mirror of
https://github.com/xenia-project/FFmpeg.git
synced 2024-11-24 12:09:55 +00:00
5fdbfcb5b7
The x86 runs short on registers because numerous elements are not static. In addition, splitting them allows more optimized code, at least for x86. Arm asm changes by Janne Grunau. Signed-off-by: Janne Grunau <janne-libav@jannau.net>
2100 lines
78 KiB
C
2100 lines
78 KiB
C
/*
|
|
* DCA compatible decoder
|
|
* Copyright (C) 2004 Gildas Bazin
|
|
* Copyright (C) 2004 Benjamin Zores
|
|
* Copyright (C) 2006 Benjamin Larsson
|
|
* Copyright (C) 2007 Konstantin Shishkov
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
|
|
#include "libavutil/channel_layout.h"
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/float_dsp.h"
|
|
#include "libavutil/internal.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "libavutil/mathematics.h"
|
|
#include "libavutil/opt.h"
|
|
#include "libavutil/samplefmt.h"
|
|
#include "avcodec.h"
|
|
#include "fft.h"
|
|
#include "get_bits.h"
|
|
#include "put_bits.h"
|
|
#include "dcadata.h"
|
|
#include "dcahuff.h"
|
|
#include "dca.h"
|
|
#include "mathops.h"
|
|
#include "synth_filter.h"
|
|
#include "dcadsp.h"
|
|
#include "fmtconvert.h"
|
|
#include "internal.h"
|
|
|
|
#if ARCH_ARM
|
|
# include "arm/dca.h"
|
|
#endif
|
|
#if ARCH_X86
|
|
# include "x86/dca.h"
|
|
#endif
|
|
|
|
//#define TRACE
|
|
|
|
#define DCA_PRIM_CHANNELS_MAX (7)
|
|
#define DCA_SUBBANDS (32)
|
|
#define DCA_ABITS_MAX (32) /* Should be 28 */
|
|
#define DCA_SUBSUBFRAMES_MAX (4)
|
|
#define DCA_SUBFRAMES_MAX (16)
|
|
#define DCA_BLOCKS_MAX (16)
|
|
#define DCA_LFE_MAX (3)
|
|
|
|
enum DCAMode {
|
|
DCA_MONO = 0,
|
|
DCA_CHANNEL,
|
|
DCA_STEREO,
|
|
DCA_STEREO_SUMDIFF,
|
|
DCA_STEREO_TOTAL,
|
|
DCA_3F,
|
|
DCA_2F1R,
|
|
DCA_3F1R,
|
|
DCA_2F2R,
|
|
DCA_3F2R,
|
|
DCA_4F2R
|
|
};
|
|
|
|
/* these are unconfirmed but should be mostly correct */
|
|
enum DCAExSSSpeakerMask {
|
|
DCA_EXSS_FRONT_CENTER = 0x0001,
|
|
DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
|
|
DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
|
|
DCA_EXSS_LFE = 0x0008,
|
|
DCA_EXSS_REAR_CENTER = 0x0010,
|
|
DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
|
|
DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
|
|
DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
|
|
DCA_EXSS_OVERHEAD = 0x0100,
|
|
DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
|
|
DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
|
|
DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
|
|
DCA_EXSS_LFE2 = 0x1000,
|
|
DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
|
|
DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
|
|
DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
|
|
};
|
|
|
|
enum DCAExtensionMask {
|
|
DCA_EXT_CORE = 0x001, ///< core in core substream
|
|
DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
|
|
DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
|
|
DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
|
|
DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
|
|
DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
|
|
DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
|
|
DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
|
|
DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
|
|
DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
|
|
};
|
|
|
|
/* -1 are reserved or unknown */
|
|
static const int dca_ext_audio_descr_mask[] = {
|
|
DCA_EXT_XCH,
|
|
-1,
|
|
DCA_EXT_X96,
|
|
DCA_EXT_XCH | DCA_EXT_X96,
|
|
-1,
|
|
-1,
|
|
DCA_EXT_XXCH,
|
|
-1,
|
|
};
|
|
|
|
/* extensions that reside in core substream */
|
|
#define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
|
|
|
|
/* Tables for mapping dts channel configurations to libavcodec multichannel api.
|
|
* Some compromises have been made for special configurations. Most configurations
|
|
* are never used so complete accuracy is not needed.
|
|
*
|
|
* L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
|
|
* S -> side, when both rear and back are configured move one of them to the side channel
|
|
* OV -> center back
|
|
* All 2 channel configurations -> AV_CH_LAYOUT_STEREO
|
|
*/
|
|
static const uint64_t dca_core_channel_layout[] = {
|
|
AV_CH_FRONT_CENTER, ///< 1, A
|
|
AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
|
|
AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
|
|
AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
|
|
AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
|
|
AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
|
|
AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
|
|
AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
|
|
AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
|
|
|
|
AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
|
|
AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
|
|
|
|
AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
|
|
AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
|
|
|
|
AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
|
|
AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
|
|
|
|
AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
|
|
AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
|
|
AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
|
|
|
|
AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
|
|
AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
|
|
AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
|
|
|
|
AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
|
|
AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
|
|
AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
|
|
|
|
AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
|
|
AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
|
|
AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
|
|
};
|
|
|
|
static const int8_t dca_lfe_index[] = {
|
|
1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
|
|
};
|
|
|
|
static const int8_t dca_channel_reorder_lfe[][9] = {
|
|
{ 0, -1, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 2, 0, 1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 3, -1, -1, -1, -1, -1, -1},
|
|
{ 2, 0, 1, 4, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 3, 4, -1, -1, -1, -1, -1},
|
|
{ 2, 0, 1, 4, 5, -1, -1, -1, -1},
|
|
{ 3, 4, 0, 1, 5, 6, -1, -1, -1},
|
|
{ 2, 0, 1, 4, 5, 6, -1, -1, -1},
|
|
{ 0, 6, 4, 5, 2, 3, -1, -1, -1},
|
|
{ 4, 2, 5, 0, 1, 6, 7, -1, -1},
|
|
{ 5, 6, 0, 1, 7, 3, 8, 4, -1},
|
|
{ 4, 2, 5, 0, 1, 6, 8, 7, -1},
|
|
};
|
|
|
|
static const int8_t dca_channel_reorder_lfe_xch[][9] = {
|
|
{ 0, 2, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 3, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 3, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 3, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 3, -1, -1, -1, -1, -1, -1},
|
|
{ 2, 0, 1, 4, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 3, 4, -1, -1, -1, -1, -1},
|
|
{ 2, 0, 1, 4, 5, -1, -1, -1, -1},
|
|
{ 0, 1, 4, 5, 3, -1, -1, -1, -1},
|
|
{ 2, 0, 1, 5, 6, 4, -1, -1, -1},
|
|
{ 3, 4, 0, 1, 6, 7, 5, -1, -1},
|
|
{ 2, 0, 1, 4, 5, 6, 7, -1, -1},
|
|
{ 0, 6, 4, 5, 2, 3, 7, -1, -1},
|
|
{ 4, 2, 5, 0, 1, 7, 8, 6, -1},
|
|
{ 5, 6, 0, 1, 8, 3, 9, 4, 7},
|
|
{ 4, 2, 5, 0, 1, 6, 9, 8, 7},
|
|
};
|
|
|
|
static const int8_t dca_channel_reorder_nolfe[][9] = {
|
|
{ 0, -1, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 2, 0, 1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 2, -1, -1, -1, -1, -1, -1},
|
|
{ 2, 0, 1, 3, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 2, 3, -1, -1, -1, -1, -1},
|
|
{ 2, 0, 1, 3, 4, -1, -1, -1, -1},
|
|
{ 2, 3, 0, 1, 4, 5, -1, -1, -1},
|
|
{ 2, 0, 1, 3, 4, 5, -1, -1, -1},
|
|
{ 0, 5, 3, 4, 1, 2, -1, -1, -1},
|
|
{ 3, 2, 4, 0, 1, 5, 6, -1, -1},
|
|
{ 4, 5, 0, 1, 6, 2, 7, 3, -1},
|
|
{ 3, 2, 4, 0, 1, 5, 7, 6, -1},
|
|
};
|
|
|
|
static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
|
|
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 2, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 2, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 2, -1, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 2, -1, -1, -1, -1, -1, -1},
|
|
{ 2, 0, 1, 3, -1, -1, -1, -1, -1},
|
|
{ 0, 1, 2, 3, -1, -1, -1, -1, -1},
|
|
{ 2, 0, 1, 3, 4, -1, -1, -1, -1},
|
|
{ 0, 1, 3, 4, 2, -1, -1, -1, -1},
|
|
{ 2, 0, 1, 4, 5, 3, -1, -1, -1},
|
|
{ 2, 3, 0, 1, 5, 6, 4, -1, -1},
|
|
{ 2, 0, 1, 3, 4, 5, 6, -1, -1},
|
|
{ 0, 5, 3, 4, 1, 2, 6, -1, -1},
|
|
{ 3, 2, 4, 0, 1, 6, 7, 5, -1},
|
|
{ 4, 5, 0, 1, 7, 2, 8, 3, 6},
|
|
{ 3, 2, 4, 0, 1, 5, 8, 7, 6},
|
|
};
|
|
|
|
#define DCA_DOLBY 101 /* FIXME */
|
|
|
|
#define DCA_CHANNEL_BITS 6
|
|
#define DCA_CHANNEL_MASK 0x3F
|
|
|
|
#define DCA_LFE 0x80
|
|
|
|
#define HEADER_SIZE 14
|
|
|
|
#define DCA_MAX_FRAME_SIZE 16384
|
|
#define DCA_MAX_EXSS_HEADER_SIZE 4096
|
|
|
|
#define DCA_BUFFER_PADDING_SIZE 1024
|
|
|
|
#define DCA_NSYNCAUX 0x9A1105A0
|
|
|
|
/** Bit allocation */
|
|
typedef struct {
|
|
int offset; ///< code values offset
|
|
int maxbits[8]; ///< max bits in VLC
|
|
int wrap; ///< wrap for get_vlc2()
|
|
VLC vlc[8]; ///< actual codes
|
|
} BitAlloc;
|
|
|
|
static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
|
|
static BitAlloc dca_tmode; ///< transition mode VLCs
|
|
static BitAlloc dca_scalefactor; ///< scalefactor VLCs
|
|
static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
|
|
|
|
static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
|
|
int idx)
|
|
{
|
|
return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
|
|
ba->offset;
|
|
}
|
|
|
|
typedef struct {
|
|
AVClass *class; ///< class for AVOptions
|
|
AVCodecContext *avctx;
|
|
/* Frame header */
|
|
int frame_type; ///< type of the current frame
|
|
int samples_deficit; ///< deficit sample count
|
|
int crc_present; ///< crc is present in the bitstream
|
|
int sample_blocks; ///< number of PCM sample blocks
|
|
int frame_size; ///< primary frame byte size
|
|
int amode; ///< audio channels arrangement
|
|
int sample_rate; ///< audio sampling rate
|
|
int bit_rate; ///< transmission bit rate
|
|
int bit_rate_index; ///< transmission bit rate index
|
|
|
|
int dynrange; ///< embedded dynamic range flag
|
|
int timestamp; ///< embedded time stamp flag
|
|
int aux_data; ///< auxiliary data flag
|
|
int hdcd; ///< source material is mastered in HDCD
|
|
int ext_descr; ///< extension audio descriptor flag
|
|
int ext_coding; ///< extended coding flag
|
|
int aspf; ///< audio sync word insertion flag
|
|
int lfe; ///< low frequency effects flag
|
|
int predictor_history; ///< predictor history flag
|
|
int header_crc; ///< header crc check bytes
|
|
int multirate_inter; ///< multirate interpolator switch
|
|
int version; ///< encoder software revision
|
|
int copy_history; ///< copy history
|
|
int source_pcm_res; ///< source pcm resolution
|
|
int front_sum; ///< front sum/difference flag
|
|
int surround_sum; ///< surround sum/difference flag
|
|
int dialog_norm; ///< dialog normalisation parameter
|
|
|
|
/* Primary audio coding header */
|
|
int subframes; ///< number of subframes
|
|
int total_channels; ///< number of channels including extensions
|
|
int prim_channels; ///< number of primary audio channels
|
|
int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
|
|
int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
|
|
int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
|
|
int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
|
|
int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
|
|
int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
|
|
int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
|
|
float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
|
|
|
|
/* Primary audio coding side information */
|
|
int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
|
|
int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
|
|
int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
|
|
int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
|
|
int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
|
|
int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
|
|
int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
|
|
int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
|
|
int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
|
|
float downmix_coef[DCA_PRIM_CHANNELS_MAX + 1][2]; ///< stereo downmix coefficients
|
|
int dynrange_coef; ///< dynamic range coefficient
|
|
|
|
/* Core substream's embedded downmix coefficients (cf. ETSI TS 102 114 V1.4.1)
|
|
* Input: primary audio channels (incl. LFE if present)
|
|
* Output: downmix audio channels (up to 4, no LFE) */
|
|
uint8_t core_downmix; ///< embedded downmix coefficients available
|
|
uint8_t core_downmix_amode; ///< audio channel arrangement of embedded downmix
|
|
uint16_t core_downmix_codes[DCA_PRIM_CHANNELS_MAX + 1][4]; ///< embedded downmix coefficients (9-bit codes)
|
|
|
|
int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
|
|
|
|
float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
|
|
int lfe_scale_factor;
|
|
|
|
/* Subband samples history (for ADPCM) */
|
|
DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
|
|
DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
|
|
DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
|
|
int hist_index[DCA_PRIM_CHANNELS_MAX];
|
|
DECLARE_ALIGNED(32, float, raXin)[32];
|
|
|
|
int output; ///< type of output
|
|
|
|
DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
|
|
float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
|
|
float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1];
|
|
uint8_t *extra_channels_buffer;
|
|
unsigned int extra_channels_buffer_size;
|
|
|
|
uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
|
|
int dca_buffer_size; ///< how much data is in the dca_buffer
|
|
|
|
const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
|
|
GetBitContext gb;
|
|
/* Current position in DCA frame */
|
|
int current_subframe;
|
|
int current_subsubframe;
|
|
|
|
int core_ext_mask; ///< present extensions in the core substream
|
|
|
|
/* XCh extension information */
|
|
int xch_present; ///< XCh extension present and valid
|
|
int xch_base_channel; ///< index of first (only) channel containing XCH data
|
|
int xch_disable; ///< whether the XCh extension should be decoded or not
|
|
|
|
/* ExSS header parser */
|
|
int static_fields; ///< static fields present
|
|
int mix_metadata; ///< mixing metadata present
|
|
int num_mix_configs; ///< number of mix out configurations
|
|
int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
|
|
|
|
int profile;
|
|
|
|
int debug_flag; ///< used for suppressing repeated error messages output
|
|
AVFloatDSPContext fdsp;
|
|
FFTContext imdct;
|
|
SynthFilterContext synth;
|
|
DCADSPContext dcadsp;
|
|
FmtConvertContext fmt_conv;
|
|
} DCAContext;
|
|
|
|
static const uint16_t dca_vlc_offs[] = {
|
|
0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
|
|
5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
|
|
5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
|
|
7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
|
|
12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
|
|
18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
|
|
};
|
|
|
|
static av_cold void dca_init_vlcs(void)
|
|
{
|
|
static int vlcs_initialized = 0;
|
|
int i, j, c = 14;
|
|
static VLC_TYPE dca_table[23622][2];
|
|
|
|
if (vlcs_initialized)
|
|
return;
|
|
|
|
dca_bitalloc_index.offset = 1;
|
|
dca_bitalloc_index.wrap = 2;
|
|
for (i = 0; i < 5; i++) {
|
|
dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
|
|
dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
|
|
init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
|
|
bitalloc_12_bits[i], 1, 1,
|
|
bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
|
|
}
|
|
dca_scalefactor.offset = -64;
|
|
dca_scalefactor.wrap = 2;
|
|
for (i = 0; i < 5; i++) {
|
|
dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
|
|
dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
|
|
init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
|
|
scales_bits[i], 1, 1,
|
|
scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
|
|
}
|
|
dca_tmode.offset = 0;
|
|
dca_tmode.wrap = 1;
|
|
for (i = 0; i < 4; i++) {
|
|
dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
|
|
dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
|
|
init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
|
|
tmode_bits[i], 1, 1,
|
|
tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
|
|
}
|
|
|
|
for (i = 0; i < 10; i++)
|
|
for (j = 0; j < 7; j++) {
|
|
if (!bitalloc_codes[i][j])
|
|
break;
|
|
dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
|
|
dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
|
|
dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
|
|
dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
|
|
|
|
init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
|
|
bitalloc_sizes[i],
|
|
bitalloc_bits[i][j], 1, 1,
|
|
bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
|
|
c++;
|
|
}
|
|
vlcs_initialized = 1;
|
|
}
|
|
|
|
static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
|
|
{
|
|
while (len--)
|
|
*dst++ = get_bits(gb, bits);
|
|
}
|
|
|
|
static int dca_parse_audio_coding_header(DCAContext *s, int base_channel)
|
|
{
|
|
int i, j;
|
|
static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
|
|
static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
|
|
static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
|
|
|
|
s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
|
|
s->prim_channels = s->total_channels;
|
|
|
|
if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
|
|
s->prim_channels = DCA_PRIM_CHANNELS_MAX;
|
|
|
|
|
|
for (i = base_channel; i < s->prim_channels; i++) {
|
|
s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
|
|
if (s->subband_activity[i] > DCA_SUBBANDS)
|
|
s->subband_activity[i] = DCA_SUBBANDS;
|
|
}
|
|
for (i = base_channel; i < s->prim_channels; i++) {
|
|
s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
|
|
if (s->vq_start_subband[i] > DCA_SUBBANDS)
|
|
s->vq_start_subband[i] = DCA_SUBBANDS;
|
|
}
|
|
get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
|
|
get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
|
|
get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
|
|
get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
|
|
|
|
/* Get codebooks quantization indexes */
|
|
if (!base_channel)
|
|
memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
|
|
for (j = 1; j < 11; j++)
|
|
for (i = base_channel; i < s->prim_channels; i++)
|
|
s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
|
|
|
|
/* Get scale factor adjustment */
|
|
for (j = 0; j < 11; j++)
|
|
for (i = base_channel; i < s->prim_channels; i++)
|
|
s->scalefactor_adj[i][j] = 1;
|
|
|
|
for (j = 1; j < 11; j++)
|
|
for (i = base_channel; i < s->prim_channels; i++)
|
|
if (s->quant_index_huffman[i][j] < thr[j])
|
|
s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
|
|
|
|
if (s->crc_present) {
|
|
/* Audio header CRC check */
|
|
get_bits(&s->gb, 16);
|
|
}
|
|
|
|
s->current_subframe = 0;
|
|
s->current_subsubframe = 0;
|
|
|
|
#ifdef TRACE
|
|
av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
|
|
for (i = base_channel; i < s->prim_channels; i++) {
|
|
av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
|
|
s->subband_activity[i]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
|
|
s->vq_start_subband[i]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
|
|
s->joint_intensity[i]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
|
|
s->transient_huffman[i]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
|
|
s->scalefactor_huffman[i]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
|
|
s->bitalloc_huffman[i]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
|
|
for (j = 0; j < 11; j++)
|
|
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "\n");
|
|
av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
|
|
for (j = 0; j < 11; j++)
|
|
av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "\n");
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dca_parse_frame_header(DCAContext *s)
|
|
{
|
|
init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
|
|
|
|
/* Sync code */
|
|
skip_bits_long(&s->gb, 32);
|
|
|
|
/* Frame header */
|
|
s->frame_type = get_bits(&s->gb, 1);
|
|
s->samples_deficit = get_bits(&s->gb, 5) + 1;
|
|
s->crc_present = get_bits(&s->gb, 1);
|
|
s->sample_blocks = get_bits(&s->gb, 7) + 1;
|
|
s->frame_size = get_bits(&s->gb, 14) + 1;
|
|
if (s->frame_size < 95)
|
|
return AVERROR_INVALIDDATA;
|
|
s->amode = get_bits(&s->gb, 6);
|
|
s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
|
|
if (!s->sample_rate)
|
|
return AVERROR_INVALIDDATA;
|
|
s->bit_rate_index = get_bits(&s->gb, 5);
|
|
s->bit_rate = dca_bit_rates[s->bit_rate_index];
|
|
if (!s->bit_rate)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
|
|
s->dynrange = get_bits(&s->gb, 1);
|
|
s->timestamp = get_bits(&s->gb, 1);
|
|
s->aux_data = get_bits(&s->gb, 1);
|
|
s->hdcd = get_bits(&s->gb, 1);
|
|
s->ext_descr = get_bits(&s->gb, 3);
|
|
s->ext_coding = get_bits(&s->gb, 1);
|
|
s->aspf = get_bits(&s->gb, 1);
|
|
s->lfe = get_bits(&s->gb, 2);
|
|
s->predictor_history = get_bits(&s->gb, 1);
|
|
|
|
if (s->lfe > 2) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/* TODO: check CRC */
|
|
if (s->crc_present)
|
|
s->header_crc = get_bits(&s->gb, 16);
|
|
|
|
s->multirate_inter = get_bits(&s->gb, 1);
|
|
s->version = get_bits(&s->gb, 4);
|
|
s->copy_history = get_bits(&s->gb, 2);
|
|
s->source_pcm_res = get_bits(&s->gb, 3);
|
|
s->front_sum = get_bits(&s->gb, 1);
|
|
s->surround_sum = get_bits(&s->gb, 1);
|
|
s->dialog_norm = get_bits(&s->gb, 4);
|
|
|
|
/* FIXME: channels mixing levels */
|
|
s->output = s->amode;
|
|
if (s->lfe)
|
|
s->output |= DCA_LFE;
|
|
|
|
#ifdef TRACE
|
|
av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
|
|
s->sample_blocks, s->sample_blocks * 32);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
|
|
s->amode, dca_channels[s->amode]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
|
|
s->sample_rate);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
|
|
s->bit_rate);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
|
|
s->predictor_history);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
|
|
s->multirate_inter);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
|
|
av_log(s->avctx, AV_LOG_DEBUG,
|
|
"source pcm resolution: %i (%i bits/sample)\n",
|
|
s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "\n");
|
|
#endif
|
|
|
|
/* Primary audio coding header */
|
|
s->subframes = get_bits(&s->gb, 4) + 1;
|
|
|
|
return dca_parse_audio_coding_header(s, 0);
|
|
}
|
|
|
|
|
|
static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
|
|
{
|
|
if (level < 5) {
|
|
/* huffman encoded */
|
|
value += get_bitalloc(gb, &dca_scalefactor, level);
|
|
value = av_clip(value, 0, (1 << log2range) - 1);
|
|
} else if (level < 8) {
|
|
if (level + 1 > log2range) {
|
|
skip_bits(gb, level + 1 - log2range);
|
|
value = get_bits(gb, log2range);
|
|
} else {
|
|
value = get_bits(gb, level + 1);
|
|
}
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
|
|
{
|
|
/* Primary audio coding side information */
|
|
int j, k;
|
|
|
|
if (get_bits_left(&s->gb) < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if (!base_channel) {
|
|
s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
|
|
s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
|
|
}
|
|
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
for (k = 0; k < s->subband_activity[j]; k++)
|
|
s->prediction_mode[j][k] = get_bits(&s->gb, 1);
|
|
}
|
|
|
|
/* Get prediction codebook */
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
for (k = 0; k < s->subband_activity[j]; k++) {
|
|
if (s->prediction_mode[j][k] > 0) {
|
|
/* (Prediction coefficient VQ address) */
|
|
s->prediction_vq[j][k] = get_bits(&s->gb, 12);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Bit allocation index */
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
for (k = 0; k < s->vq_start_subband[j]; k++) {
|
|
if (s->bitalloc_huffman[j] == 6)
|
|
s->bitalloc[j][k] = get_bits(&s->gb, 5);
|
|
else if (s->bitalloc_huffman[j] == 5)
|
|
s->bitalloc[j][k] = get_bits(&s->gb, 4);
|
|
else if (s->bitalloc_huffman[j] == 7) {
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"Invalid bit allocation index\n");
|
|
return AVERROR_INVALIDDATA;
|
|
} else {
|
|
s->bitalloc[j][k] =
|
|
get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
|
|
}
|
|
|
|
if (s->bitalloc[j][k] > 26) {
|
|
av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
|
|
j, k, s->bitalloc[j][k]);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Transition mode */
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
for (k = 0; k < s->subband_activity[j]; k++) {
|
|
s->transition_mode[j][k] = 0;
|
|
if (s->subsubframes[s->current_subframe] > 1 &&
|
|
k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
|
|
s->transition_mode[j][k] =
|
|
get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (get_bits_left(&s->gb) < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
const uint32_t *scale_table;
|
|
int scale_sum, log_size;
|
|
|
|
memset(s->scale_factor[j], 0,
|
|
s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
|
|
|
|
if (s->scalefactor_huffman[j] == 6) {
|
|
scale_table = scale_factor_quant7;
|
|
log_size = 7;
|
|
} else {
|
|
scale_table = scale_factor_quant6;
|
|
log_size = 6;
|
|
}
|
|
|
|
/* When huffman coded, only the difference is encoded */
|
|
scale_sum = 0;
|
|
|
|
for (k = 0; k < s->subband_activity[j]; k++) {
|
|
if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
|
|
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
|
|
s->scale_factor[j][k][0] = scale_table[scale_sum];
|
|
}
|
|
|
|
if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
|
|
/* Get second scale factor */
|
|
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
|
|
s->scale_factor[j][k][1] = scale_table[scale_sum];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Joint subband scale factor codebook select */
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
/* Transmitted only if joint subband coding enabled */
|
|
if (s->joint_intensity[j] > 0)
|
|
s->joint_huff[j] = get_bits(&s->gb, 3);
|
|
}
|
|
|
|
if (get_bits_left(&s->gb) < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
/* Scale factors for joint subband coding */
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
int source_channel;
|
|
|
|
/* Transmitted only if joint subband coding enabled */
|
|
if (s->joint_intensity[j] > 0) {
|
|
int scale = 0;
|
|
source_channel = s->joint_intensity[j] - 1;
|
|
|
|
/* When huffman coded, only the difference is encoded
|
|
* (is this valid as well for joint scales ???) */
|
|
|
|
for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
|
|
scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
|
|
s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
|
|
}
|
|
|
|
if (!(s->debug_flag & 0x02)) {
|
|
av_log(s->avctx, AV_LOG_DEBUG,
|
|
"Joint stereo coding not supported\n");
|
|
s->debug_flag |= 0x02;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Dynamic range coefficient */
|
|
if (!base_channel && s->dynrange)
|
|
s->dynrange_coef = get_bits(&s->gb, 8);
|
|
|
|
/* Side information CRC check word */
|
|
if (s->crc_present) {
|
|
get_bits(&s->gb, 16);
|
|
}
|
|
|
|
/*
|
|
* Primary audio data arrays
|
|
*/
|
|
|
|
/* VQ encoded high frequency subbands */
|
|
for (j = base_channel; j < s->prim_channels; j++)
|
|
for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
|
|
/* 1 vector -> 32 samples */
|
|
s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
|
|
|
|
/* Low frequency effect data */
|
|
if (!base_channel && s->lfe) {
|
|
/* LFE samples */
|
|
int lfe_samples = 2 * s->lfe * (4 + block_index);
|
|
int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
|
|
float lfe_scale;
|
|
|
|
for (j = lfe_samples; j < lfe_end_sample; j++) {
|
|
/* Signed 8 bits int */
|
|
s->lfe_data[j] = get_sbits(&s->gb, 8);
|
|
}
|
|
|
|
/* Scale factor index */
|
|
skip_bits(&s->gb, 1);
|
|
s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 7)];
|
|
|
|
/* Quantization step size * scale factor */
|
|
lfe_scale = 0.035 * s->lfe_scale_factor;
|
|
|
|
for (j = lfe_samples; j < lfe_end_sample; j++)
|
|
s->lfe_data[j] *= lfe_scale;
|
|
}
|
|
|
|
#ifdef TRACE
|
|
av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
|
|
s->subsubframes[s->current_subframe]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
|
|
s->partial_samples[s->current_subframe]);
|
|
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
|
|
for (k = 0; k < s->subband_activity[j]; k++)
|
|
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "\n");
|
|
}
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
for (k = 0; k < s->subband_activity[j]; k++)
|
|
av_log(s->avctx, AV_LOG_DEBUG,
|
|
"prediction coefs: %f, %f, %f, %f\n",
|
|
(float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
|
|
(float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
|
|
(float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
|
|
(float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
|
|
}
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
|
|
for (k = 0; k < s->vq_start_subband[j]; k++)
|
|
av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "\n");
|
|
}
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
|
|
for (k = 0; k < s->subband_activity[j]; k++)
|
|
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "\n");
|
|
}
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
|
|
for (k = 0; k < s->subband_activity[j]; k++) {
|
|
if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
|
|
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
|
|
if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
|
|
av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
|
|
}
|
|
av_log(s->avctx, AV_LOG_DEBUG, "\n");
|
|
}
|
|
for (j = base_channel; j < s->prim_channels; j++) {
|
|
if (s->joint_intensity[j] > 0) {
|
|
int source_channel = s->joint_intensity[j] - 1;
|
|
av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
|
|
for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
|
|
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "\n");
|
|
}
|
|
}
|
|
for (j = base_channel; j < s->prim_channels; j++)
|
|
for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
|
|
av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
|
|
if (!base_channel && s->lfe) {
|
|
int lfe_samples = 2 * s->lfe * (4 + block_index);
|
|
int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
|
|
for (j = lfe_samples; j < lfe_end_sample; j++)
|
|
av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "\n");
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qmf_32_subbands(DCAContext *s, int chans,
|
|
float samples_in[32][8], float *samples_out,
|
|
float scale)
|
|
{
|
|
const float *prCoeff;
|
|
|
|
int sb_act = s->subband_activity[chans];
|
|
|
|
scale *= sqrt(1 / 8.0);
|
|
|
|
/* Select filter */
|
|
if (!s->multirate_inter) /* Non-perfect reconstruction */
|
|
prCoeff = fir_32bands_nonperfect;
|
|
else /* Perfect reconstruction */
|
|
prCoeff = fir_32bands_perfect;
|
|
|
|
s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
|
|
s->subband_fir_hist[chans],
|
|
&s->hist_index[chans],
|
|
s->subband_fir_noidea[chans], prCoeff,
|
|
samples_out, s->raXin, scale);
|
|
}
|
|
|
|
static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
|
|
int num_deci_sample, float *samples_in,
|
|
float *samples_out, float scale)
|
|
{
|
|
/* samples_in: An array holding decimated samples.
|
|
* Samples in current subframe starts from samples_in[0],
|
|
* while samples_in[-1], samples_in[-2], ..., stores samples
|
|
* from last subframe as history.
|
|
*
|
|
* samples_out: An array holding interpolated samples
|
|
*/
|
|
|
|
int idx;
|
|
const float *prCoeff;
|
|
int deciindex;
|
|
|
|
/* Select decimation filter */
|
|
if (decimation_select == 1) {
|
|
idx = 1;
|
|
prCoeff = lfe_fir_128;
|
|
} else {
|
|
idx = 0;
|
|
prCoeff = lfe_fir_64;
|
|
}
|
|
/* Interpolation */
|
|
for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
|
|
s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff, scale);
|
|
samples_in++;
|
|
samples_out += 2 * 32 * (1 + idx);
|
|
}
|
|
}
|
|
|
|
/* downmixing routines */
|
|
#define MIX_REAR1(samples, s1, rs, coef) \
|
|
samples[0][i] += samples[s1][i] * coef[rs][0]; \
|
|
samples[1][i] += samples[s1][i] * coef[rs][1];
|
|
|
|
#define MIX_REAR2(samples, s1, s2, rs, coef) \
|
|
samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
|
|
samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
|
|
|
|
#define MIX_FRONT3(samples, coef) \
|
|
t = samples[c][i]; \
|
|
u = samples[l][i]; \
|
|
v = samples[r][i]; \
|
|
samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
|
|
samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
|
|
|
|
#define DOWNMIX_TO_STEREO(op1, op2) \
|
|
for (i = 0; i < 256; i++) { \
|
|
op1 \
|
|
op2 \
|
|
}
|
|
|
|
static void dca_downmix(float **samples, int srcfmt, int lfe_present,
|
|
float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
|
|
const int8_t *channel_mapping)
|
|
{
|
|
int c, l, r, sl, sr, s;
|
|
int i;
|
|
float t, u, v;
|
|
|
|
switch (srcfmt) {
|
|
case DCA_MONO:
|
|
case DCA_4F2R:
|
|
av_log(NULL, 0, "Not implemented!\n");
|
|
break;
|
|
case DCA_CHANNEL:
|
|
case DCA_STEREO:
|
|
case DCA_STEREO_TOTAL:
|
|
case DCA_STEREO_SUMDIFF:
|
|
break;
|
|
case DCA_3F:
|
|
c = channel_mapping[0];
|
|
l = channel_mapping[1];
|
|
r = channel_mapping[2];
|
|
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
|
|
break;
|
|
case DCA_2F1R:
|
|
s = channel_mapping[2];
|
|
DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
|
|
break;
|
|
case DCA_3F1R:
|
|
c = channel_mapping[0];
|
|
l = channel_mapping[1];
|
|
r = channel_mapping[2];
|
|
s = channel_mapping[3];
|
|
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
|
|
MIX_REAR1(samples, s, 3, coef));
|
|
break;
|
|
case DCA_2F2R:
|
|
sl = channel_mapping[2];
|
|
sr = channel_mapping[3];
|
|
DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
|
|
break;
|
|
case DCA_3F2R:
|
|
c = channel_mapping[0];
|
|
l = channel_mapping[1];
|
|
r = channel_mapping[2];
|
|
sl = channel_mapping[3];
|
|
sr = channel_mapping[4];
|
|
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
|
|
MIX_REAR2(samples, sl, sr, 3, coef));
|
|
break;
|
|
}
|
|
if (lfe_present) {
|
|
int lf_buf = dca_lfe_index[srcfmt];
|
|
int lf_idx = dca_channels [srcfmt];
|
|
for (i = 0; i < 256; i++) {
|
|
samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
|
|
samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef decode_blockcodes
|
|
/* Very compact version of the block code decoder that does not use table
|
|
* look-up but is slightly slower */
|
|
static int decode_blockcode(int code, int levels, int32_t *values)
|
|
{
|
|
int i;
|
|
int offset = (levels - 1) >> 1;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
int div = FASTDIV(code, levels);
|
|
values[i] = code - offset - div * levels;
|
|
code = div;
|
|
}
|
|
|
|
return code;
|
|
}
|
|
|
|
static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
|
|
{
|
|
return decode_blockcode(code1, levels, values) |
|
|
decode_blockcode(code2, levels, values + 4);
|
|
}
|
|
#endif
|
|
|
|
static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
|
|
static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
|
|
|
|
#ifndef int8x8_fmul_int32
|
|
static inline void int8x8_fmul_int32(DCADSPContext *dsp, float *dst,
|
|
const int8_t *src, int scale)
|
|
{
|
|
dsp->int8x8_fmul_int32(dst, src, scale);
|
|
}
|
|
#endif
|
|
|
|
static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
|
|
{
|
|
int k, l;
|
|
int subsubframe = s->current_subsubframe;
|
|
|
|
const float *quant_step_table;
|
|
|
|
/* FIXME */
|
|
float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
|
|
LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);
|
|
|
|
/*
|
|
* Audio data
|
|
*/
|
|
|
|
/* Select quantization step size table */
|
|
if (s->bit_rate_index == 0x1f)
|
|
quant_step_table = lossless_quant_d;
|
|
else
|
|
quant_step_table = lossy_quant_d;
|
|
|
|
for (k = base_channel; k < s->prim_channels; k++) {
|
|
float rscale[DCA_SUBBANDS];
|
|
|
|
if (get_bits_left(&s->gb) < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
for (l = 0; l < s->vq_start_subband[k]; l++) {
|
|
int m;
|
|
|
|
/* Select the mid-tread linear quantizer */
|
|
int abits = s->bitalloc[k][l];
|
|
|
|
float quant_step_size = quant_step_table[abits];
|
|
|
|
/*
|
|
* Determine quantization index code book and its type
|
|
*/
|
|
|
|
/* Select quantization index code book */
|
|
int sel = s->quant_index_huffman[k][abits];
|
|
|
|
/*
|
|
* Extract bits from the bit stream
|
|
*/
|
|
if (!abits) {
|
|
rscale[l] = 0;
|
|
memset(block + 8 * l, 0, 8 * sizeof(block[0]));
|
|
} else {
|
|
/* Deal with transients */
|
|
int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
|
|
rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
|
|
s->scalefactor_adj[k][sel];
|
|
|
|
if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
|
|
if (abits <= 7) {
|
|
/* Block code */
|
|
int block_code1, block_code2, size, levels, err;
|
|
|
|
size = abits_sizes[abits - 1];
|
|
levels = abits_levels[abits - 1];
|
|
|
|
block_code1 = get_bits(&s->gb, size);
|
|
block_code2 = get_bits(&s->gb, size);
|
|
err = decode_blockcodes(block_code1, block_code2,
|
|
levels, block + 8 * l);
|
|
if (err) {
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"ERROR: block code look-up failed\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
} else {
|
|
/* no coding */
|
|
for (m = 0; m < 8; m++)
|
|
block[8 * l + m] = get_sbits(&s->gb, abits - 3);
|
|
}
|
|
} else {
|
|
/* Huffman coded */
|
|
for (m = 0; m < 8; m++)
|
|
block[8 * l + m] = get_bitalloc(&s->gb,
|
|
&dca_smpl_bitalloc[abits], sel);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
|
|
block, rscale, 8 * s->vq_start_subband[k]);
|
|
|
|
for (l = 0; l < s->vq_start_subband[k]; l++) {
|
|
int m;
|
|
/*
|
|
* Inverse ADPCM if in prediction mode
|
|
*/
|
|
if (s->prediction_mode[k][l]) {
|
|
int n;
|
|
for (m = 0; m < 8; m++) {
|
|
for (n = 1; n <= 4; n++)
|
|
if (m >= n)
|
|
subband_samples[k][l][m] +=
|
|
(adpcm_vb[s->prediction_vq[k][l]][n - 1] *
|
|
subband_samples[k][l][m - n] / 8192);
|
|
else if (s->predictor_history)
|
|
subband_samples[k][l][m] +=
|
|
(adpcm_vb[s->prediction_vq[k][l]][n - 1] *
|
|
s->subband_samples_hist[k][l][m - n + 4] / 8192);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decode VQ encoded high frequencies
|
|
*/
|
|
for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
|
|
/* 1 vector -> 32 samples but we only need the 8 samples
|
|
* for this subsubframe. */
|
|
int hfvq = s->high_freq_vq[k][l];
|
|
|
|
if (!s->debug_flag & 0x01) {
|
|
av_log(s->avctx, AV_LOG_DEBUG,
|
|
"Stream with high frequencies VQ coding\n");
|
|
s->debug_flag |= 0x01;
|
|
}
|
|
|
|
int8x8_fmul_int32(&s->dcadsp, subband_samples[k][l],
|
|
&high_freq_vq[hfvq][subsubframe * 8],
|
|
s->scale_factor[k][l][0]);
|
|
}
|
|
}
|
|
|
|
/* Check for DSYNC after subsubframe */
|
|
if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
|
|
if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
|
|
#ifdef TRACE
|
|
av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
|
|
#endif
|
|
} else {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
}
|
|
|
|
/* Backup predictor history for adpcm */
|
|
for (k = base_channel; k < s->prim_channels; k++)
|
|
for (l = 0; l < s->vq_start_subband[k]; l++)
|
|
memcpy(s->subband_samples_hist[k][l],
|
|
&subband_samples[k][l][4],
|
|
4 * sizeof(subband_samples[0][0][0]));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dca_filter_channels(DCAContext *s, int block_index)
|
|
{
|
|
float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
|
|
int k;
|
|
|
|
/* 32 subbands QMF */
|
|
for (k = 0; k < s->prim_channels; k++) {
|
|
/* static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
|
|
0, 8388608.0, 8388608.0 };*/
|
|
if (s->channel_order_tab[k] >= 0)
|
|
qmf_32_subbands(s, k, subband_samples[k],
|
|
s->samples_chanptr[s->channel_order_tab[k]],
|
|
M_SQRT1_2 / 32768.0 /* pcm_to_double[s->source_pcm_res] */);
|
|
}
|
|
|
|
/* Generate LFE samples for this subsubframe FIXME!!! */
|
|
if (s->lfe) {
|
|
lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
|
|
s->lfe_data + 2 * s->lfe * (block_index + 4),
|
|
s->samples_chanptr[dca_lfe_index[s->amode]],
|
|
1.0 / (256.0 * 32768.0));
|
|
/* Outputs 20bits pcm samples */
|
|
}
|
|
|
|
/* Downmixing to Stereo */
|
|
if (s->prim_channels + !!s->lfe > 2 &&
|
|
s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
|
|
dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
|
|
s->channel_order_tab);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int dca_subframe_footer(DCAContext *s, int base_channel)
|
|
{
|
|
int in, out, aux_data_count, aux_data_end, reserved;
|
|
uint32_t nsyncaux;
|
|
|
|
/*
|
|
* Unpack optional information
|
|
*/
|
|
|
|
/* presumably optional information only appears in the core? */
|
|
if (!base_channel) {
|
|
if (s->timestamp)
|
|
skip_bits_long(&s->gb, 32);
|
|
|
|
if (s->aux_data) {
|
|
aux_data_count = get_bits(&s->gb, 6);
|
|
|
|
// align (32-bit)
|
|
skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
|
|
|
|
aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
|
|
|
|
if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
|
|
nsyncaux);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
|
|
avpriv_request_sample(s->avctx,
|
|
"Auxiliary Decode Time Stamp Flag");
|
|
// align (4-bit)
|
|
skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
|
|
// 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
|
|
skip_bits_long(&s->gb, 44);
|
|
}
|
|
|
|
if ((s->core_downmix = get_bits1(&s->gb))) {
|
|
int am = get_bits(&s->gb, 3);
|
|
switch (am) {
|
|
case 0:
|
|
s->core_downmix_amode = DCA_MONO;
|
|
break;
|
|
case 1:
|
|
s->core_downmix_amode = DCA_STEREO;
|
|
break;
|
|
case 2:
|
|
s->core_downmix_amode = DCA_STEREO_TOTAL;
|
|
break;
|
|
case 3:
|
|
s->core_downmix_amode = DCA_3F;
|
|
break;
|
|
case 4:
|
|
s->core_downmix_amode = DCA_2F1R;
|
|
break;
|
|
case 5:
|
|
s->core_downmix_amode = DCA_2F2R;
|
|
break;
|
|
case 6:
|
|
s->core_downmix_amode = DCA_3F1R;
|
|
break;
|
|
default:
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"Invalid mode %d for embedded downmix coefficients\n",
|
|
am);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
for (out = 0; out < dca_channels[s->core_downmix_amode]; out++) {
|
|
for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
|
|
uint16_t tmp = get_bits(&s->gb, 9);
|
|
if ((tmp & 0xFF) > 241) {
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"Invalid downmix coefficient code %"PRIu16"\n",
|
|
tmp);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
s->core_downmix_codes[in][out] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
align_get_bits(&s->gb); // byte align
|
|
skip_bits(&s->gb, 16); // nAUXCRC16
|
|
|
|
// additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
|
|
if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"Overread auxiliary data by %d bits\n", -reserved);
|
|
return AVERROR_INVALIDDATA;
|
|
} else if (reserved) {
|
|
avpriv_request_sample(s->avctx,
|
|
"Core auxiliary data reserved content");
|
|
skip_bits_long(&s->gb, reserved);
|
|
}
|
|
}
|
|
|
|
if (s->crc_present && s->dynrange)
|
|
get_bits(&s->gb, 16);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Decode a dca frame block
|
|
*
|
|
* @param s pointer to the DCAContext
|
|
*/
|
|
|
|
static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
|
|
{
|
|
int ret;
|
|
|
|
/* Sanity check */
|
|
if (s->current_subframe >= s->subframes) {
|
|
av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
|
|
s->current_subframe, s->subframes);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (!s->current_subsubframe) {
|
|
#ifdef TRACE
|
|
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
|
|
#endif
|
|
/* Read subframe header */
|
|
if ((ret = dca_subframe_header(s, base_channel, block_index)))
|
|
return ret;
|
|
}
|
|
|
|
/* Read subsubframe */
|
|
#ifdef TRACE
|
|
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
|
|
#endif
|
|
if ((ret = dca_subsubframe(s, base_channel, block_index)))
|
|
return ret;
|
|
|
|
/* Update state */
|
|
s->current_subsubframe++;
|
|
if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
|
|
s->current_subsubframe = 0;
|
|
s->current_subframe++;
|
|
}
|
|
if (s->current_subframe >= s->subframes) {
|
|
#ifdef TRACE
|
|
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
|
|
#endif
|
|
/* Read subframe footer */
|
|
if ((ret = dca_subframe_footer(s, base_channel)))
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Return the number of channels in an ExSS speaker mask (HD)
|
|
*/
|
|
static int dca_exss_mask2count(int mask)
|
|
{
|
|
/* count bits that mean speaker pairs twice */
|
|
return av_popcount(mask) +
|
|
av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT |
|
|
DCA_EXSS_FRONT_LEFT_RIGHT |
|
|
DCA_EXSS_FRONT_HIGH_LEFT_RIGHT |
|
|
DCA_EXSS_WIDE_LEFT_RIGHT |
|
|
DCA_EXSS_SIDE_LEFT_RIGHT |
|
|
DCA_EXSS_SIDE_HIGH_LEFT_RIGHT |
|
|
DCA_EXSS_SIDE_REAR_LEFT_RIGHT |
|
|
DCA_EXSS_REAR_LEFT_RIGHT |
|
|
DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
|
|
}
|
|
|
|
/**
|
|
* Skip mixing coefficients of a single mix out configuration (HD)
|
|
*/
|
|
static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < channels; i++) {
|
|
int mix_map_mask = get_bits(gb, out_ch);
|
|
int num_coeffs = av_popcount(mix_map_mask);
|
|
skip_bits_long(gb, num_coeffs * 6);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Parse extension substream asset header (HD)
|
|
*/
|
|
static int dca_exss_parse_asset_header(DCAContext *s)
|
|
{
|
|
int header_pos = get_bits_count(&s->gb);
|
|
int header_size;
|
|
int channels;
|
|
int embedded_stereo = 0;
|
|
int embedded_6ch = 0;
|
|
int drc_code_present;
|
|
int extensions_mask;
|
|
int i, j;
|
|
|
|
if (get_bits_left(&s->gb) < 16)
|
|
return -1;
|
|
|
|
/* We will parse just enough to get to the extensions bitmask with which
|
|
* we can set the profile value. */
|
|
|
|
header_size = get_bits(&s->gb, 9) + 1;
|
|
skip_bits(&s->gb, 3); // asset index
|
|
|
|
if (s->static_fields) {
|
|
if (get_bits1(&s->gb))
|
|
skip_bits(&s->gb, 4); // asset type descriptor
|
|
if (get_bits1(&s->gb))
|
|
skip_bits_long(&s->gb, 24); // language descriptor
|
|
|
|
if (get_bits1(&s->gb)) {
|
|
/* How can one fit 1024 bytes of text here if the maximum value
|
|
* for the asset header size field above was 512 bytes? */
|
|
int text_length = get_bits(&s->gb, 10) + 1;
|
|
if (get_bits_left(&s->gb) < text_length * 8)
|
|
return -1;
|
|
skip_bits_long(&s->gb, text_length * 8); // info text
|
|
}
|
|
|
|
skip_bits(&s->gb, 5); // bit resolution - 1
|
|
skip_bits(&s->gb, 4); // max sample rate code
|
|
channels = get_bits(&s->gb, 8) + 1;
|
|
|
|
if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
|
|
int spkr_remap_sets;
|
|
int spkr_mask_size = 16;
|
|
int num_spkrs[7];
|
|
|
|
if (channels > 2)
|
|
embedded_stereo = get_bits1(&s->gb);
|
|
if (channels > 6)
|
|
embedded_6ch = get_bits1(&s->gb);
|
|
|
|
if (get_bits1(&s->gb)) {
|
|
spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
|
|
skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
|
|
}
|
|
|
|
spkr_remap_sets = get_bits(&s->gb, 3);
|
|
|
|
for (i = 0; i < spkr_remap_sets; i++) {
|
|
/* std layout mask for each remap set */
|
|
num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
|
|
}
|
|
|
|
for (i = 0; i < spkr_remap_sets; i++) {
|
|
int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
|
|
if (get_bits_left(&s->gb) < 0)
|
|
return -1;
|
|
|
|
for (j = 0; j < num_spkrs[i]; j++) {
|
|
int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
|
|
int num_dec_ch = av_popcount(remap_dec_ch_mask);
|
|
skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
|
|
}
|
|
}
|
|
|
|
} else {
|
|
skip_bits(&s->gb, 3); // representation type
|
|
}
|
|
}
|
|
|
|
drc_code_present = get_bits1(&s->gb);
|
|
if (drc_code_present)
|
|
get_bits(&s->gb, 8); // drc code
|
|
|
|
if (get_bits1(&s->gb))
|
|
skip_bits(&s->gb, 5); // dialog normalization code
|
|
|
|
if (drc_code_present && embedded_stereo)
|
|
get_bits(&s->gb, 8); // drc stereo code
|
|
|
|
if (s->mix_metadata && get_bits1(&s->gb)) {
|
|
skip_bits(&s->gb, 1); // external mix
|
|
skip_bits(&s->gb, 6); // post mix gain code
|
|
|
|
if (get_bits(&s->gb, 2) != 3) // mixer drc code
|
|
skip_bits(&s->gb, 3); // drc limit
|
|
else
|
|
skip_bits(&s->gb, 8); // custom drc code
|
|
|
|
if (get_bits1(&s->gb)) // channel specific scaling
|
|
for (i = 0; i < s->num_mix_configs; i++)
|
|
skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
|
|
else
|
|
skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
|
|
|
|
for (i = 0; i < s->num_mix_configs; i++) {
|
|
if (get_bits_left(&s->gb) < 0)
|
|
return -1;
|
|
dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
|
|
if (embedded_6ch)
|
|
dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
|
|
if (embedded_stereo)
|
|
dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
|
|
}
|
|
}
|
|
|
|
switch (get_bits(&s->gb, 2)) {
|
|
case 0: extensions_mask = get_bits(&s->gb, 12); break;
|
|
case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
|
|
case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
|
|
case 3: extensions_mask = 0; /* aux coding */ break;
|
|
}
|
|
|
|
/* not parsed further, we were only interested in the extensions mask */
|
|
|
|
if (get_bits_left(&s->gb) < 0)
|
|
return -1;
|
|
|
|
if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
|
|
av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
|
|
return -1;
|
|
}
|
|
skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
|
|
|
|
if (extensions_mask & DCA_EXT_EXSS_XLL)
|
|
s->profile = FF_PROFILE_DTS_HD_MA;
|
|
else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
|
|
DCA_EXT_EXSS_XXCH))
|
|
s->profile = FF_PROFILE_DTS_HD_HRA;
|
|
|
|
if (!(extensions_mask & DCA_EXT_CORE))
|
|
av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
|
|
if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
|
|
av_log(s->avctx, AV_LOG_WARNING,
|
|
"DTS extensions detection mismatch (%d, %d)\n",
|
|
extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Parse extension substream header (HD)
|
|
*/
|
|
static void dca_exss_parse_header(DCAContext *s)
|
|
{
|
|
int ss_index;
|
|
int blownup;
|
|
int num_audiop = 1;
|
|
int num_assets = 1;
|
|
int active_ss_mask[8];
|
|
int i, j;
|
|
|
|
if (get_bits_left(&s->gb) < 52)
|
|
return;
|
|
|
|
skip_bits(&s->gb, 8); // user data
|
|
ss_index = get_bits(&s->gb, 2);
|
|
|
|
blownup = get_bits1(&s->gb);
|
|
skip_bits(&s->gb, 8 + 4 * blownup); // header_size
|
|
skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
|
|
|
|
s->static_fields = get_bits1(&s->gb);
|
|
if (s->static_fields) {
|
|
skip_bits(&s->gb, 2); // reference clock code
|
|
skip_bits(&s->gb, 3); // frame duration code
|
|
|
|
if (get_bits1(&s->gb))
|
|
skip_bits_long(&s->gb, 36); // timestamp
|
|
|
|
/* a single stream can contain multiple audio assets that can be
|
|
* combined to form multiple audio presentations */
|
|
|
|
num_audiop = get_bits(&s->gb, 3) + 1;
|
|
if (num_audiop > 1) {
|
|
avpriv_request_sample(s->avctx,
|
|
"Multiple DTS-HD audio presentations");
|
|
/* ignore such streams for now */
|
|
return;
|
|
}
|
|
|
|
num_assets = get_bits(&s->gb, 3) + 1;
|
|
if (num_assets > 1) {
|
|
avpriv_request_sample(s->avctx, "Multiple DTS-HD audio assets");
|
|
/* ignore such streams for now */
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < num_audiop; i++)
|
|
active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
|
|
|
|
for (i = 0; i < num_audiop; i++)
|
|
for (j = 0; j <= ss_index; j++)
|
|
if (active_ss_mask[i] & (1 << j))
|
|
skip_bits(&s->gb, 8); // active asset mask
|
|
|
|
s->mix_metadata = get_bits1(&s->gb);
|
|
if (s->mix_metadata) {
|
|
int mix_out_mask_size;
|
|
|
|
skip_bits(&s->gb, 2); // adjustment level
|
|
mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
|
|
s->num_mix_configs = get_bits(&s->gb, 2) + 1;
|
|
|
|
for (i = 0; i < s->num_mix_configs; i++) {
|
|
int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
|
|
s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_assets; i++)
|
|
skip_bits_long(&s->gb, 16 + 4 * blownup); // asset size
|
|
|
|
for (i = 0; i < num_assets; i++) {
|
|
if (dca_exss_parse_asset_header(s))
|
|
return;
|
|
}
|
|
|
|
/* not parsed further, we were only interested in the extensions mask
|
|
* from the asset header */
|
|
}
|
|
|
|
/**
|
|
* Main frame decoding function
|
|
* FIXME add arguments
|
|
*/
|
|
static int dca_decode_frame(AVCodecContext *avctx, void *data,
|
|
int *got_frame_ptr, AVPacket *avpkt)
|
|
{
|
|
AVFrame *frame = data;
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
|
|
int lfe_samples;
|
|
int num_core_channels = 0;
|
|
int i, ret;
|
|
float **samples_flt;
|
|
DCAContext *s = avctx->priv_data;
|
|
int channels, full_channels;
|
|
int core_ss_end;
|
|
|
|
|
|
s->xch_present = 0;
|
|
|
|
s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
|
|
DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
|
|
if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
|
|
av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
|
|
if ((ret = dca_parse_frame_header(s)) < 0) {
|
|
//seems like the frame is corrupt, try with the next one
|
|
return ret;
|
|
}
|
|
//set AVCodec values with parsed data
|
|
avctx->sample_rate = s->sample_rate;
|
|
avctx->bit_rate = s->bit_rate;
|
|
|
|
s->profile = FF_PROFILE_DTS;
|
|
|
|
for (i = 0; i < (s->sample_blocks / 8); i++) {
|
|
if ((ret = dca_decode_block(s, 0, i))) {
|
|
av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* record number of core channels incase less than max channels are requested */
|
|
num_core_channels = s->prim_channels;
|
|
|
|
if (s->ext_coding)
|
|
s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
|
|
else
|
|
s->core_ext_mask = 0;
|
|
|
|
core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
|
|
|
|
/* only scan for extensions if ext_descr was unknown or indicated a
|
|
* supported XCh extension */
|
|
if (s->core_ext_mask < 0 || s->core_ext_mask & DCA_EXT_XCH) {
|
|
|
|
/* if ext_descr was unknown, clear s->core_ext_mask so that the
|
|
* extensions scan can fill it up */
|
|
s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
|
|
|
|
/* extensions start at 32-bit boundaries into bitstream */
|
|
skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
|
|
|
|
while (core_ss_end - get_bits_count(&s->gb) >= 32) {
|
|
uint32_t bits = get_bits_long(&s->gb, 32);
|
|
|
|
switch (bits) {
|
|
case 0x5a5a5a5a: {
|
|
int ext_amode, xch_fsize;
|
|
|
|
s->xch_base_channel = s->prim_channels;
|
|
|
|
/* validate sync word using XCHFSIZE field */
|
|
xch_fsize = show_bits(&s->gb, 10);
|
|
if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
|
|
(s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
|
|
continue;
|
|
|
|
/* skip length-to-end-of-frame field for the moment */
|
|
skip_bits(&s->gb, 10);
|
|
|
|
s->core_ext_mask |= DCA_EXT_XCH;
|
|
|
|
/* extension amode(number of channels in extension) should be 1 */
|
|
/* AFAIK XCh is not used for more channels */
|
|
if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
|
|
av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
|
|
" supported!\n", ext_amode);
|
|
continue;
|
|
}
|
|
|
|
/* much like core primary audio coding header */
|
|
dca_parse_audio_coding_header(s, s->xch_base_channel);
|
|
|
|
for (i = 0; i < (s->sample_blocks / 8); i++)
|
|
if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
|
|
av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
|
|
continue;
|
|
}
|
|
|
|
s->xch_present = 1;
|
|
break;
|
|
}
|
|
case 0x47004a03:
|
|
/* XXCh: extended channels */
|
|
/* usually found either in core or HD part in DTS-HD HRA streams,
|
|
* but not in DTS-ES which contains XCh extensions instead */
|
|
s->core_ext_mask |= DCA_EXT_XXCH;
|
|
break;
|
|
|
|
case 0x1d95f262: {
|
|
int fsize96 = show_bits(&s->gb, 12) + 1;
|
|
if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
|
|
continue;
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
|
|
get_bits_count(&s->gb));
|
|
skip_bits(&s->gb, 12);
|
|
av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
|
|
av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
|
|
|
|
s->core_ext_mask |= DCA_EXT_X96;
|
|
break;
|
|
}
|
|
}
|
|
|
|
skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
|
|
}
|
|
} else {
|
|
/* no supported extensions, skip the rest of the core substream */
|
|
skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
|
|
}
|
|
|
|
if (s->core_ext_mask & DCA_EXT_X96)
|
|
s->profile = FF_PROFILE_DTS_96_24;
|
|
else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
|
|
s->profile = FF_PROFILE_DTS_ES;
|
|
|
|
/* check for ExSS (HD part) */
|
|
if (s->dca_buffer_size - s->frame_size > 32 &&
|
|
get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
|
|
dca_exss_parse_header(s);
|
|
|
|
avctx->profile = s->profile;
|
|
|
|
full_channels = channels = s->prim_channels + !!s->lfe;
|
|
|
|
if (s->amode < 16) {
|
|
avctx->channel_layout = dca_core_channel_layout[s->amode];
|
|
|
|
#if FF_API_REQUEST_CHANNELS
|
|
FF_DISABLE_DEPRECATION_WARNINGS
|
|
if (s->xch_present && !s->xch_disable &&
|
|
(!avctx->request_channels ||
|
|
avctx->request_channels > num_core_channels + !!s->lfe)) {
|
|
FF_ENABLE_DEPRECATION_WARNINGS
|
|
#else
|
|
if (s->xch_present && !s->xch_disable) {
|
|
#endif
|
|
avctx->channel_layout |= AV_CH_BACK_CENTER;
|
|
if (s->lfe) {
|
|
avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
|
|
s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
|
|
} else {
|
|
s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
|
|
}
|
|
} else {
|
|
channels = num_core_channels + !!s->lfe;
|
|
s->xch_present = 0; /* disable further xch processing */
|
|
if (s->lfe) {
|
|
avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
|
|
s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
|
|
} else
|
|
s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
|
|
}
|
|
|
|
if (channels > !!s->lfe &&
|
|
s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if (s->prim_channels + !!s->lfe > 2 &&
|
|
avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
|
|
channels = 2;
|
|
s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
|
|
avctx->channel_layout = AV_CH_LAYOUT_STEREO;
|
|
|
|
/* Stereo downmix coefficients
|
|
*
|
|
* The decoder can only downmix to 2-channel, so we need to ensure
|
|
* embedded downmix coefficients are actually targeting 2-channel.
|
|
*/
|
|
if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
|
|
s->core_downmix_amode == DCA_STEREO_TOTAL)) {
|
|
int sign, code;
|
|
for (i = 0; i < s->prim_channels + !!s->lfe; i++) {
|
|
sign = s->core_downmix_codes[i][0] & 0x100 ? 1 : -1;
|
|
code = s->core_downmix_codes[i][0] & 0x0FF;
|
|
s->downmix_coef[i][0] = (!code ? 0.0f :
|
|
sign * dca_dmixtable[code - 1]);
|
|
sign = s->core_downmix_codes[i][1] & 0x100 ? 1 : -1;
|
|
code = s->core_downmix_codes[i][1] & 0x0FF;
|
|
s->downmix_coef[i][1] = (!code ? 0.0f :
|
|
sign * dca_dmixtable[code - 1]);
|
|
}
|
|
s->output = s->core_downmix_amode;
|
|
} else {
|
|
int am = s->amode & DCA_CHANNEL_MASK;
|
|
if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"Invalid channel mode %d\n", am);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (s->prim_channels + !!s->lfe >
|
|
FF_ARRAY_ELEMS(dca_default_coeffs[0])) {
|
|
avpriv_request_sample(s->avctx, "Downmixing %d channels",
|
|
s->prim_channels + !!s->lfe);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
for (i = 0; i < s->prim_channels + !!s->lfe; i++) {
|
|
s->downmix_coef[i][0] = dca_default_coeffs[am][i][0];
|
|
s->downmix_coef[i][1] = dca_default_coeffs[am][i][1];
|
|
}
|
|
}
|
|
av_dlog(s->avctx, "Stereo downmix coeffs:\n");
|
|
for (i = 0; i < s->prim_channels + !!s->lfe; i++) {
|
|
av_dlog(s->avctx, "L, input channel %d = %f\n", i,
|
|
s->downmix_coef[i][0]);
|
|
av_dlog(s->avctx, "R, input channel %d = %f\n", i,
|
|
s->downmix_coef[i][1]);
|
|
}
|
|
av_dlog(s->avctx, "\n");
|
|
}
|
|
} else {
|
|
av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n", s->amode);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
avctx->channels = channels;
|
|
|
|
/* get output buffer */
|
|
frame->nb_samples = 256 * (s->sample_blocks / 8);
|
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
|
|
return ret;
|
|
}
|
|
samples_flt = (float **)frame->extended_data;
|
|
|
|
/* allocate buffer for extra channels if downmixing */
|
|
if (avctx->channels < full_channels) {
|
|
ret = av_samples_get_buffer_size(NULL, full_channels - channels,
|
|
frame->nb_samples,
|
|
avctx->sample_fmt, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
av_fast_malloc(&s->extra_channels_buffer,
|
|
&s->extra_channels_buffer_size, ret);
|
|
if (!s->extra_channels_buffer)
|
|
return AVERROR(ENOMEM);
|
|
|
|
ret = av_samples_fill_arrays((uint8_t **)s->extra_channels, NULL,
|
|
s->extra_channels_buffer,
|
|
full_channels - channels,
|
|
frame->nb_samples, avctx->sample_fmt, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* filter to get final output */
|
|
for (i = 0; i < (s->sample_blocks / 8); i++) {
|
|
int ch;
|
|
|
|
for (ch = 0; ch < channels; ch++)
|
|
s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
|
|
for (; ch < full_channels; ch++)
|
|
s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
|
|
|
|
dca_filter_channels(s, i);
|
|
|
|
/* If this was marked as a DTS-ES stream we need to subtract back- */
|
|
/* channel from SL & SR to remove matrixed back-channel signal */
|
|
if ((s->source_pcm_res & 1) && s->xch_present) {
|
|
float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
|
|
float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
|
|
float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
|
|
s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
|
|
s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
|
|
}
|
|
}
|
|
|
|
/* update lfe history */
|
|
lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
|
|
for (i = 0; i < 2 * s->lfe * 4; i++)
|
|
s->lfe_data[i] = s->lfe_data[i + lfe_samples];
|
|
|
|
/* AVMatrixEncoding
|
|
*
|
|
* DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
|
|
ret = ff_side_data_update_matrix_encoding(frame,
|
|
(s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
|
|
AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*got_frame_ptr = 1;
|
|
|
|
return buf_size;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* DCA initialization
|
|
*
|
|
* @param avctx pointer to the AVCodecContext
|
|
*/
|
|
|
|
static av_cold int dca_decode_init(AVCodecContext *avctx)
|
|
{
|
|
DCAContext *s = avctx->priv_data;
|
|
|
|
s->avctx = avctx;
|
|
dca_init_vlcs();
|
|
|
|
avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
|
|
ff_mdct_init(&s->imdct, 6, 1, 1.0);
|
|
ff_synth_filter_init(&s->synth);
|
|
ff_dcadsp_init(&s->dcadsp);
|
|
ff_fmt_convert_init(&s->fmt_conv, avctx);
|
|
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
|
|
|
|
/* allow downmixing to stereo */
|
|
#if FF_API_REQUEST_CHANNELS
|
|
FF_DISABLE_DEPRECATION_WARNINGS
|
|
if (avctx->request_channels == 2)
|
|
avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
|
|
FF_ENABLE_DEPRECATION_WARNINGS
|
|
#endif
|
|
if (avctx->channels > 2 &&
|
|
avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
|
|
avctx->channels = 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int dca_decode_end(AVCodecContext *avctx)
|
|
{
|
|
DCAContext *s = avctx->priv_data;
|
|
ff_mdct_end(&s->imdct);
|
|
av_freep(&s->extra_channels_buffer);
|
|
return 0;
|
|
}
|
|
|
|
static const AVProfile profiles[] = {
|
|
{ FF_PROFILE_DTS, "DTS" },
|
|
{ FF_PROFILE_DTS_ES, "DTS-ES" },
|
|
{ FF_PROFILE_DTS_96_24, "DTS 96/24" },
|
|
{ FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
|
|
{ FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
|
|
{ FF_PROFILE_UNKNOWN },
|
|
};
|
|
|
|
static const AVOption options[] = {
|
|
{ "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM|AV_OPT_FLAG_AUDIO_PARAM },
|
|
{ NULL },
|
|
};
|
|
|
|
static const AVClass dca_decoder_class = {
|
|
.class_name = "DCA decoder",
|
|
.item_name = av_default_item_name,
|
|
.option = options,
|
|
.version = LIBAVUTIL_VERSION_INT,
|
|
};
|
|
|
|
AVCodec ff_dca_decoder = {
|
|
.name = "dca",
|
|
.long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.id = AV_CODEC_ID_DTS,
|
|
.priv_data_size = sizeof(DCAContext),
|
|
.init = dca_decode_init,
|
|
.decode = dca_decode_frame,
|
|
.close = dca_decode_end,
|
|
.capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
|
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
|
|
AV_SAMPLE_FMT_NONE },
|
|
.profiles = NULL_IF_CONFIG_SMALL(profiles),
|
|
.priv_class = &dca_decoder_class,
|
|
};
|