FFmpeg/libavfilter/vf_fftdnoiz.c

700 lines
22 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include "libavutil/avassert.h"
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "internal.h"
#include "libavcodec/avfft.h"
enum BufferTypes {
CURRENT,
PREV,
NEXT,
BSIZE
};
typedef struct PlaneContext {
int planewidth, planeheight;
int nox, noy;
int b;
int o;
float n;
float *buffer[BSIZE];
FFTComplex *hdata, *vdata;
int data_linesize;
int buffer_linesize;
FFTContext *fft, *ifft;
} PlaneContext;
typedef struct FFTdnoizContext {
const AVClass *class;
float sigma;
float amount;
int block_bits;
float overlap;
int nb_prev;
int nb_next;
int planesf;
AVFrame *prev, *cur, *next;
int depth;
int nb_planes;
PlaneContext planes[4];
void (*import_row)(FFTComplex *dst, uint8_t *src, int rw);
void (*export_row)(FFTComplex *src, uint8_t *dst, int rw, float scale, int depth);
} FFTdnoizContext;
#define OFFSET(x) offsetof(FFTdnoizContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption fftdnoiz_options[] = {
{ "sigma", "set denoise strength",
OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 30, .flags = FLAGS },
{ "amount", "set amount of denoising",
OFFSET(amount), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0.01, 1, .flags = FLAGS },
{ "block", "set block log2(size)",
OFFSET(block_bits), AV_OPT_TYPE_INT, {.i64=4}, 3, 6, .flags = FLAGS },
{ "overlap", "set block overlap",
OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0.2, 0.8, .flags = FLAGS },
{ "prev", "set number of previous frames for temporal denoising",
OFFSET(nb_prev), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
{ "next", "set number of next frames for temporal denoising",
OFFSET(nb_next), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
{ "planes", "set planes to filter",
OFFSET(planesf), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, .flags = FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(fftdnoiz);
static av_cold int init(AVFilterContext *ctx)
{
FFTdnoizContext *s = ctx->priv;
int i;
for (i = 0; i < 4; i++) {
PlaneContext *p = &s->planes[i];
p->fft = av_fft_init(s->block_bits, 0);
p->ifft = av_fft_init(s->block_bits, 1);
if (!p->fft || !p->ifft)
return AVERROR(ENOMEM);
}
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
typedef struct ThreadData {
float *src, *dst;
} ThreadData;
static void import_row8(FFTComplex *dst, uint8_t *src, int rw)
{
int j;
for (j = 0; j < rw; j++) {
dst[j].re = src[j];
dst[j].im = 0;
}
}
static void export_row8(FFTComplex *src, uint8_t *dst, int rw, float scale, int depth)
{
int j;
for (j = 0; j < rw; j++)
dst[j] = av_clip_uint8(src[j].re * scale + 0.5f);
}
static void import_row16(FFTComplex *dst, uint8_t *srcp, int rw)
{
uint16_t *src = (uint16_t *)srcp;
int j;
for (j = 0; j < rw; j++) {
dst[j].re = src[j];
dst[j].im = 0;
}
}
static void export_row16(FFTComplex *src, uint8_t *dstp, int rw, float scale, int depth)
{
uint16_t *dst = (uint16_t *)dstp;
int j;
for (j = 0; j < rw; j++)
dst[j] = av_clip_uintp2_c(src[j].re * scale + 0.5f, depth);
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
const AVPixFmtDescriptor *desc;
FFTdnoizContext *s = ctx->priv;
int i;
desc = av_pix_fmt_desc_get(inlink->format);
s->depth = desc->comp[0].depth;
if (s->depth <= 8) {
s->import_row = import_row8;
s->export_row = export_row8;
} else {
s->import_row = import_row16;
s->export_row = export_row16;
s->sigma *= 1 << (s->depth - 8) * (1 + s->nb_prev + s->nb_next);
}
s->planes[1].planewidth = s->planes[2].planewidth = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planes[0].planewidth = s->planes[3].planewidth = inlink->w;
s->planes[1].planeheight = s->planes[2].planeheight = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planes[0].planeheight = s->planes[3].planeheight = inlink->h;
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
for (i = 0; i < s->nb_planes; i++) {
PlaneContext *p = &s->planes[i];
int size;
p->b = 1 << s->block_bits;
p->n = 1.f / (p->b * p->b);
p->o = p->b * s->overlap;
size = p->b - p->o;
p->nox = (p->planewidth + (size - 1)) / size;
p->noy = (p->planeheight + (size - 1)) / size;
av_log(ctx, AV_LOG_DEBUG, "nox:%d noy:%d size:%d\n", p->nox, p->noy, size);
p->buffer_linesize = p->b * p->nox * sizeof(FFTComplex);
p->buffer[CURRENT] = av_calloc(p->b * p->noy, p->buffer_linesize);
if (!p->buffer[CURRENT])
return AVERROR(ENOMEM);
if (s->nb_prev > 0) {
p->buffer[PREV] = av_calloc(p->b * p->noy, p->buffer_linesize);
if (!p->buffer[PREV])
return AVERROR(ENOMEM);
}
if (s->nb_next > 0) {
p->buffer[NEXT] = av_calloc(p->b * p->noy, p->buffer_linesize);
if (!p->buffer[NEXT])
return AVERROR(ENOMEM);
}
p->data_linesize = 2 * p->b * sizeof(float);
p->hdata = av_calloc(p->b, p->data_linesize);
p->vdata = av_calloc(p->b, p->data_linesize);
if (!p->hdata || !p->vdata)
return AVERROR(ENOMEM);
}
return 0;
}
static void import_plane(FFTdnoizContext *s,
uint8_t *srcp, int src_linesize,
float *buffer, int buffer_linesize, int plane)
{
PlaneContext *p = &s->planes[plane];
const int width = p->planewidth;
const int height = p->planeheight;
const int block = p->b;
const int overlap = p->o;
const int size = block - overlap;
const int nox = p->nox;
const int noy = p->noy;
const int bpp = (s->depth + 7) / 8;
const int data_linesize = p->data_linesize / sizeof(FFTComplex);
FFTComplex *hdata = p->hdata;
FFTComplex *vdata = p->vdata;
int x, y, i, j;
buffer_linesize /= sizeof(float);
for (y = 0; y < noy; y++) {
for (x = 0; x < nox; x++) {
const int rh = FFMIN(block, height - y * size);
const int rw = FFMIN(block, width - x * size);
uint8_t *src = srcp + src_linesize * y * size + x * size * bpp;
float *bdst = buffer + buffer_linesize * y * block + x * block * 2;
FFTComplex *ssrc, *dst = hdata;
for (i = 0; i < rh; i++) {
s->import_row(dst, src, rw);
for (j = rw; j < block; j++) {
dst[j].re = dst[block - j - 1].re;
dst[j].im = 0;
}
av_fft_permute(p->fft, dst);
av_fft_calc(p->fft, dst);
src += src_linesize;
dst += data_linesize;
}
dst = hdata;
for (; i < block; i++) {
for (j = 0; j < block; j++) {
dst[j].re = dst[(block - i - 1) * data_linesize + j].re;
dst[j].im = dst[(block - i - 1) * data_linesize + j].im;
}
}
ssrc = hdata;
dst = vdata;
for (i = 0; i < block; i++) {
for (j = 0; j < block; j++)
dst[j] = ssrc[j * data_linesize + i];
av_fft_permute(p->fft, dst);
av_fft_calc(p->fft, dst);
memcpy(bdst, dst, block * sizeof(FFTComplex));
dst += data_linesize;
bdst += buffer_linesize;
}
}
}
}
static void export_plane(FFTdnoizContext *s,
uint8_t *dstp, int dst_linesize,
float *buffer, int buffer_linesize, int plane)
{
PlaneContext *p = &s->planes[plane];
const int depth = s->depth;
const int bpp = (depth + 7) / 8;
const int width = p->planewidth;
const int height = p->planeheight;
const int block = p->b;
const int overlap = p->o;
const int hoverlap = overlap / 2;
const int size = block - overlap;
const int nox = p->nox;
const int noy = p->noy;
const int data_linesize = p->data_linesize / sizeof(FFTComplex);
const float scale = 1.f / (block * block);
FFTComplex *hdata = p->hdata;
FFTComplex *vdata = p->vdata;
int x, y, i, j;
buffer_linesize /= sizeof(float);
for (y = 0; y < noy; y++) {
for (x = 0; x < nox; x++) {
const int woff = x == 0 ? 0 : hoverlap;
const int hoff = y == 0 ? 0 : hoverlap;
const int rw = x == 0 ? block : FFMIN(size, width - x * size - woff);
const int rh = y == 0 ? block : FFMIN(size, height - y * size - hoff);
float *bsrc = buffer + buffer_linesize * y * block + x * block * 2;
uint8_t *dst = dstp + dst_linesize * (y * size + hoff) + (x * size + woff) * bpp;
FFTComplex *hdst, *ddst = vdata;
hdst = hdata;
for (i = 0; i < block; i++) {
memcpy(ddst, bsrc, block * sizeof(FFTComplex));
av_fft_permute(p->ifft, ddst);
av_fft_calc(p->ifft, ddst);
for (j = 0; j < block; j++) {
hdst[j * data_linesize + i] = ddst[j];
}
ddst += data_linesize;
bsrc += buffer_linesize;
}
hdst = hdata + hoff * data_linesize;
for (i = 0; i < rh; i++) {
av_fft_permute(p->ifft, hdst);
av_fft_calc(p->ifft, hdst);
s->export_row(hdst + woff, dst, rw, scale, depth);
hdst += data_linesize;
dst += dst_linesize;
}
}
}
}
static void filter_plane3d2(FFTdnoizContext *s, int plane, float *pbuffer, float *nbuffer)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int nox = p->nox;
const int noy = p->noy;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float sigma = s->sigma * s->sigma * block * block;
const float limit = 1.f - s->amount;
float *cbuffer = p->buffer[CURRENT];
const float cfactor = sqrtf(3.f) * 0.5f;
const float scale = 1.f / 3.f;
int y, x, i, j;
for (y = 0; y < noy; y++) {
for (x = 0; x < nox; x++) {
float *cbuff = cbuffer + buffer_linesize * y * block + x * block * 2;
float *pbuff = pbuffer + buffer_linesize * y * block + x * block * 2;
float *nbuff = nbuffer + buffer_linesize * y * block + x * block * 2;
for (i = 0; i < block; i++) {
for (j = 0; j < block; j++) {
float sumr, sumi, difr, difi, mpr, mpi, mnr, mni;
float factor, power, sumpnr, sumpni;
sumpnr = pbuff[2 * j ] + nbuff[2 * j ];
sumpni = pbuff[2 * j + 1] + nbuff[2 * j + 1];
sumr = cbuff[2 * j ] + sumpnr;
sumi = cbuff[2 * j + 1] + sumpni;
difr = cfactor * (nbuff[2 * j ] - pbuff[2 * j ]);
difi = cfactor * (pbuff[2 * j + 1] - nbuff[2 * j + 1]);
mpr = cbuff[2 * j ] - 0.5f * sumpnr + difi;
mnr = mpr - difi - difi;
mpi = cbuff[2 * j + 1] - 0.5f * sumpni + difr;
mni = mpi - difr - difr;
power = sumr * sumr + sumi * sumi + 1e-15f;
factor = FFMAX((power - sigma) / power, limit);
sumr *= factor;
sumi *= factor;
power = mpr * mpr + mpi * mpi + 1e-15f;
factor = FFMAX((power - sigma) / power, limit);
mpr *= factor;
mpi *= factor;
power = mnr * mnr + mni * mni + 1e-15f;
factor = FFMAX((power - sigma) / power, limit);
mnr *= factor;
mni *= factor;
cbuff[2 * j ] = (sumr + mpr + mnr) * scale;
cbuff[2 * j + 1] = (sumi + mpi + mni) * scale;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
nbuff += buffer_linesize;
}
}
}
}
static void filter_plane3d1(FFTdnoizContext *s, int plane, float *pbuffer)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int nox = p->nox;
const int noy = p->noy;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float sigma = s->sigma * s->sigma * block * block;
const float limit = 1.f - s->amount;
float *cbuffer = p->buffer[CURRENT];
int y, x, i, j;
for (y = 0; y < noy; y++) {
for (x = 0; x < nox; x++) {
float *cbuff = cbuffer + buffer_linesize * y * block + x * block * 2;
float *pbuff = pbuffer + buffer_linesize * y * block + x * block * 2;
for (i = 0; i < block; i++) {
for (j = 0; j < block; j++) {
float factor, power, re, im, pre, pim;
float sumr, sumi, difr, difi;
re = cbuff[j * 2 ];
pre = pbuff[j * 2 ];
im = cbuff[j * 2 + 1];
pim = pbuff[j * 2 + 1];
sumr = re + pre;
sumi = im + pim;
difr = re - pre;
difi = im - pim;
power = sumr * sumr + sumi * sumi + 1e-15f;
factor = FFMAX(limit, (power - sigma) / power);
sumr *= factor;
sumi *= factor;
power = difr * difr + difi * difi + 1e-15f;
factor = FFMAX(limit, (power - sigma) / power);
difr *= factor;
difi *= factor;
cbuff[j * 2 ] = (sumr + difr) * 0.5f;
cbuff[j * 2 + 1] = (sumi + difi) * 0.5f;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
}
}
}
}
static void filter_plane2d(FFTdnoizContext *s, int plane)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int nox = p->nox;
const int noy = p->noy;
const int buffer_linesize = p->buffer_linesize / 4;
const float sigma = s->sigma * s->sigma * block * block;
const float limit = 1.f - s->amount;
float *buffer = p->buffer[CURRENT];
int y, x, i, j;
for (y = 0; y < noy; y++) {
for (x = 0; x < nox; x++) {
float *buff = buffer + buffer_linesize * y * block + x * block * 2;
for (i = 0; i < block; i++) {
for (j = 0; j < block; j++) {
float factor, power, re, im;
re = buff[j * 2 ];
im = buff[j * 2 + 1];
power = re * re + im * im + 1e-15f;
factor = FFMAX(limit, (power - sigma) / power);
buff[j * 2 ] *= factor;
buff[j * 2 + 1] *= factor;
}
buff += buffer_linesize;
}
}
}
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
FFTdnoizContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
int direct, plane;
AVFrame *out;
if (s->nb_next > 0 && s->nb_prev > 0) {
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = s->next;
s->next = in;
if (!s->prev && s->cur) {
s->prev = av_frame_clone(s->cur);
if (!s->prev)
return AVERROR(ENOMEM);
}
if (!s->cur)
return 0;
} else if (s->nb_next > 0) {
av_frame_free(&s->cur);
s->cur = s->next;
s->next = in;
if (!s->cur)
return 0;
} else if (s->nb_prev > 0) {
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = in;
if (!s->prev)
s->prev = av_frame_clone(s->cur);
if (!s->prev)
return AVERROR(ENOMEM);
} else {
s->cur = in;
}
if (av_frame_is_writable(in) && s->nb_next == 0 && s->nb_prev == 0) {
direct = 1;
out = in;
} else {
direct = 0;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out)
return AVERROR(ENOMEM);
av_frame_copy_props(out, s->cur);
}
for (plane = 0; plane < s->nb_planes; plane++) {
PlaneContext *p = &s->planes[plane];
if (!((1 << plane) & s->planesf) || ctx->is_disabled) {
if (!direct)
av_image_copy_plane(out->data[plane], out->linesize[plane],
s->cur->data[plane], s->cur->linesize[plane],
p->planewidth, p->planeheight);
continue;
}
if (s->next) {
import_plane(s, s->next->data[plane], s->next->linesize[plane],
p->buffer[NEXT], p->buffer_linesize, plane);
}
if (s->prev) {
import_plane(s, s->prev->data[plane], s->prev->linesize[plane],
p->buffer[PREV], p->buffer_linesize, plane);
}
import_plane(s, s->cur->data[plane], s->cur->linesize[plane],
p->buffer[CURRENT], p->buffer_linesize, plane);
if (s->next && s->prev) {
filter_plane3d2(s, plane, p->buffer[PREV], p->buffer[NEXT]);
} else if (s->next) {
filter_plane3d1(s, plane, p->buffer[NEXT]);
} else if (s->prev) {
filter_plane3d1(s, plane, p->buffer[PREV]);
} else {
filter_plane2d(s, plane);
}
export_plane(s, out->data[plane], out->linesize[plane],
p->buffer[CURRENT], p->buffer_linesize, plane);
}
if (s->nb_next == 0 && s->nb_prev == 0) {
if (direct) {
s->cur = NULL;
} else {
av_frame_free(&s->cur);
}
}
return ff_filter_frame(outlink, out);
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
FFTdnoizContext *s = ctx->priv;
int ret = 0;
ret = ff_request_frame(ctx->inputs[0]);
if (ret == AVERROR_EOF && (s->nb_next > 0)) {
AVFrame *buf;
if (s->next && s->nb_next > 0)
buf = av_frame_clone(s->next);
else if (s->cur)
buf = av_frame_clone(s->cur);
else
buf = av_frame_clone(s->prev);
if (!buf)
return AVERROR(ENOMEM);
ret = filter_frame(ctx->inputs[0], buf);
if (ret < 0)
return ret;
ret = AVERROR_EOF;
}
return ret;
}
static av_cold void uninit(AVFilterContext *ctx)
{
FFTdnoizContext *s = ctx->priv;
int i;
for (i = 0; i < 4; i++) {
PlaneContext *p = &s->planes[i];
av_freep(&p->hdata);
av_freep(&p->vdata);
av_freep(&p->buffer[PREV]);
av_freep(&p->buffer[CURRENT]);
av_freep(&p->buffer[NEXT]);
av_fft_end(p->fft);
av_fft_end(p->ifft);
}
av_frame_free(&s->prev);
av_frame_free(&s->cur);
av_frame_free(&s->next);
}
static const AVFilterPad fftdnoiz_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
{ NULL }
};
static const AVFilterPad fftdnoiz_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.request_frame = request_frame,
},
{ NULL }
};
AVFilter ff_vf_fftdnoiz = {
.name = "fftdnoiz",
.description = NULL_IF_CONFIG_SMALL("Denoise frames using 3D FFT."),
.priv_size = sizeof(FFTdnoizContext),
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.inputs = fftdnoiz_inputs,
.outputs = fftdnoiz_outputs,
.priv_class = &fftdnoiz_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
};