGHT_EDGE\
const int t4= topright[0];\
const int t5= topright[1];\
const int t6= topright[2];\
const int t7= topright[3];\
#define LOAD_LEFT_EDGE\
const int l0= src[-1+0*stride];\
const int l1= src[-1+1*stride];\
const int l2= src[-1+2*stride];\
const int l3= src[-1+3*stride];\
#define LOAD_TOP_EDGE\
const int t0= src[ 0-1*stride];\
const int t1= src[ 1-1*stride];\
const int t2= src[ 2-1*stride];\
const int t3= src[ 3-1*stride];\
static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
const int lt= src[-1-1*stride];
LOAD_TOP_EDGE
LOAD_LEFT_EDGE
src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
src[0+2*stride]=
src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
src[0+1*stride]=
src[1+2*stride]=
src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
src[0+0*stride]=
src[1+1*stride]=
src[2+2*stride]=
src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
src[1+0*stride]=
src[2+1*stride]=
src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
src[2+0*stride]=
src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
}
static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
LOAD_TOP_EDGE
LOAD_TOP_RIGHT_EDGE
// LOAD_LEFT_EDGE
src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
src[1+0*stride]=
src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
src[2+0*stride]=
src[1+1*stride]=
src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
src[3+0*stride]=
src[2+1*stride]=
src[1+2*stride]=
src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
src[3+1*stride]=
src[2+2*stride]=
src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
src[3+2*stride]=
src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
}
static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
const int lt= src[-1-1*stride];
LOAD_TOP_EDGE
LOAD_LEFT_EDGE
const __attribute__((unused)) int unu= l3;
src[0+0*stride]=
src[1+2*stride]=(lt + t0 + 1)>>1;
src[1+0*stride]=
src[2+2*stride]=(t0 + t1 + 1)>>1;
src[2+0*stride]=
src[3+2*stride]=(t1 + t2 + 1)>>1;
src[3+0*stride]=(t2 + t3 + 1)>>1;
src[0+1*stride]=
src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
src[1+1*stride]=
src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
src[2+1*stride]=
src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
}
static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
LOAD_TOP_EDGE
LOAD_TOP_RIGHT_EDGE
const __attribute__((unused)) int unu= t7;
src[0+0*stride]=(t0 + t1 + 1)>>1;
src[1+0*stride]=
src[0+2*stride]=(t1 + t2 + 1)>>1;
src[2+0*stride]=
src[1+2*stride]=(t2 + t3 + 1)>>1;
src[3+0*stride]=
src[2+2*stride]=(t3 + t4+ 1)>>1;
src[3+2*stride]=(t4 + t5+ 1)>>1;
src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
src[1+1*stride]=
src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
src[2+1*stride]=
src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
src[3+1*stride]=
src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
}
static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
LOAD_LEFT_EDGE
src[0+0*stride]=(l0 + l1 + 1)>>1;
src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
src[2+0*stride]=
src[0+1*stride]=(l1 + l2 + 1)>>1;
src[3+0*stride]=
src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
src[2+1*stride]=
src[0+2*stride]=(l2 + l3 + 1)>>1;
src[3+1*stride]=
src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
src[3+2*stride]=
src[1+3*stride]=
src[0+3*stride]=
src[2+2*stride]=
src[2+3*stride]=
src[3+3*stride]=l3;
}
static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
const int lt= src[-1-1*stride];
LOAD_TOP_EDGE
LOAD_LEFT_EDGE
const __attribute__((unused)) int unu= t3;
src[0+0*stride]=
src[2+1*stride]=(lt + l0 + 1)>>1;
src[1+0*stride]=
src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
src[0+1*stride]=
src[2+2*stride]=(l0 + l1 + 1)>>1;
src[1+1*stride]=
src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
src[0+2*stride]=
src[2+3*stride]=(l1 + l2+ 1)>>1;
src[1+2*stride]=
src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
src[0+3*stride]=(l2 + l3 + 1)>>1;
src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
}
static void pred16x16_vertical_c(uint8_t *src, int stride){
int i;
const uint32_t a= ((uint32_t*)(src-stride))[0];
const uint32_t b= ((uint32_t*)(src-stride))[1];
const uint32_t c= ((uint32_t*)(src-stride))[2];
const uint32_t d= ((uint32_t*)(src-stride))[3];
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]= a;
((uint32_t*)(src+i*stride))[1]= b;
((uint32_t*)(src+i*stride))[2]= c;
((uint32_t*)(src+i*stride))[3]= d;
}
}
static void pred16x16_horizontal_c(uint8_t *src, int stride){
int i;
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]=
((uint32_t*)(src+i*stride))[2]=
((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
}
}
static void pred16x16_dc_c(uint8_t *src, int stride){
int i, dc=0;
for(i=0;i<16; i++){
dc+= src[-1+i*stride];
}
for(i=0;i<16; i++){
dc+= src[i-stride];
}
dc= 0x01010101*((dc + 16)>>5);
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]=
((uint32_t*)(src+i*stride))[2]=
((uint32_t*)(src+i*stride))[3]= dc;
}
}
static void pred16x16_left_dc_c(uint8_t *src, int stride){
int i, dc=0;
for(i=0;i<16; i++){
dc+= src[-1+i*stride];
}
dc= 0x01010101*((dc + 8)>>4);
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]=
((uint32_t*)(src+i*stride))[2]=
((uint32_t*)(src+i*stride))[3]= dc;
}
}
static void pred16x16_top_dc_c(uint8_t *src, int stride){
int i, dc=0;
for(i=0;i<16; i++){
dc+= src[i-stride];
}
dc= 0x01010101*((dc + 8)>>4);
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]=
((uint32_t*)(src+i*stride))[2]=
((uint32_t*)(src+i*stride))[3]= dc;
}
}
static void pred16x16_128_dc_c(uint8_t *src, int stride){
int i;
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]=
((uint32_t*)(src+i*stride))[2]=
((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
}
}
static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
int i, j, k;
int a;
uint8_t *cm = cropTbl + MAX_NEG_CROP;
const uint8_t * const src0 = src+7-stride;
const uint8_t *src1 = src+8*stride-1;
const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
int H = src0[1] - src0[-1];
int V = src1[0] - src2[ 0];
for(k=2; k<=8; ++k) {
src1 += stride; src2 -= stride;
H += k*(src0[k] - src0[-k]);
V += k*(src1[0] - src2[ 0]);
}
if(svq3){
H = ( 5*(H/4) ) / 16;
V = ( 5*(V/4) ) / 16;
/* required for 100% accuracy */
i = H; H = V; V = i;
}else{
H = ( 5*H+32 ) >> 6;
V = ( 5*V+32 ) >> 6;
}
a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
for(j=16; j>0; --j) {
int b = a;
a += V;
for(i=-16; i<0; i+=4) {
src[16+i] = cm[ (b ) >> 5 ];
src[17+i] = cm[ (b+ H) >> 5 ];
src[18+i] = cm[ (b+2*H) >> 5 ];
src[19+i] = cm[ (b+3*H) >> 5 ];
b += 4*H;
}
src += stride;
}
}
static void pred16x16_plane_c(uint8_t *src, int stride){
pred16x16_plane_compat_c(src, stride, 0);
}
static void pred8x8_vertical_c(uint8_t *src, int stride){
int i;
const uint32_t a= ((uint32_t*)(src-stride))[0];
const uint32_t b= ((uint32_t*)(src-stride))[1];
for(i=0; i<8; i++){
((uint32_t*)(src+i*stride))[0]= a;
((uint32_t*)(src+i*stride))[1]= b;
}
}
static void pred8x8_horizontal_c(uint8_t *src, int stride){
int i;
for(i=0; i<8; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
}
}
static void pred8x8_128_dc_c(uint8_t *src, int stride){
int i;
for(i=0; i<4; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
}
for(i=4; i<8; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
}
}
static void pred8x8_left_dc_c(uint8_t *src, int stride){
int i;
int dc0, dc2;
dc0=dc2=0;
for(i=0;i<4; i++){
dc0+= src[-1+i*stride];
dc2+= src[-1+(i+4)*stride];
}
dc0= 0x01010101*((dc0 + 2)>>2);
dc2= 0x01010101*((dc2 + 2)>>2);
for(i=0; i<4; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]= dc0;
}
for(i=4; i<8; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]= dc2;
}
}
static void pred8x8_top_dc_c(uint8_t *src, int stride){
int i;
int dc0, dc1;
dc0=dc1=0;
for(i=0;i<4; i++){
dc0+= src[i-stride];
dc1+= src[4+i-stride];
}
dc0= 0x01010101*((dc0 + 2)>>2);
dc1= 0x01010101*((dc1 + 2)>>2);
for(i=0; i<4; i++){
((uint32_t*)(src+i*stride))[0]= dc0;
((uint32_t*)(src+i*stride))[1]= dc1;
}
for(i=4; i<8; i++){
((uint32_t*)(src+i*stride))[0]= dc0;
((uint32_t*)(src+i*stride))[1]= dc1;
}
}
static void pred8x8_dc_c(uint8_t *src, int stride){
int i;
int dc0, dc1, dc2, dc3;
dc0=dc1=dc2=0;
for(i=0;i<4; i++){
dc0+= src[-1+i*stride] + src[i-stride];
dc1+= src[4+i-stride];
dc2+= src[-1+(i+4)*stride];
}
dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
dc0= 0x01010101*((dc0 + 4)>>3);
dc1= 0x01010101*((dc1 + 2)>>2);
dc2= 0x01010101*((dc2 + 2)>>2);
for(i=0; i<4; i++){
((uint32_t*)(src+i*stride))[0]= dc0;
((uint32_t*)(src+i*stride))[1]= dc1;
}
for(i=4; i<8; i++){
((uint32_t*)(src+i*stride))[0]= dc2;
((uint32_t*)(src+i*stride))[1]= dc3;
}
}
static void pred8x8_plane_c(uint8_t *src, int stride){
int j, k;
int a;
uint8_t *cm = cropTbl + MAX_NEG_CROP;
const uint8_t * const src0 = src+3-stride;
const uint8_t *src1 = src+4*stride-1;
const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
int H = src0[1] - src0[-1];
int V = src1[0] - src2[ 0];
for(k=2; k<=4; ++k) {
src1 += stride; src2 -= stride;
H += k*(src0[k] - src0[-k]);
V += k*(src1[0] - src2[ 0]);
}
H = ( 17*H+16 ) >> 5;
V = ( 17*V+16 ) >> 5;
a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
for(j=8; j>0; --j) {
int b = a;
a += V;
src[0] = cm[ (b ) >> 5 ];
src[1] = cm[ (b+ H) >> 5 ];
src[2] = cm[ (b+2*H) >> 5 ];
src[3] = cm[ (b+3*H) >> 5 ];
src[4] = cm[ (b+4*H) >> 5 ];
src[5] = cm[ (b+5*H) >> 5 ];
src[6] = cm[ (b+6*H) >> 5 ];
src[7] = cm[ (b+7*H) >> 5 ];
src += stride;
}
}
static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
int src_x_offset, int src_y_offset,
qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
MpegEncContext * const s = &h->s;
const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
const int luma_xy= (mx&3) + ((my&3)<<2);
uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
int extra_height= extra_width;
int emu=0;
const int full_mx= mx>>2;
const int full_my= my>>2;
assert(pic->data[0]);
if(mx&7) extra_width -= 3;
if(my&7) extra_height -= 3;
if( full_mx < 0-extra_width
|| full_my < 0-extra_height
|| full_mx + 16/*FIXME*/ > s->width + extra_width
|| full_my + 16/*FIXME*/ > s->height + extra_height){
ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height);
src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
emu=1;
}
qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
if(!square){
qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
}
if(s->flags&CODEC_FLAG_GRAY) return;
if(emu){
ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
src_cb= s->edge_emu_buffer;
}
chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
if(emu){
ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
src_cr= s->edge_emu_buffer;
}
chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
}
static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
int list0, int list1){
MpegEncContext * const s = &h->s;
qpel_mc_func *qpix_op= qpix_put;
h264_chroma_mc_func chroma_op= chroma_put;
dest_y += 2*x_offset + 2*y_offset*s-> linesize;
dest_cb += x_offset + y_offset*s->uvlinesize;
dest_cr += x_offset + y_offset*s->uvlinesize;
x_offset += 8*s->mb_x;
y_offset += 8*s->mb_y;
if(list0){
Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op);
qpix_op= qpix_avg;
chroma_op= chroma_avg;
}
if(list1){
Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op);
}
}
static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg)){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
const int mb_type= s->current_picture.mb_type[mb_xy];
assert(IS_INTER(mb_type));
if(IS_16X16(mb_type)){
mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
}else if(IS_16X8(mb_type)){
mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
}else if(IS_8X16(mb_type)){
mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
}else{
int i;
assert(IS_8X8(mb_type));
for(i=0; i<4; i++){
const int sub_mb_type= h->sub_mb_type[i];
const int n= 4*i;
int x_offset= (i&1)<<2;
int y_offset= (i&2)<<1;
if(IS_SUB_8X8(sub_mb_type)){
mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
}else if(IS_SUB_8X4(sub_mb_type)){
mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
}else if(IS_SUB_4X8(sub_mb_type)){
mc_part(h, n , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
}else{
int j;
assert(IS_SUB_4X4(sub_mb_type));
for(j=0; j<4; j++){
int sub_x_offset= x_offset + 2*(j&1);
int sub_y_offset= y_offset + (j&2);
mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
}
}
}
}
}
static void decode_init_vlc(H264Context *h){
static int done = 0;
if (!done) {
int i;
done = 1;
init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
&chroma_dc_coeff_token_len [0], 1, 1,
&chroma_dc_coeff_token_bits[0], 1, 1);
for(i=0; i<4; i++){
init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
&coeff_token_len [i][0], 1, 1,
&coeff_token_bits[i][0], 1, 1);
}
for(i=0; i<3; i++){
init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
&chroma_dc_total_zeros_len [i][0], 1, 1,
&chroma_dc_total_zeros_bits[i][0], 1, 1);
}
for(i=0; i<15; i++){
init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
&total_zeros_len [i][0], 1, 1,
&total_zeros_bits[i][0], 1, 1);
}
for(i=0; i<6; i++){
init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
&run_len [i][0], 1, 1,
&run_bits[i][0], 1, 1);
}
init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
&run_len [6][0], 1, 1,
&run_bits[6][0], 1, 1);
}
}
/**
* Sets the intra prediction function pointers.
*/
static void init_pred_ptrs(H264Context *h){
// MpegEncContext * const s = &h->s;
h->pred4x4[VERT_PRED ]= pred4x4_vertical_c;
h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c;
h->pred4x4[DC_PRED ]= pred4x4_dc_c;
h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c;
h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c;
h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c;
h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c;
h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c;
h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c;
h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c;
h->pred8x8[DC_PRED8x8 ]= pred8x8_dc_c;
h->pred8x8[VERT_PRED8x8 ]= pred8x8_vertical_c;
h->pred8x8[HOR_PRED8x8 ]= pred8x8_horizontal_c;
h->pred8x8[PLANE_PRED8x8 ]= pred8x8_plane_c;
h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
h->pred16x16[DC_PRED8x8 ]= pred16x16_dc_c;
h->pred16x16[VERT_PRED8x8 ]= pred16x16_vertical_c;
h->pred16x16[HOR_PRED8x8 ]= pred16x16_horizontal_c;
h->pred16x16[PLANE_PRED8x8 ]= pred16x16_plane_c;
h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
}
static void free_tables(H264Context *h){
av_freep(&h->intra4x4_pred_mode);
av_freep(&h->non_zero_count);
av_freep(&h->slice_table_base);
h->slice_table= NULL;
av_freep(&h->mb2b_xy);
av_freep(&h->mb2b8_xy);
}
/**
* allocates tables.
* needs widzh/height
*/
static int alloc_tables(H264Context *h){
MpegEncContext * const s = &h->s;
const int big_mb_num= s->mb_stride * (s->mb_height+1);
int x,y;
CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
CHECKED_ALLOCZ(h->slice_table_base , big_mb_num * sizeof(uint8_t))
memset(h->slice_table_base, -1, big_mb_num * sizeof(uint8_t));
h->slice_table= h->slice_table_base + s->mb_stride + 1;
CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint16_t));
CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t));
for(y=0; y<s->mb_height; y++){
for(x=0; x<s->mb_width; x++){
const int mb_xy= x + y*s->mb_stride;
const int b_xy = 4*x + 4*y*h->b_stride;
const int b8_xy= 2*x + 2*y*h->b8_stride;
h->mb2b_xy [mb_xy]= b_xy;
h->mb2b8_xy[mb_xy]= b8_xy;
}
}
return 0;
fail:
free_tables(h);
return -1;
}
static void common_init(H264Context *h){
MpegEncContext * const s = &h->s;
s->width = s->avctx->width;
s->height = s->avctx->height;
s->codec_id= s->avctx->codec->id;
init_pred_ptrs(h);
s->unrestricted_mv=1;
s->decode=1; //FIXME
}
static int decode_init(AVCodecContext *avctx){
H264Context *h= avctx->priv_data;
MpegEncContext * const s = &h->s;
s->avctx = avctx;
common_init(h);
s->out_format = FMT_H264;
s->workaround_bugs= avctx->workaround_bugs;
// set defaults
s->progressive_sequence=1;
// s->decode_mb= ff_h263_decode_mb;
s->low_delay= 1;
avctx->pix_fmt= PIX_FMT_YUV420P;
decode_init_vlc(h);
return 0;
}
static void frame_start(H264Context *h){
MpegEncContext * const s = &h->s;
int i;
MPV_frame_start(s, s->avctx);
ff_er_frame_start(s);
h->mmco_index=0;
assert(s->linesize && s->uvlinesize);
for(i=0; i<16; i++){
h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
h->chroma_subblock_offset[i]= 2*((scan8[i] - scan8[0])&7) + 2*s->uvlinesize*((scan8[i] - scan8[0])>>3);
}
for(i=0; i<4; i++){
h->block_offset[16+i]=
h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
}
// s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
}
static void hl_decode_mb(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_x= s->mb_x;
const int mb_y= s->mb_y;
const int mb_xy= mb_x + mb_y*s->mb_stride;
const int mb_type= s->current_picture.mb_type[mb_xy];
uint8_t *dest_y, *dest_cb, *dest_cr;
int linesize, uvlinesize /*dct_offset*/;
int i;
if(!s->decode)
return;
if(s->mb_skiped){
}
dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
if (h->mb_field_decoding_flag) {
linesize = s->linesize * 2;
uvlinesize = s->uvlinesize * 2;
if(mb_y&1){ //FIXME move out of this func?
dest_y -= s->linesize*15;
dest_cb-= s->linesize*7;
dest_cr-= s->linesize*7;
}
} else {
linesize = s->linesize;
uvlinesize = s->uvlinesize;
// dct_offset = s->linesize * 16;
}
if(IS_INTRA(mb_type)){
if(!(s->flags&CODEC_FLAG_GRAY)){
h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
}
if(IS_INTRA4x4(mb_type)){
if(!s->encoding){
for(i=0; i<16; i++){
uint8_t * const ptr= dest_y + h->block_offset[i];
uint8_t *topright= ptr + 4 - linesize;
const int topright_avail= (h->topright_samples_available<<i)&0x8000;
const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
int tr;
if(!topright_avail){
tr= ptr[3 - linesize]*0x01010101;
topright= (uint8_t*) &tr;
}
h->pred4x4[ dir ](ptr, topright, linesize);
if(h->non_zero_count_cache[ scan8[i] ]){
if(s->codec_id == CODEC_ID_H264)
h264_add_idct_c(ptr, h->mb + i*16, linesize);
else
svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
}
}
}
}else{
h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
if(s->codec_id == CODEC_ID_H264)
h264_luma_dc_dequant_idct_c(h->mb, s->qscale);
else
svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
}
}else if(s->codec_id == CODEC_ID_H264){
hl_motion(h, dest_y, dest_cb, dest_cr,
s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab,
s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab);
}
if(!IS_INTRA4x4(mb_type)){
if(s->codec_id == CODEC_ID_H264){
for(i=0; i<16; i++){
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
uint8_t * const ptr= dest_y + h->block_offset[i];
h264_add_idct_c(ptr, h->mb + i*16, linesize);
}
}
}else{
for(i=0; i<16; i++){
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
uint8_t * const ptr= dest_y + h->block_offset[i];
svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
}
}
}
}
if(!(s->flags&CODEC_FLAG_GRAY)){
chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp);
chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp);
if(s->codec_id == CODEC_ID_H264){
for(i=16; i<16+4; i++){
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
uint8_t * const ptr= dest_cb + h->block_offset[i];
h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
}
}
for(i=20; i<20+4; i++){
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
uint8_t * const ptr= dest_cr + h->block_offset[i];
h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
}
}
}else{
for(i=16; i<16+4; i++){
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
uint8_t * const ptr= dest_cb + h->block_offset[i];
svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
}
}
for(i=20; i<20+4; i++){
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
uint8_t * const ptr= dest_cr + h->block_offset[i];
svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
}
}
}
}
}
static void decode_mb_cabac(H264Context *h){
// MpegEncContext * const s = &h->s;
}
/**
* fills the default_ref_list.
*/
static int fill_default_ref_list(H264Context *h){
MpegEncContext * const s = &h->s;
int i;
Picture sorted_short_ref[16];
if(h->slice_type==B_TYPE){
int out_i;
int limit= -1;
for(out_i=0; out_i<h->short_ref_count; out_i++){
int best_i=-1;
int best_poc=-1;
for(i=0; i<h->short_ref_count; i++){
const int poc= h->short_ref[i]->poc;
if(poc > limit && poc < best_poc){
best_poc= poc;
best_i= i;
}
}
assert(best_i != -1);
limit= best_poc;
sorted_short_ref[out_i]= *h->short_ref[best_i];
}
}
if(s->picture_structure == PICT_FRAME){
if(h->slice_type==B_TYPE){
const int current_poc= s->current_picture_ptr->poc;
int list;
for(list=0; list<2; list++){
int index=0;
for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++){
const int i2= list ? h->short_ref_count - i - 1 : i;
const int poc= sorted_short_ref[i2].poc;
if(sorted_short_ref[i2].reference != 3) continue; //FIXME refernce field shit
if((list==1 && poc > current_poc) || (list==0 && poc < current_poc)){
h->default_ref_list[list][index ]= sorted_short_ref[i2];
h->default_ref_list[list][index++].pic_id= sorted_short_ref[i2].frame_num;
}
}
for(i=0; i<h->long_ref_count && index < h->ref_count[ list ]; i++){
if(h->long_ref[i]->reference != 3) continue;
h->default_ref_list[ list ][index ]= *h->long_ref[i];
h->default_ref_list[ list ][index++].pic_id= i;;
}
if(h->long_ref_count > 1 && h->short_ref_count==0){
Picture temp= h->default_ref_list[1][0];
h->default_ref_list[1][0] = h->default_ref_list[1][1];
h->default_ref_list[1][0] = temp;
}
if(index < h->ref_count[ list ])
memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
}
}else{
int index=0;
for(i=0; i<h->short_ref_count && index < h->ref_count[0]; i++){
if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
h->default_ref_list[0][index ]= *h->short_ref[i];
h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
}
for(i=0; i<h->long_ref_count && index < h->ref_count[0]; i++){
if(h->long_ref[i]->reference != 3) continue;
h->default_ref_list[0][index ]= *h->long_ref[i];
h->default_ref_list[0][index++].pic_id= i;;
}
if(index < h->ref_count[0])
memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
}
}else{ //FIELD
if(h->slice_type==B_TYPE){
}else{
//FIXME second field balh
}
}
return 0;
}
static int decode_ref_pic_list_reordering(H264Context *h){
MpegEncContext * const s = &h->s;
int list;
if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func
for(list=0; list<2; list++){
memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
if(get_bits1(&s->gb)){
int pred= h->curr_pic_num;
int index;
for(index=0; ; index++){
int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
int pic_id;
int i;
if(index >= h->ref_count[list]){
av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
return -1;
}
if(reordering_of_pic_nums_idc<3){
if(reordering_of_pic_nums_idc<2){
const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
if(abs_diff_pic_num >= h->max_pic_num){
av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
return -1;
}
if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
else pred+= abs_diff_pic_num;
pred &= h->max_pic_num - 1;
for(i= h->ref_count[list]-1; i>=index; i--){
if(h->ref_list[list][i].pic_id == pred && h->ref_list[list][i].long_ref==0)
break;
}
}else{
pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
for(i= h->ref_count[list]-1; i>=index; i--){
if(h->ref_list[list][i].pic_id == pic_id && h->ref_list[list][i].long_ref==1)
break;
}
}
if(i < index){
av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
}else if(i > index){
Picture tmp= h->ref_list[list][i];
for(; i>index; i--){
h->ref_list[list][i]= h->ref_list[list][i-1];
}
h->ref_list[list][index]= tmp;
}
}else if(reordering_of_pic_nums_idc==3)
break;
else{
av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
return -1;
}
}
}
if(h->slice_type!=B_TYPE) break;
}
return 0;
}
static int pred_weight_table(H264Context *h){
MpegEncContext * const s = &h->s;
int list, i;
h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
for(list=0; list<2; list++){
for(i=0; i<h->ref_count[list]; i++){
int luma_weight_flag, chroma_weight_flag;
luma_weight_flag= get_bits1(&s->gb);
if(luma_weight_flag){
h->luma_weight[list][i]= get_se_golomb(&s->gb);
h->luma_offset[list][i]= get_se_golomb(&s->gb);
}
chroma_weight_flag= get_bits1(&s->gb);
if(chroma_weight_flag){
int j;
for(j=0; j<2; j++){
h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
}
}
}
if(h->slice_type != B_TYPE) break;
}
return 0;
}
/**
* instantaneos decoder refresh.
*/
static void idr(H264Context *h){
int i;
for(i=0; i<h->long_ref_count; i++){
h->long_ref[i]->reference=0;
h->long_ref[i]= NULL;
}
h->long_ref_count=0;
for(i=0; i<h->short_ref_count; i++){
h->short_ref[i]->reference=0;
h->short_ref[i]= NULL;
}
h->short_ref_count=0;
}
/**
*
* @return the removed picture or NULL if an error occures
*/
static Picture * remove_short(H264Context *h, int frame_num){
MpegEncContext * const s = &h->s;
int i;
if(s->avctx->debug&FF_DEBUG_MMCO)
av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
for(i=0; i<h->short_ref_count; i++){
Picture *pic= h->short_ref[i];
if(s->avctx->debug&FF_DEBUG_MMCO)
av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
if(pic->frame_num == frame_num){
h->short_ref[i]= NULL;
memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
h->short_ref_count--;
return pic;
}
}
return NULL;
}
/**
*
* @return the removed picture or NULL if an error occures
*/
static Picture * remove_long(H264Context *h, int i){
Picture *pic;
if(i >= h->long_ref_count) return NULL;
pic= h->long_ref[i];
if(pic==NULL) return NULL;
h->long_ref[i]= NULL;
memmove(&h->long_ref[i], &h->long_ref[i+1], (h->long_ref_count - i - 1)*sizeof(Picture*));
h->long_ref_count--;
return pic;
}
/**
* Executes the reference picture marking (memory management control operations).
*/
static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
MpegEncContext * const s = &h->s;
int i;
int current_is_long=0;
Picture *pic;
if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
for(i=0; i<mmco_count; i++){
if(s->avctx->debug&FF_DEBUG_MMCO)
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
switch(mmco[i].opcode){
case MMCO_SHORT2UNUSED:
pic= remove_short(h, mmco[i].short_frame_num);
if(pic==NULL) return -1;
pic->reference= 0;
break;
case MMCO_SHORT2LONG:
pic= remove_long(h, mmco[i].long_index);
if(pic) pic->reference=0;
h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
h->long_ref[ mmco[i].long_index ]->long_ref=1;
break;
case MMCO_LONG2UNUSED:
pic= remove_long(h, mmco[i].long_index);
if(pic==NULL) return -1;
pic->reference= 0;
break;
case MMCO_LONG:
pic= remove_long(h, mmco[i].long_index);
if(pic) pic->reference=0;
h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
h->long_ref[ mmco[i].long_index ]->long_ref=1;
h->long_ref_count++;
current_is_long=1;
break;
case MMCO_SET_MAX_LONG:
assert(mmco[i].long_index <= 16);
while(mmco[i].long_index < h->long_ref_count){
pic= remove_long(h, mmco[i].long_index);
pic->reference=0;
}
while(mmco[i].long_index > h->long_ref_count){
h->long_ref[ h->long_ref_count++ ]= NULL;
}
break;
case MMCO_RESET:
while(h->short_ref_count){
pic= remove_short(h, h->short_ref[0]->frame_num);
pic->reference=0;
}
while(h->long_ref_count){
pic= remove_long(h, h->long_ref_count-1);
pic->reference=0;
}
break;
default: assert(0);
}
}
if(!current_is_long){
pic= remove_short(h, s->current_picture_ptr->frame_num);
if(pic){
pic->reference=0;
av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
}
if(h->short_ref_count)
memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
h->short_ref[0]= s->current_picture_ptr;
h->short_ref[0]->long_ref=0;
h->short_ref_count++;
}
return 0;
}
static int decode_ref_pic_marking(H264Context *h){
MpegEncContext * const s = &h->s;
int i;
if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
s->broken_link= get_bits1(&s->gb) -1;
h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
if(h->mmco[0].long_index == -1)
h->mmco_index= 0;
else{
h->mmco[0].opcode= MMCO_LONG;
h->mmco_index= 1;
}
}else{
if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
for(i= h->mmco_index; i<MAX_MMCO_COUNT; i++) {
MMCOOpcode opcode= get_ue_golomb(&s->gb);;
h->mmco[i].opcode= opcode;
if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
/* if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco);
return -1;
}*/
}
if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
h->mmco[i].long_index= get_ue_golomb(&s->gb);
if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
return -1;
}
}
if(opcode > MMCO_LONG){
av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
return -1;
}
}
h->mmco_index= i;
}else{
assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
h->mmco[0].opcode= MMCO_SHORT2UNUSED;
h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
h->mmco_index= 1;
}else
h->mmco_index= 0;
}
}
return 0;
}
static int init_poc(H264Context *h){
MpegEncContext * const s = &h->s;
const int max_frame_num= 1<<h->sps.log2_max_frame_num;
int field_poc[2];
if(h->nal_unit_type == NAL_IDR_SLICE){
h->frame_num_offset= 0;
}else{
if(h->frame_num < h->prev_frame_num)
h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
else
h->frame_num_offset= h->prev_frame_num_offset;
}
if(h->sps.poc_type==0){
const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
h->poc_msb = h->prev_poc_msb + max_poc_lsb;
else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
h->poc_msb = h->prev_poc_msb - max_poc_lsb;
else
h->poc_msb = h->prev_poc_msb;
//printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
field_poc[0] =
field_poc[1] = h->poc_msb + h->poc_lsb;
if(s->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc_bottom;
}else if(h->sps.poc_type==1){
int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
int i;
if(h->sps.poc_cycle_length != 0)
abs_frame_num = h->frame_num_offset + h->frame_num;
else
abs_frame_num = 0;
if(h->nal_ref_idc==0 && abs_frame_num > 0)
abs_frame_num--;
expected_delta_per_poc_cycle = 0;
for(i=0; i < h->sps.poc_cycle_length; i++)
expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
if(abs_frame_num > 0){
int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
for(i = 0; i <= frame_num_in_poc_cycle; i++)
expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
} else
expectedpoc = 0;
if(h->nal_ref_idc == 0)
expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
field_poc[0] = expectedpoc + h->delta_poc[0];
field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
if(s->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc[1];
}else{
int poc;
if(h->nal_unit_type == NAL_IDR_SLICE){
poc= 0;
}else{
if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
}
field_poc[0]= poc;
field_poc[1]= poc;
}
if(s->picture_structure != PICT_BOTTOM_FIELD)
s->current_picture_ptr->field_poc[0]= field_poc[0];
if(s->picture_structure != PICT_TOP_FIELD)
s->current_picture_ptr->field_poc[1]= field_poc[1];
if(s->picture_structure == PICT_FRAME) // FIXME field pix?
s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
return 0;
}
/**
* decodes a slice header.
* this will allso call MPV_common_init() and frame_start() as needed
*/
static int decode_slice_header(H264Context *h){
MpegEncContext * const s = &h->s;
int first_mb_in_slice, pps_id;
int num_ref_idx_active_override_flag;
static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
s->current_picture.reference= h->nal_ref_idc != 0;
first_mb_in_slice= get_ue_golomb(&s->gb);
h->slice_type= get_ue_golomb(&s->gb);
if(h->slice_type > 9){
av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
}
if(h->slice_type > 4){
h->slice_type -= 5;
h->slice_type_fixed=1;
}else
h->slice_type_fixed=0;
h->slice_type= slice_type_map[ h->slice_type ];
s->pict_type= h->slice_type; // to make a few old func happy, its wrong though
pps_id= get_ue_golomb(&s->gb);
if(pps_id>255){
av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
return -1;
}
h->pps= h->pps_buffer[pps_id];
if(h->pps.slice_group_count == 0){
av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
return -1;
}
h->sps= h->sps_buffer[ h->pps.sps_id ];
if(h->sps.log2_max_frame_num == 0){
av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
return -1;
}
s->mb_width= h->sps.mb_width;
s->mb_height= h->sps.mb_height;
h->b_stride= s->mb_width*4;
h->b8_stride= s->mb_width*2;
s->mb_x = first_mb_in_slice % s->mb_width;
s->mb_y = first_mb_in_slice / s->mb_width; //FIXME AFFW
s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
if(h->sps.frame_mbs_only_flag)
s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom);
else
s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck
if (s->context_initialized
&& ( s->width != s->avctx->width || s->height != s->avctx->height)) {
free_tables(h);
MPV_common_end(s);
}
if (!s->context_initialized) {
if (MPV_common_init(s) < 0)
return -1;
alloc_tables(h);
s->avctx->width = s->width;
s->avctx->height = s->height;
s->avctx->sample_aspect_ratio= h->sps.sar;
}
if(first_mb_in_slice == 0){
frame_start(h);
}
s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
if(h->sps.frame_mbs_only_flag){
s->picture_structure= PICT_FRAME;
}else{
if(get_bits1(&s->gb)) //field_pic_flag
s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
else
s->picture_structure= PICT_FRAME;
}
if(s->picture_structure==PICT_FRAME){
h->curr_pic_num= h->frame_num;
h->max_pic_num= 1<< h->sps.log2_max_frame_num;
}else{
h->curr_pic_num= 2*h->frame_num;
h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
}
if(h->nal_unit_type == NAL_IDR_SLICE){
get_ue_golomb(&s->gb); /* idr_pic_id */
}
if(h->sps.poc_type==0){
h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
h->delta_poc_bottom= get_se_golomb(&s->gb);
}
}
if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
h->delta_poc[0]= get_se_golomb(&s->gb);
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
h->delta_poc[1]= get_se_golomb(&s->gb);
}
init_poc(h);
if(h->pps.redundant_pic_cnt_present){
h->redundant_pic_count= get_ue_golomb(&s->gb);
}
//set defaults, might be overriden a few line later
h->ref_count[0]= h->pps.ref_count[0];
h->ref_count[1]= h->pps.ref_count[1];
if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
if(h->slice_type == B_TYPE){
h->direct_spatial_mv_pred= get_bits1(&s->gb);
}
num_ref_idx_active_override_flag= get_bits1(&s->gb);
if(num_ref_idx_active_override_flag){
h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
if(h->slice_type==B_TYPE)
h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
if(h->ref_count[0] > 32 || h->ref_count[1] > 32){
av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
return -1;
}
}
}
if(first_mb_in_slice == 0){
fill_default_ref_list(h);
}
decode_ref_pic_list_reordering(h);
if( (h->pps.weighted_pred && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE ))
|| (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
pred_weight_table(h);
if(s->current_picture.reference)
decode_ref_pic_marking(h);
//FIXME CABAC stuff
s->qscale = h->pps.init_qp + get_se_golomb(&s->gb); //slice_qp_delta
//FIXME qscale / qp ... stuff
if(h->slice_type == SP_TYPE){
get_bits1(&s->gb); /* sp_for_switch_flag */
}
if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
get_se_golomb(&s->gb); /* slice_qs_delta */
}
if( h->pps.deblocking_filter_parameters_present ) {
h->disable_deblocking_filter_idc= get_ue_golomb(&s->gb);
if( h->disable_deblocking_filter_idc != 1 ) {
h->slice_alpha_c0_offset_div2= get_se_golomb(&s->gb);
h->slice_beta_offset_div2= get_se_golomb(&s->gb);
}
}else
h->disable_deblocking_filter_idc= 0;
#if 0 //FMO
if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
slice_group_change_cycle= get_bits(&s->gb, ?);
#endif
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
av_log(h->s.avctx, AV_LOG_DEBUG, "mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d\n",
first_mb_in_slice,
av_get_pict_type_char(h->slice_type),
pps_id, h->frame_num,
s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
h->ref_count[0], h->ref_count[1],
s->qscale,
h->disable_deblocking_filter_idc
);
}
return 0;
}
/**
*
*/
static inline int get_level_prefix(GetBitContext *gb){
unsigned int buf;
int log;
OPEN_READER(re, gb);
UPDATE_CACHE(re, gb);
buf=GET_CACHE(re, gb);
log= 32 - av_log2(buf);
#ifdef TRACE
print_bin(buf>>(32-log), log);
printf("%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
#endif
LAST_SKIP_BITS(re, gb, log);
CLOSE_READER(re, gb);
return log-1;
}
/**
* decodes a residual block.
* @param n block index
* @param scantable scantable
* @param max_coeff number of coefficients in the block
* @return <0 if an error occured
*/
static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, int qp, int max_coeff){
MpegEncContext * const s = &h->s;
const uint16_t *qmul= dequant_coeff[qp];
static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
int level[16], run[16];
int suffix_length, zeros_left, coeff_num, coeff_token, total_coeff, i, trailing_ones;
//FIXME put trailing_onex into the context
if(n == CHROMA_DC_BLOCK_INDEX){
coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
total_coeff= coeff_token>>2;
}else{
if(n == LUMA_DC_BLOCK_INDEX){
total_coeff= pred_non_zero_count(h, 0);
coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
total_coeff= coeff_token>>2;
}else{
total_coeff= pred_non_zero_count(h, n);
coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
total_coeff= coeff_token>>2;
h->non_zero_count_cache[ scan8[n] ]= total_coeff;
}
}
//FIXME set last_non_zero?
if(total_coeff==0)
return 0;
trailing_ones= coeff_token&3;
tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
assert(total_coeff<=16);
for(i=0; i<trailing_ones; i++){
level[i]= 1 - 2*get_bits1(gb);
}
suffix_length= total_coeff > 10 && trailing_ones < 3;
for(; i<total_coeff; i++){
const int prefix= get_level_prefix(gb);
int level_code, mask;
if(prefix<14){ //FIXME try to build a large unified VLC table for all this
if(suffix_length)
level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
else
level_code= (prefix<<suffix_length); //part
}else if(prefix==14){
if(suffix_length)
level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
else
level_code= prefix + get_bits(gb, 4); //part
}else if(prefix==15){
level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
if(suffix_length==0) level_code+=15; //FIXME doesnt make (much)sense
}else{
av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
if(i==trailing_ones && i<3) level_code+= 2; //FIXME split first iteration
mask= -(level_code&1);
level[i]= (((2+level_code)>>1) ^ mask) - mask;
if(suffix_length==0) suffix_length=1; //FIXME split first iteration
#if 1
if(ABS(level[i]) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
#else
if((2+level_code)>>1) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
? == prefix > 2 or sth
#endif
tprintf("level: %d suffix_length:%d\n", level[i], suffix_length);
}
if(total_coeff == max_coeff)
zeros_left=0;
else{
if(n == CHROMA_DC_BLOCK_INDEX)
zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
else
zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
}
for(i=0; i<total_coeff-1; i++){
if(zeros_left <=0)
break;
else if(zeros_left < 7){
run[i]= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
}else{
run[i]= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
}
zeros_left -= run[i];
}
if(zeros_left<0){
av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
for(; i<total_coeff-1; i++){
run[i]= 0;
}
run[i]= zeros_left;
coeff_num=-1;
if(n > 24){
for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode?
int j;
coeff_num += run[i] + 1; //FIXME add 1 earlier ?
j= scantable[ coeff_num ];
block[j]= level[i];
}
}else{
for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode?
int j;
coeff_num += run[i] + 1; //FIXME add 1 earlier ?
j= scantable[ coeff_num ];
block[j]= level[i] * qmul[j];
// printf("%d %d ", block[j], qmul[j]);
}
}
return 0;
}
/**
* decodes a macroblock
* @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
*/
static int decode_mb(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
int mb_type, partition_count, cbp;
s->dsp.clear_blocks(h->mb); //FIXME avoid if allready clear (move after skip handlong?
tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
cbp = 0; /* avoid warning. FIXME: find a solution without slowing
down the code */
if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
if(s->mb_skip_run==-1)
s->mb_skip_run= get_ue_golomb(&s->gb);
if (s->mb_skip_run--) {
int mx, my;
/* skip mb */
//FIXME b frame
mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0;
memset(h->non_zero_count[mb_xy], 0, 16);
memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
if(h->sps.mb_aff && s->mb_skip_run==0 && (s->mb_y&1)==0){
h->mb_field_decoding_flag= get_bits1(&s->gb);
}
if(h->mb_field_decoding_flag)
mb_type|= MB_TYPE_INTERLACED;
fill_caches(h, mb_type); //FIXME check what is needed and what not ...
pred_pskip_motion(h, &mx, &my);
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
write_back_motion(h, mb_type);
s->current_picture.mb_type[mb_xy]= mb_type; //FIXME SKIP type
h->slice_table[ mb_xy ]= h->slice_num;
h->prev_mb_skiped= 1;
return 0;
}
}
if(h->sps.mb_aff /* && !field pic FIXME needed? */){
if((s->mb_y&1)==0)
h->mb_field_decoding_flag = get_bits1(&s->gb);
}else
h->mb_field_decoding_flag=0; //FIXME som ed note ?!
h->prev_mb_skiped= 0;
mb_type= get_ue_golomb(&s->gb);
if(h->slice_type == B_TYPE){
if(mb_type < 23){
partition_count= b_mb_type_info[mb_type].partition_count;
mb_type= b_mb_type_info[mb_type].type;
}else{
mb_type -= 23;
goto decode_intra_mb;
}
}else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
if(mb_type < 5){
partition_count= p_mb_type_info[mb_type].partition_count;
mb_type= p_mb_type_info[mb_type].type;
}else{
mb_type -= 5;
goto decode_intra_mb;
}
}else{
assert(h->slice_type == I_TYPE);
decode_intra_mb:
if(mb_type > 25){
av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice to large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
return -1;
}
partition_count=0;
cbp= i_mb_type_info[mb_type].cbp;
h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
mb_type= i_mb_type_info[mb_type].type;
}
if(h->mb_field_decoding_flag)
mb_type |= MB_TYPE_INTERLACED;
s->current_picture.mb_type[mb_xy]= mb_type;
h->slice_table[ mb_xy ]= h->slice_num;
if(IS_INTRA_PCM(mb_type)){
const uint8_t *ptr;
int x, y;
// we assume these blocks are very rare so we dont optimize it
align_get_bits(&s->gb);
ptr= s->gb.buffer + get_bits_count(&s->gb);
for(y=0; y<16; y++){
const int index= 4*(y&3) + 64*(y>>2);
for(x=0; x<16; x++){
h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
}
}
for(y=0; y<8; y++){
const int index= 256 + 4*(y&3) + 32*(y>>2);
for(x=0; x<8; x++){
h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
}
}
for(y=0; y<8; y++){
const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
for(x=0; x<8; x++){
h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
}
}
skip_bits(&s->gb, 384); //FIXME check /fix the bitstream readers
memset(h->non_zero_count[mb_xy], 16, 16);
return 0;
}
fill_caches(h, mb_type);
//mb_pred
if(IS_INTRA(mb_type)){
// init_top_left_availability(h);
if(IS_INTRA4x4(mb_type)){
int i;
// fill_intra4x4_pred_table(h);
for(i=0; i<16; i++){
const int mode_coded= !get_bits1(&s->gb);
const int predicted_mode= pred_intra_mode(h, i);
int mode;
if(mode_coded){
const int rem_mode= get_bits(&s->gb, 3);
if(rem_mode<predicted_mode)
mode= rem_mode;
else
mode= rem_mode + 1;
}else{
mode= predicted_mode;
}
h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
}
write_back_intra_pred_mode(h);
if( check_intra4x4_pred_mode(h) < 0)
return -1;
}else{
h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
if(h->intra16x16_pred_mode < 0)
return -1;
}
h->chroma_pred_mode= get_ue_golomb(&s->gb);
h->chroma_pred_mode= check_intra_pred_mode(h, h->chroma_pred_mode);
if(h->chroma_pred_mode < 0)
return -1;
}else if(partition_count==4){
int i, j, sub_partition_count[4], list, ref[2][4];
if(h->slice_type == B_TYPE){
for(i=0; i<4; i++){
h->sub_mb_type[i]= get_ue_golomb(&s->gb);
if(h->sub_mb_type[i] >=13){
av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
return -1;
}
sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
}
}else{
assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
for(i=0; i<4; i++){
h->sub_mb_type[i]= get_ue_golomb(&s->gb);
if(h->sub_mb_type[i] >=4){
av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
return -1;
}
sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
}
}
for(list=0; list<2; list++){
const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
if(ref_count == 0) continue;
for(i=0; i<4; i++){
if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
ref[list][i] = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
}else{
//FIXME
ref[list][i] = -1;
}
}
}
for(list=0; list<2; list++){
const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
if(ref_count == 0) continue;
for(i=0; i<4; i++){
h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
const int sub_mb_type= h->sub_mb_type[i];
const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
for(j=0; j<sub_partition_count[i]; j++){
int mx, my;
const int index= 4*i + block_width*j;
int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
mx += get_se_golomb(&s->gb);
my += get_se_golomb(&s->gb);
tprintf("final mv:%d %d\n", mx, my);
if(IS_SUB_8X8(sub_mb_type)){
mv_cache[ 0 ][0]= mv_cache[ 1 ][0]=
mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
mv_cache[ 0 ][1]= mv_cache[ 1 ][1]=
mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
}else if(IS_SUB_8X4(sub_mb_type)){
mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
}else if(IS_SUB_4X8(sub_mb_type)){
mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
}else{
assert(IS_SUB_4X4(sub_mb_type));
mv_cache[ 0 ][0]= mx;
mv_cache[ 0 ][1]= my;
}
}
}else{
uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
p[0] = p[1]=
p[8] = p[9]= 0;
}
}
}
}else if(!IS_DIRECT(mb_type)){
int list, mx, my, i;
//FIXME we should set ref_idx_l? to 0 if we use that later ...
if(IS_16X16(mb_type)){
for(list=0; list<2; list++){
if(h->ref_count[0]>0){
if(IS_DIR(mb_type, 0, list)){
const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
}
}
}
for(list=0; list<2; list++){
if(IS_DIR(mb_type, 0, list)){
pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
mx += get_se_golomb(&s->gb);
my += get_se_golomb(&s->gb);
tprintf("final mv:%d %d\n", mx, my);
fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
}
}
}
else if(IS_16X8(mb_type)){
for(list=0; list<2; list++){
if(h->ref_count[list]>0){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){
const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
}
}
}
}
for(list=0; list<2; list++){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){
pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
mx += get_se_golomb(&s->gb);
my += get_se_golomb(&s->gb);
tprintf("final mv:%d %d\n", mx, my);
fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
}
}
}
}else{
assert(IS_8X16(mb_type));
for(list=0; list<2; list++){
if(h->ref_count[list]>0){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){ //FIXME optimize
const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
}
}
}
}
for(list=0; list<2; list++){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){
pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
mx += get_se_golomb(&s->gb);
my += get_se_golomb(&s->gb);
tprintf("final mv:%d %d\n", mx, my);
fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
}
}
}
}
}
if(IS_INTER(mb_type))
write_back_motion(h, mb_type);
if(!IS_INTRA16x16(mb_type)){
cbp= get_ue_golomb(&s->gb);
if(cbp > 47){
av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%d) at %d %d\n", cbp, s->mb_x, s->mb_y);
return -1;
}
if(IS_INTRA4x4(mb_type))
cbp= golomb_to_intra4x4_cbp[cbp];
else
cbp= golomb_to_inter_cbp[cbp];
}
if(cbp || IS_INTRA16x16(mb_type)){
int i8x8, i4x4, chroma_idx;
int chroma_qp, dquant;
GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
const uint8_t *scan, *dc_scan;
// fill_non_zero_count_cache(h);
if(IS_INTERLACED(mb_type)){
scan= field_scan;
dc_scan= luma_dc_field_scan;
}else{
scan= zigzag_scan;
dc_scan= luma_dc_zigzag_scan;
}
dquant= get_se_golomb(&s->gb);
if( dquant > 25 || dquant < -26 ){
av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
return -1;
}
s->qscale += dquant;
if(((unsigned)s->qscale) > 51){
if(s->qscale<0) s->qscale+= 52;
else s->qscale-= 52;
}
h->chroma_qp= chroma_qp= get_chroma_qp(h, s->qscale);
if(IS_INTRA16x16(mb_type)){
if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, s->qscale, 16) < 0){
return -1; //FIXME continue if partotioned and other retirn -1 too
}
assert((cbp&15) == 0 || (cbp&15) == 15);
if(cbp&15){
for(i8x8=0; i8x8<4; i8x8++){
for(i4x4=0; i4x4<4; i4x4++){
const int index= i4x4 + 4*i8x8;
if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, s->qscale, 15) < 0 ){
return -1;
}
}
}
}else{
fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
}
}else{
for(i8x8=0; i8x8<4; i8x8++){
if(cbp & (1<<i8x8)){
for(i4x4=0; i4x4<4; i4x4++){
const int index= i4x4 + 4*i8x8;
if( decode_residual(h, gb, h->mb + 16*index, index, scan, s->qscale, 16) <0 ){
return -1;
}
}
}else{
uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
}
}
}
if(cbp&0x30){
for(chroma_idx=0; chroma_idx<2; chroma_idx++)
if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, chroma_qp, 4) < 0){
return -1;
}
}
if(cbp&0x20){
for(chroma_idx=0; chroma_idx<2; chroma_idx++){
for(i4x4=0; i4x4<4; i4x4++){
const int index= 16 + 4*chroma_idx + i4x4;
if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, chroma_qp, 15) < 0){
return -1;
}
}
}
}else{
uint8_t * const nnz= &h->non_zero_count_cache[0];
nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
}
}else{
memset(&h->non_zero_count_cache[8], 0, 8*5);
}
write_back_non_zero_count(h);
return 0;
}
static int decode_slice(H264Context *h){
MpegEncContext * const s = &h->s;
const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
s->mb_skip_run= -1;
#if 1
for(;;){
int ret= decode_mb(h);
hl_decode_mb(h);
if(ret>=0 && h->sps.mb_aff){ //FIXME optimal? or let mb_decode decode 16x32 ?
s->mb_y++;
ret= decode_mb(h);
hl_decode_mb(h);
s->mb_y--;
}
if(ret<0){
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
if(++s->mb_x >= s->mb_width){
s->mb_x=0;
ff_draw_horiz_band(s, 16*s->mb_y, 16);
if(++s->mb_y >= s->mb_height){
tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
if(get_bits_count(&s->gb) == s->gb.size_in_bits){
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return 0;
}else{
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return -1;
}
}
}
if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
if(get_bits_count(&s->gb) == s->gb.size_in_bits){
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return 0;
}else{
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
}
}
#endif
#if 0
for(;s->mb_y < s->mb_height; s->mb_y++){
for(;s->mb_x < s->mb_width; s->mb_x++){
int ret= decode_mb(h);
hl_decode_mb(h);
if(ret<0){
fprintf(stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
if(++s->mb_x >= s->mb_width){
s->mb_x=0;
if(++s->mb_y >= s->mb_height){
if(get_bits_count(s->gb) == s->gb.size_in_bits){
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return 0;
}else{
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return -1;
}
}
}
if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
if(get_bits_count(s->gb) == s->gb.size_in_bits){
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return 0;
}else{
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
}
}
s->mb_x=0;
ff_draw_horiz_band(s, 16*s->mb_y, 16);
}
#endif
return -1; //not reached
}
static inline int decode_vui_parameters(H264Context *h, SPS *sps){
MpegEncContext * const s = &h->s;
int aspect_ratio_info_present_flag, aspect_ratio_idc;
aspect_ratio_info_present_flag= get_bits1(&s->gb);
if( aspect_ratio_info_present_flag ) {
aspect_ratio_idc= get_bits(&s->gb, 8);
if( aspect_ratio_idc == EXTENDED_SAR ) {
sps->sar.num= get_bits(&s->gb, 16);
sps->sar.den= get_bits(&s->gb, 16);
}else if(aspect_ratio_idc < 16){
sps->sar= pixel_aspect[aspect_ratio_idc];
}else{
av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
return -1;
}
}else{
sps->sar.num=
sps->sar.den= 0;
}
// s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
#if 0
| overscan_info_present_flag |0 |u(1) |
| if( overscan_info_present_flag ) | | |
| overscan_appropriate_flag |0 |u(1) |
| video_signal_type_present_flag |0 |u(1) |
| if( video_signal_type_present_flag ) { | | |
| video_format |0 |u(3) |
| video_full_range_flag |0 |u(1) |
| colour_description_present_flag |0 |u(1) |
| if( colour_description_present_flag ) { | | |
| colour_primaries |0 |u(8) |
| transfer_characteristics |0 |u(8) |
| matrix_coefficients |0 |u(8) |
| } | | |
| } | | |
| chroma_location_info_present_flag |0 |u(1) |
| if ( chroma_location_info_present_flag ) { | | |
| chroma_sample_location_type_top_field |0 |ue(v) |
| chroma_sample_location_type_bottom_field |0 |ue(v) |
| } | | |
| timing_info_present_flag |0 |u(1) |
| if( timing_info_present_flag ) { | | |
| num_units_in_tick |0 |u(32) |
| time_scale |0 |u(32) |
| fixed_frame_rate_flag |0 |u(1) |
| } | | |
| nal_hrd_parameters_present_flag |0 |u(1) |
| if( nal_hrd_parameters_present_flag = = 1) | | |
| hrd_parameters( ) | | |
| vcl_hrd_parameters_present_flag |0 |u(1) |
| if( vcl_hrd_parameters_present_flag = = 1) | | |
| hrd_parameters( ) | | |
| if( ( nal_hrd_parameters_present_flag = = 1 | || | |
| | | |
|( vcl_hrd_parameters_present_flag = = 1 ) ) | | |
| low_delay_hrd_flag |0 |u(1) |
| bitstream_restriction_flag |0 |u(1) |
| if( bitstream_restriction_flag ) { |0 |u(1) |
| motion_vectors_over_pic_boundaries_flag |0 |u(1) |
| max_bytes_per_pic_denom |0 |ue(v) |
| max_bits_per_mb_denom |0 |ue(v) |
| log2_max_mv_length_horizontal |0 |ue(v) |
| log2_max_mv_length_vertical |0 |ue(v) |
| num_reorder_frames |0 |ue(v) |
| max_dec_frame_buffering |0 |ue(v) |
| } | | |
|} | | |
#endif
return 0;
}
static inline int decode_seq_parameter_set(H264Context *h){
MpegEncContext * const s = &h->s;
int profile_idc, level_idc;
int sps_id, i;
SPS *sps;
profile_idc= get_bits(&s->gb, 8);
get_bits1(&s->gb); //constraint_set0_flag
get_bits1(&s->gb); //constraint_set1_flag
get_bits1(&s->gb); //constraint_set2_flag
get_bits(&s->gb, 5); // reserved
level_idc= get_bits(&s->gb, 8);
sps_id= get_ue_golomb(&s->gb);
sps= &h->sps_buffer[ sps_id ];
sps->profile_idc= profile_idc;
sps->level_idc= level_idc;
sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
sps->poc_type= get_ue_golomb(&s->gb);
if(sps->poc_type == 0){ //FIXME #define
sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
} else if(sps->poc_type == 1){//FIXME #define
sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
sps->poc_cycle_length= get_ue_golomb(&s->gb);
for(i=0; i<sps->poc_cycle_length; i++)
sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
}
if(sps->poc_type > 2){
av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
return -1;
}
sps->ref_frame_count= get_ue_golomb(&s->gb);
sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
sps->mb_width= get_ue_golomb(&s->gb) + 1;
sps->mb_height= get_ue_golomb(&s->gb) + 1;
sps->frame_mbs_only_flag= get_bits1(&s->gb);
if(!sps->frame_mbs_only_flag)
sps->mb_aff= get_bits1(&s->gb);
else
sps->mb_aff= 0;
sps->direct_8x8_inference_flag= get_bits1(&s->gb);
sps->crop= get_bits1(&s->gb);
if(sps->crop){
sps->crop_left = get_ue_golomb(&s->gb);
sps->crop_right = get_ue_golomb(&s->gb);
sps->crop_top = get_ue_golomb(&s->gb);
sps->crop_bottom= get_ue_golomb(&s->gb);
if(sps->crop_left || sps->crop_top){
av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completly supported, this could look slightly wrong ...\n");
}
}else{
sps->crop_left =
sps->crop_right =
sps->crop_top =
sps->crop_bottom= 0;
}
sps->vui_parameters_present_flag= get_bits1(&s->gb);
if( sps->vui_parameters_present_flag )
decode_vui_parameters(h, sps);
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%d profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
sps_id, sps->profile_idc, sps->level_idc,
sps->poc_type,
sps->ref_frame_count,
sps->mb_width, sps->mb_height,
sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
sps->direct_8x8_inference_flag ? "8B8" : "",
sps->crop_left, sps->crop_right,
sps->crop_top, sps->crop_bottom,
sps->vui_parameters_present_flag ? "VUI" : ""
);
}
return 0;
}
static inline int decode_picture_parameter_set(H264Context *h){
MpegEncContext * const s = &h->s;
int pps_id= get_ue_golomb(&s->gb);
PPS *pps= &h->pps_buffer[pps_id];
pps->sps_id= get_ue_golomb(&s->gb);
pps->cabac= get_bits1(&s->gb);
pps->pic_order_present= get_bits1(&s->gb);
pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
if(pps->slice_group_count > 1 ){
pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
switch(pps->mb_slice_group_map_type){
case 0:
#if 0
| for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
| run_length[ i ] |1 |ue(v) |
#endif
break;
case 2:
#if 0
| for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
|{ | | |
| top_left_mb[ i ] |1 |ue(v) |
| bottom_right_mb[ i ] |1 |ue(v) |
| } | | |
#endif
break;
case 3:
case 4:
case 5:
#if 0
| slice_group_change_direction_flag |1 |u(1) |
| slice_group_change_rate_minus1 |1 |ue(v) |
#endif
break;
case 6:
#if 0
| slice_group_id_cnt_minus1 |1 |ue(v) |
| for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
|) | | |
| slice_group_id[ i ] |1 |u(v) |
#endif
break;
}
}
pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
if(pps->ref_count[0] > 32 || pps->ref_count[1] > 32){
av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
return -1;
}
pps->weighted_pred= get_bits1(&s->gb);
pps->weighted_bipred_idc= get_bits(&s->gb, 2);
pps->init_qp= get_se_golomb(&s->gb) + 26;
pps->init_qs= get_se_golomb(&s->gb) + 26;
pps->chroma_qp_index_offset= get_se_golomb(&s->gb);
pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
pps->constrained_intra_pred= get_bits1(&s->gb);
pps->redundant_pic_cnt_present = get_bits1(&s->gb);
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%d sps:%d %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d %s %s %s\n",
pps_id, pps->sps_id,
pps->cabac ? "CABAC" : "CAVLC",
pps->slice_group_count,
pps->ref_count[0], pps->ref_count[1],
pps->weighted_pred ? "weighted" : "",
pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset,
pps->deblocking_filter_parameters_present ? "LPAR" : "",
pps->constrained_intra_pred ? "CONSTR" : "",
pps->redundant_pic_cnt_present ? "REDU" : ""
);
}
return 0;
}
/**
* finds the end of the current frame in the bitstream.
* @return the position of the first byte of the next frame, or -1
*/
static int find_frame_end(MpegEncContext *s, uint8_t *buf, int buf_size){
ParseContext *pc= &s->parse_context;
int i;
uint32_t state;
//printf("first %02X%02X%02X%02X\n", buf[0], buf[1],buf[2],buf[3]);
// mb_addr= pc->mb_addr - 1;
state= pc->state;
//FIXME this will fail with slices
for(i=0; i<buf_size; i++){
state= (state<<8) | buf[i];
if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){
if(pc->frame_start_found){
pc->state=-1;
pc->frame_start_found= 0;
return i-3;
}
pc->frame_start_found= 1;
}
}
pc->state= state;
return END_NOT_FOUND;
}
static int decode_nal_units(H264Context *h, uint8_t *buf, int buf_size){
MpegEncContext * const s = &h->s;
AVCodecContext * const avctx= s->avctx;
int buf_index=0;
#if 0
int i;
for(i=0; i<32; i++){
printf("%X ", buf[i]);
}
#endif
for(;;){
int consumed;
int dst_length;
int bit_length;
uint8_t *ptr;
// start code prefix search
for(; buf_index + 3 < buf_size; buf_index++){
// this should allways succeed in the first iteration
if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
break;
}
if(buf_index+3 >= buf_size) break;
buf_index+=3;
ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, buf_size - buf_index);
if(ptr[dst_length - 1] == 0) dst_length--;
bit_length= 8*dst_length - decode_rbsp_trailing(ptr + dst_length - 1);
if(s->avctx->debug&FF_DEBUG_STARTCODE){
av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d length %d\n", h->nal_unit_type, buf_index, dst_length);
}
buf_index += consumed;
if(h->nal_ref_idc < s->hurry_up)
continue;
switch(h->nal_unit_type){
case NAL_IDR_SLICE:
idr(h); //FIXME ensure we dont loose some frames if there is reordering
case NAL_SLICE:
init_get_bits(&s->gb, ptr, bit_length);
h->intra_gb_ptr=
h->inter_gb_ptr= &s->gb;
s->data_partitioning = 0;
if(decode_slice_header(h) < 0) return -1;
if(h->redundant_pic_count==0)
decode_slice(h);
break;
case NAL_DPA:
init_get_bits(&s->gb, ptr, bit_length);
h->intra_gb_ptr=
h->inter_gb_ptr= NULL;
s->data_partitioning = 1;
if(decode_slice_header(h) < 0) return -1;
break;
case NAL_DPB:
init_get_bits(&h->intra_gb, ptr, bit_length);
h->intra_gb_ptr= &h->intra_gb;
break;
case NAL_DPC:
init_get_bits(&h->inter_gb, ptr, bit_length);
h->inter_gb_ptr= &h->inter_gb;
if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning)
decode_slice(h);
break;
case NAL_SEI:
break;
case NAL_SPS:
init_get_bits(&s->gb, ptr, bit_length);
decode_seq_parameter_set(h);
if(s->flags& CODEC_FLAG_LOW_DELAY)
s->low_delay=1;
avctx->has_b_frames= !s->low_delay;
break;
case NAL_PPS:
init_get_bits(&s->gb, ptr, bit_length);
decode_picture_parameter_set(h);
break;
case NAL_PICTURE_DELIMITER:
break;
case NAL_FILTER_DATA:
break;
}
//FIXME move after where irt is set
s->current_picture.pict_type= s->pict_type;
s->current_picture.key_frame= s->pict_type == I_TYPE;
}
if(!s->current_picture_ptr) return buf_index; //no frame
h->prev_frame_num_offset= h->frame_num_offset;
h->prev_frame_num= h->frame_num;
if(s->current_picture_ptr->reference){
h->prev_poc_msb= h->poc_msb;
h->prev_poc_lsb= h->poc_lsb;
}
if(s->current_picture_ptr->reference)
execute_ref_pic_marking(h, h->mmco, h->mmco_index);
else
assert(h->mmco_index==0);
ff_er_frame_end(s);
MPV_frame_end(s);
return buf_index;
}
/**
* retunrs the number of bytes consumed for building the current frame
*/
static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
if(s->flags&CODEC_FLAG_TRUNCATED){
pos -= s->parse_context.last_index;
if(pos<0) pos=0; // FIXME remove (uneeded?)
return pos;
}else{
if(pos==0) pos=1; //avoid infinite loops (i doubt thats needed but ...)
if(pos+10>buf_size) pos=buf_size; // oops ;)
return pos;
}
}
static int decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
uint8_t *buf, int buf_size)
{
H264Context *h = avctx->priv_data;
MpegEncContext *s = &h->s;
AVFrame *pict = data;
int buf_index;
s->flags= avctx->flags;
*data_size = 0;
/* no supplementary picture */
if (buf_size == 0) {
return 0;
}
if(s->flags&CODEC_FLAG_TRUNCATED){
int next= find_frame_end(s, buf, buf_size);
if( ff_combine_frame(s, next, &buf, &buf_size) < 0 )
return buf_size;
//printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
}
if(s->avctx->extradata_size && s->picture_number==0){
if(0 < decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) )
return -1;
}
buf_index=decode_nal_units(h, buf, buf_size);
if(buf_index < 0)
return -1;
//FIXME do something with unavailable reference frames
// if(ret==FRAME_SKIPED) return get_consumed_bytes(s, buf_index, buf_size);
#if 0
if(s->pict_type==B_TYPE || s->low_delay){
*pict= *(AVFrame*)&s->current_picture;
} else {
*pict= *(AVFrame*)&s->last_picture;
}
#endif
if(!s->current_picture_ptr){
av_log(h->s.avctx, AV_LOG_DEBUG, "error, NO frame\n");
return -1;
}
*pict= *(AVFrame*)&s->current_picture; //FIXME
ff_print_debug_info(s, pict);
assert(pict->data[0]);
//printf("out %d\n", (int)pict->data[0]);
#if 0 //?
/* Return the Picture timestamp as the frame number */
/* we substract 1 because it is added on utils.c */
avctx->frame_number = s->picture_number - 1;
#endif
#if 0
/* dont output the last pic after seeking */
if(s->last_picture_ptr || s->low_delay)
//Note this isnt a issue as a IDR pic should flush teh buffers
#endif
*data_size = sizeof(AVFrame);
return get_consumed_bytes(s, buf_index, buf_size);
}
#if 0
static inline void fill_mb_avail(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
if(s->mb_y){
h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
}else{
h->mb_avail[0]=
h->mb_avail[1]=
h->mb_avail[2]= 0;
}
h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
h->mb_avail[4]= 1; //FIXME move out
h->mb_avail[5]= 0; //FIXME move out
}
#endif
#if 0 //selftest
#define COUNT 8000
#define SIZE (COUNT*40)
int main(){
int i;
uint8_t temp[SIZE];
PutBitContext pb;
GetBitContext gb;
// int int_temp[10000];
DSPContext dsp;
AVCodecContext avctx;
dsputil_init(&dsp, &avctx);
init_put_bits(&pb, temp, SIZE);
printf("testing unsigned exp golomb\n");
for(i=0; i<COUNT; i++){
START_TIMER
set_ue_golomb(&pb, i);
STOP_TIMER("set_ue_golomb");
}
flush_put_bits(&pb);
init_get_bits(&gb, temp, 8*SIZE);
for(i=0; i<COUNT; i++){
int j, s;
s= show_bits(&gb, 24);
START_TIMER
j= get_ue_golomb(&gb);
if(j != i){
printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
// return -1;
}
STOP_TIMER("get_ue_golomb");
}
init_put_bits(&pb, temp, SIZE);
printf("testing signed exp golomb\n");
for(i=0; i<COUNT; i++){
START_TIMER
set_se_golomb(&pb, i - COUNT/2);
STOP_TIMER("set_se_golomb");
}
flush_put_bits(&pb);
init_get_bits(&gb, temp, 8*SIZE);
for(i=0; i<COUNT; i++){
int j, s;
s= show_bits(&gb, 24);
START_TIMER
j= get_se_golomb(&gb);
if(j != i - COUNT/2){
printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
// return -1;
}
STOP_TIMER("get_se_golomb");
}
printf("testing 4x4 (I)DCT\n");
DCTELEM block[16];
uint8_t src[16], ref[16];
uint64_t error= 0, max_error=0;
for(i=0; i<COUNT; i++){
int j;
// printf("%d %d %d\n", r1, r2, (r2-r1)*16);
for(j=0; j<16; j++){
ref[j]= random()%255;
src[j]= random()%255;
}
h264_diff_dct_c(block, src, ref, 4);
//normalize
for(j=0; j<16; j++){
// printf("%d ", block[j]);
block[j]= block[j]*4;
if(j&1) block[j]= (block[j]*4 + 2)/5;
if(j&4) block[j]= (block[j]*4 + 2)/5;
}
// printf("\n");
h264_add_idct_c(ref, block, 4);
/* for(j=0; j<16; j++){
printf("%d ", ref[j]);
}
printf("\n");*/
for(j=0; j<16; j++){
int diff= ABS(src[j] - ref[j]);
error+= diff*diff;
max_error= FFMAX(max_error, diff);
}
}
printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
#if 0
printf("testing quantizer\n");
for(qp=0; qp<52; qp++){
for(i=0; i<16; i++)
src1_block[i]= src2_block[i]= random()%255;
}
#endif
printf("Testing NAL layer\n");
uint8_t bitstream[COUNT];
uint8_t nal[COUNT*2];
H264Context h;
memset(&h, 0, sizeof(H264Context));
for(i=0; i<COUNT; i++){
int zeros= i;
int nal_length;
int consumed;
int out_length;
uint8_t *out;
int j;
for(j=0; j<COUNT; j++){
bitstream[j]= (random() % 255) + 1;
}
for(j=0; j<zeros; j++){
int pos= random() % COUNT;
while(bitstream[pos] == 0){
pos++;
pos %= COUNT;
}
bitstream[pos]=0;
}
START_TIMER
nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
if(nal_length<0){
printf("encoding failed\n");
return -1;
}
out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
STOP_TIMER("NAL")
if(out_length != COUNT){
printf("incorrect length %d %d\n", out_length, COUNT);
return -1;
}
if(consumed != nal_length){
printf("incorrect consumed length %d %d\n", nal_length, consumed);
return -1;
}
if(memcmp(bitstream, out, COUNT)){
printf("missmatch\n");
return -1;
}
}
printf("Testing RBSP\n");
return 0;
}
#endif
static int decode_end(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
MpegEncContext *s = &h->s;
free_tables(h); //FIXME cleanup init stuff perhaps
MPV_common_end(s);
// memset(h, 0, sizeof(H264Context));
return 0;
}
AVCodec h264_decoder = {
"h264",
CODEC_TYPE_VIDEO,
CODEC_ID_H264,
sizeof(H264Context),
decode_init,
NULL,
decode_end,
decode_frame,
/*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED,
};
#include "svq3.c"