mirror of
https://github.com/xenia-project/FFmpeg.git
synced 2024-11-29 22:40:23 +00:00
1726 lines
64 KiB
C
1726 lines
64 KiB
C
/*
|
|
* AAC Spectral Band Replication decoding functions
|
|
* Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
|
|
* Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* AAC Spectral Band Replication decoding functions
|
|
* @author Robert Swain ( rob opendot cl )
|
|
*/
|
|
|
|
#include "aac.h"
|
|
#include "sbr.h"
|
|
#include "aacsbr.h"
|
|
#include "aacsbrdata.h"
|
|
#include "fft.h"
|
|
#include "aacps.h"
|
|
#include "sbrdsp.h"
|
|
#include "libavutil/internal.h"
|
|
#include "libavutil/libm.h"
|
|
|
|
#include <stdint.h>
|
|
#include <float.h>
|
|
|
|
#define ENVELOPE_ADJUSTMENT_OFFSET 2
|
|
#define NOISE_FLOOR_OFFSET 6.0f
|
|
|
|
/**
|
|
* SBR VLC tables
|
|
*/
|
|
enum {
|
|
T_HUFFMAN_ENV_1_5DB,
|
|
F_HUFFMAN_ENV_1_5DB,
|
|
T_HUFFMAN_ENV_BAL_1_5DB,
|
|
F_HUFFMAN_ENV_BAL_1_5DB,
|
|
T_HUFFMAN_ENV_3_0DB,
|
|
F_HUFFMAN_ENV_3_0DB,
|
|
T_HUFFMAN_ENV_BAL_3_0DB,
|
|
F_HUFFMAN_ENV_BAL_3_0DB,
|
|
T_HUFFMAN_NOISE_3_0DB,
|
|
T_HUFFMAN_NOISE_BAL_3_0DB,
|
|
};
|
|
|
|
/**
|
|
* bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
|
|
*/
|
|
enum {
|
|
FIXFIX,
|
|
FIXVAR,
|
|
VARFIX,
|
|
VARVAR,
|
|
};
|
|
|
|
enum {
|
|
EXTENSION_ID_PS = 2,
|
|
};
|
|
|
|
static VLC vlc_sbr[10];
|
|
static const int8_t vlc_sbr_lav[10] =
|
|
{ 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
|
|
|
|
#define SBR_INIT_VLC_STATIC(num, size) \
|
|
INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
|
|
sbr_tmp[num].sbr_bits , 1, 1, \
|
|
sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
|
|
size)
|
|
|
|
#define SBR_VLC_ROW(name) \
|
|
{ name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
|
|
|
|
av_cold void ff_aac_sbr_init(void)
|
|
{
|
|
int n;
|
|
static const struct {
|
|
const void *sbr_codes, *sbr_bits;
|
|
const unsigned int table_size, elem_size;
|
|
} sbr_tmp[] = {
|
|
SBR_VLC_ROW(t_huffman_env_1_5dB),
|
|
SBR_VLC_ROW(f_huffman_env_1_5dB),
|
|
SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
|
|
SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
|
|
SBR_VLC_ROW(t_huffman_env_3_0dB),
|
|
SBR_VLC_ROW(f_huffman_env_3_0dB),
|
|
SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
|
|
SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
|
|
SBR_VLC_ROW(t_huffman_noise_3_0dB),
|
|
SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
|
|
};
|
|
|
|
// SBR VLC table initialization
|
|
SBR_INIT_VLC_STATIC(0, 1098);
|
|
SBR_INIT_VLC_STATIC(1, 1092);
|
|
SBR_INIT_VLC_STATIC(2, 768);
|
|
SBR_INIT_VLC_STATIC(3, 1026);
|
|
SBR_INIT_VLC_STATIC(4, 1058);
|
|
SBR_INIT_VLC_STATIC(5, 1052);
|
|
SBR_INIT_VLC_STATIC(6, 544);
|
|
SBR_INIT_VLC_STATIC(7, 544);
|
|
SBR_INIT_VLC_STATIC(8, 592);
|
|
SBR_INIT_VLC_STATIC(9, 512);
|
|
|
|
for (n = 1; n < 320; n++)
|
|
sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
|
|
sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
|
|
sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
|
|
|
|
for (n = 0; n < 320; n++)
|
|
sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
|
|
|
|
ff_ps_init();
|
|
}
|
|
|
|
/** Places SBR in pure upsampling mode. */
|
|
static void sbr_turnoff(SpectralBandReplication *sbr) {
|
|
sbr->start = 0;
|
|
// Init defults used in pure upsampling mode
|
|
sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
|
|
sbr->m[1] = 0;
|
|
// Reset values for first SBR header
|
|
sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
|
|
memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
|
|
}
|
|
|
|
av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
|
|
{
|
|
sbr->kx[0] = sbr->kx[1];
|
|
sbr_turnoff(sbr);
|
|
sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
|
|
sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
|
|
/* SBR requires samples to be scaled to +/-32768.0 to work correctly.
|
|
* mdct scale factors are adjusted to scale up from +/-1.0 at analysis
|
|
* and scale back down at synthesis. */
|
|
ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
|
|
ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
|
|
ff_ps_ctx_init(&sbr->ps);
|
|
ff_sbrdsp_init(&sbr->dsp);
|
|
}
|
|
|
|
av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
|
|
{
|
|
ff_mdct_end(&sbr->mdct);
|
|
ff_mdct_end(&sbr->mdct_ana);
|
|
}
|
|
|
|
static int qsort_comparison_function_int16(const void *a, const void *b)
|
|
{
|
|
return *(const int16_t *)a - *(const int16_t *)b;
|
|
}
|
|
|
|
static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
|
|
{
|
|
int i;
|
|
for (i = 0; i <= last_el; i++)
|
|
if (table[i] == needle)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/// Limiter Frequency Band Table (14496-3 sp04 p198)
|
|
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
|
|
{
|
|
int k;
|
|
if (sbr->bs_limiter_bands > 0) {
|
|
static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
|
|
1.18509277094158210129f, //2^(0.49/2)
|
|
1.11987160404675912501f }; //2^(0.49/3)
|
|
const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
|
|
int16_t patch_borders[7];
|
|
uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
|
|
|
|
patch_borders[0] = sbr->kx[1];
|
|
for (k = 1; k <= sbr->num_patches; k++)
|
|
patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
|
|
|
|
memcpy(sbr->f_tablelim, sbr->f_tablelow,
|
|
(sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
|
|
if (sbr->num_patches > 1)
|
|
memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
|
|
(sbr->num_patches - 1) * sizeof(patch_borders[0]));
|
|
|
|
qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
|
|
sizeof(sbr->f_tablelim[0]),
|
|
qsort_comparison_function_int16);
|
|
|
|
sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
|
|
while (out < sbr->f_tablelim + sbr->n_lim) {
|
|
if (*in >= *out * lim_bands_per_octave_warped) {
|
|
*++out = *in++;
|
|
} else if (*in == *out ||
|
|
!in_table_int16(patch_borders, sbr->num_patches, *in)) {
|
|
in++;
|
|
sbr->n_lim--;
|
|
} else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
|
|
*out = *in++;
|
|
sbr->n_lim--;
|
|
} else {
|
|
*++out = *in++;
|
|
}
|
|
}
|
|
} else {
|
|
sbr->f_tablelim[0] = sbr->f_tablelow[0];
|
|
sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
|
|
sbr->n_lim = 1;
|
|
}
|
|
}
|
|
|
|
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
|
|
{
|
|
unsigned int cnt = get_bits_count(gb);
|
|
uint8_t bs_header_extra_1;
|
|
uint8_t bs_header_extra_2;
|
|
int old_bs_limiter_bands = sbr->bs_limiter_bands;
|
|
SpectrumParameters old_spectrum_params;
|
|
|
|
sbr->start = 1;
|
|
|
|
// Save last spectrum parameters variables to compare to new ones
|
|
memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
|
|
|
|
sbr->bs_amp_res_header = get_bits1(gb);
|
|
sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
|
|
sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
|
|
sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
|
|
skip_bits(gb, 2); // bs_reserved
|
|
|
|
bs_header_extra_1 = get_bits1(gb);
|
|
bs_header_extra_2 = get_bits1(gb);
|
|
|
|
if (bs_header_extra_1) {
|
|
sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
|
|
sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
|
|
sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
|
|
} else {
|
|
sbr->spectrum_params.bs_freq_scale = 2;
|
|
sbr->spectrum_params.bs_alter_scale = 1;
|
|
sbr->spectrum_params.bs_noise_bands = 2;
|
|
}
|
|
|
|
// Check if spectrum parameters changed
|
|
if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
|
|
sbr->reset = 1;
|
|
|
|
if (bs_header_extra_2) {
|
|
sbr->bs_limiter_bands = get_bits(gb, 2);
|
|
sbr->bs_limiter_gains = get_bits(gb, 2);
|
|
sbr->bs_interpol_freq = get_bits1(gb);
|
|
sbr->bs_smoothing_mode = get_bits1(gb);
|
|
} else {
|
|
sbr->bs_limiter_bands = 2;
|
|
sbr->bs_limiter_gains = 2;
|
|
sbr->bs_interpol_freq = 1;
|
|
sbr->bs_smoothing_mode = 1;
|
|
}
|
|
|
|
if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
|
|
sbr_make_f_tablelim(sbr);
|
|
|
|
return get_bits_count(gb) - cnt;
|
|
}
|
|
|
|
static int array_min_int16(const int16_t *array, int nel)
|
|
{
|
|
int i, min = array[0];
|
|
for (i = 1; i < nel; i++)
|
|
min = FFMIN(array[i], min);
|
|
return min;
|
|
}
|
|
|
|
static void make_bands(int16_t* bands, int start, int stop, int num_bands)
|
|
{
|
|
int k, previous, present;
|
|
float base, prod;
|
|
|
|
base = powf((float)stop / start, 1.0f / num_bands);
|
|
prod = start;
|
|
previous = start;
|
|
|
|
for (k = 0; k < num_bands-1; k++) {
|
|
prod *= base;
|
|
present = lrintf(prod);
|
|
bands[k] = present - previous;
|
|
previous = present;
|
|
}
|
|
bands[num_bands-1] = stop - previous;
|
|
}
|
|
|
|
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
|
|
{
|
|
// Requirements (14496-3 sp04 p205)
|
|
if (n_master <= 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
|
|
return -1;
|
|
}
|
|
if (bs_xover_band >= n_master) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"Invalid bitstream, crossover band index beyond array bounds: %d\n",
|
|
bs_xover_band);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// Master Frequency Band Table (14496-3 sp04 p194)
|
|
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
|
|
SpectrumParameters *spectrum)
|
|
{
|
|
unsigned int temp, max_qmf_subbands;
|
|
unsigned int start_min, stop_min;
|
|
int k;
|
|
const int8_t *sbr_offset_ptr;
|
|
int16_t stop_dk[13];
|
|
|
|
if (sbr->sample_rate < 32000) {
|
|
temp = 3000;
|
|
} else if (sbr->sample_rate < 64000) {
|
|
temp = 4000;
|
|
} else
|
|
temp = 5000;
|
|
|
|
start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
|
|
stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
|
|
|
|
switch (sbr->sample_rate) {
|
|
case 16000:
|
|
sbr_offset_ptr = sbr_offset[0];
|
|
break;
|
|
case 22050:
|
|
sbr_offset_ptr = sbr_offset[1];
|
|
break;
|
|
case 24000:
|
|
sbr_offset_ptr = sbr_offset[2];
|
|
break;
|
|
case 32000:
|
|
sbr_offset_ptr = sbr_offset[3];
|
|
break;
|
|
case 44100: case 48000: case 64000:
|
|
sbr_offset_ptr = sbr_offset[4];
|
|
break;
|
|
case 88200: case 96000: case 128000: case 176400: case 192000:
|
|
sbr_offset_ptr = sbr_offset[5];
|
|
break;
|
|
default:
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
|
|
return -1;
|
|
}
|
|
|
|
sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
|
|
|
|
if (spectrum->bs_stop_freq < 14) {
|
|
sbr->k[2] = stop_min;
|
|
make_bands(stop_dk, stop_min, 64, 13);
|
|
qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
|
|
for (k = 0; k < spectrum->bs_stop_freq; k++)
|
|
sbr->k[2] += stop_dk[k];
|
|
} else if (spectrum->bs_stop_freq == 14) {
|
|
sbr->k[2] = 2*sbr->k[0];
|
|
} else if (spectrum->bs_stop_freq == 15) {
|
|
sbr->k[2] = 3*sbr->k[0];
|
|
} else {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
|
|
return -1;
|
|
}
|
|
sbr->k[2] = FFMIN(64, sbr->k[2]);
|
|
|
|
// Requirements (14496-3 sp04 p205)
|
|
if (sbr->sample_rate <= 32000) {
|
|
max_qmf_subbands = 48;
|
|
} else if (sbr->sample_rate == 44100) {
|
|
max_qmf_subbands = 35;
|
|
} else if (sbr->sample_rate >= 48000)
|
|
max_qmf_subbands = 32;
|
|
|
|
if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
|
|
return -1;
|
|
}
|
|
|
|
if (!spectrum->bs_freq_scale) {
|
|
int dk, k2diff;
|
|
|
|
dk = spectrum->bs_alter_scale + 1;
|
|
sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
|
|
if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
|
|
return -1;
|
|
|
|
for (k = 1; k <= sbr->n_master; k++)
|
|
sbr->f_master[k] = dk;
|
|
|
|
k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
|
|
if (k2diff < 0) {
|
|
sbr->f_master[1]--;
|
|
sbr->f_master[2]-= (k2diff < -1);
|
|
} else if (k2diff) {
|
|
sbr->f_master[sbr->n_master]++;
|
|
}
|
|
|
|
sbr->f_master[0] = sbr->k[0];
|
|
for (k = 1; k <= sbr->n_master; k++)
|
|
sbr->f_master[k] += sbr->f_master[k - 1];
|
|
|
|
} else {
|
|
int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
|
|
int two_regions, num_bands_0;
|
|
int vdk0_max, vdk1_min;
|
|
int16_t vk0[49];
|
|
|
|
if (49 * sbr->k[2] > 110 * sbr->k[0]) {
|
|
two_regions = 1;
|
|
sbr->k[1] = 2 * sbr->k[0];
|
|
} else {
|
|
two_regions = 0;
|
|
sbr->k[1] = sbr->k[2];
|
|
}
|
|
|
|
num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
|
|
|
|
if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
|
|
return -1;
|
|
}
|
|
|
|
vk0[0] = 0;
|
|
|
|
make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
|
|
|
|
qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
|
|
vdk0_max = vk0[num_bands_0];
|
|
|
|
vk0[0] = sbr->k[0];
|
|
for (k = 1; k <= num_bands_0; k++) {
|
|
if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
|
|
return -1;
|
|
}
|
|
vk0[k] += vk0[k-1];
|
|
}
|
|
|
|
if (two_regions) {
|
|
int16_t vk1[49];
|
|
float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
|
|
: 1.0f; // bs_alter_scale = {0,1}
|
|
int num_bands_1 = lrintf(half_bands * invwarp *
|
|
log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
|
|
|
|
make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
|
|
|
|
vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
|
|
|
|
if (vdk1_min < vdk0_max) {
|
|
int change;
|
|
qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
|
|
change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
|
|
vk1[1] += change;
|
|
vk1[num_bands_1] -= change;
|
|
}
|
|
|
|
qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
|
|
|
|
vk1[0] = sbr->k[1];
|
|
for (k = 1; k <= num_bands_1; k++) {
|
|
if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
|
|
return -1;
|
|
}
|
|
vk1[k] += vk1[k-1];
|
|
}
|
|
|
|
sbr->n_master = num_bands_0 + num_bands_1;
|
|
if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
|
|
return -1;
|
|
memcpy(&sbr->f_master[0], vk0,
|
|
(num_bands_0 + 1) * sizeof(sbr->f_master[0]));
|
|
memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
|
|
num_bands_1 * sizeof(sbr->f_master[0]));
|
|
|
|
} else {
|
|
sbr->n_master = num_bands_0;
|
|
if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
|
|
return -1;
|
|
memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
|
|
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
|
|
{
|
|
int i, k, sb = 0;
|
|
int msb = sbr->k[0];
|
|
int usb = sbr->kx[1];
|
|
int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
|
|
|
|
sbr->num_patches = 0;
|
|
|
|
if (goal_sb < sbr->kx[1] + sbr->m[1]) {
|
|
for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
|
|
} else
|
|
k = sbr->n_master;
|
|
|
|
do {
|
|
int odd = 0;
|
|
for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
|
|
sb = sbr->f_master[i];
|
|
odd = (sb + sbr->k[0]) & 1;
|
|
}
|
|
|
|
// Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
|
|
// After this check the final number of patches can still be six which is
|
|
// illegal however the Coding Technologies decoder check stream has a final
|
|
// count of 6 patches
|
|
if (sbr->num_patches > 5) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
|
|
return -1;
|
|
}
|
|
|
|
sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
|
|
sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
|
|
|
|
if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
|
|
usb = sb;
|
|
msb = sb;
|
|
sbr->num_patches++;
|
|
} else
|
|
msb = sbr->kx[1];
|
|
|
|
if (sbr->f_master[k] - sb < 3)
|
|
k = sbr->n_master;
|
|
} while (sb != sbr->kx[1] + sbr->m[1]);
|
|
|
|
if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
|
|
sbr->num_patches--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// Derived Frequency Band Tables (14496-3 sp04 p197)
|
|
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
|
|
{
|
|
int k, temp;
|
|
|
|
sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
|
|
sbr->n[0] = (sbr->n[1] + 1) >> 1;
|
|
|
|
memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
|
|
(sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
|
|
sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
|
|
sbr->kx[1] = sbr->f_tablehigh[0];
|
|
|
|
// Requirements (14496-3 sp04 p205)
|
|
if (sbr->kx[1] + sbr->m[1] > 64) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
|
|
return -1;
|
|
}
|
|
if (sbr->kx[1] > 32) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
|
|
return -1;
|
|
}
|
|
|
|
sbr->f_tablelow[0] = sbr->f_tablehigh[0];
|
|
temp = sbr->n[1] & 1;
|
|
for (k = 1; k <= sbr->n[0]; k++)
|
|
sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
|
|
|
|
sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
|
|
log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
|
|
if (sbr->n_q > 5) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
|
|
return -1;
|
|
}
|
|
|
|
sbr->f_tablenoise[0] = sbr->f_tablelow[0];
|
|
temp = 0;
|
|
for (k = 1; k <= sbr->n_q; k++) {
|
|
temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
|
|
sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
|
|
}
|
|
|
|
if (sbr_hf_calc_npatches(ac, sbr) < 0)
|
|
return -1;
|
|
|
|
sbr_make_f_tablelim(sbr);
|
|
|
|
sbr->data[0].f_indexnoise = 0;
|
|
sbr->data[1].f_indexnoise = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
|
|
int elements)
|
|
{
|
|
int i;
|
|
for (i = 0; i < elements; i++) {
|
|
vec[i] = get_bits1(gb);
|
|
}
|
|
}
|
|
|
|
/** ceil(log2(index+1)) */
|
|
static const int8_t ceil_log2[] = {
|
|
0, 1, 2, 2, 3, 3,
|
|
};
|
|
|
|
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
|
|
GetBitContext *gb, SBRData *ch_data)
|
|
{
|
|
int i;
|
|
unsigned bs_pointer = 0;
|
|
// frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
|
|
int abs_bord_trail = 16;
|
|
int num_rel_lead, num_rel_trail;
|
|
unsigned bs_num_env_old = ch_data->bs_num_env;
|
|
|
|
ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
|
|
ch_data->bs_amp_res = sbr->bs_amp_res_header;
|
|
ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
|
|
|
|
switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
|
|
case FIXFIX:
|
|
ch_data->bs_num_env = 1 << get_bits(gb, 2);
|
|
num_rel_lead = ch_data->bs_num_env - 1;
|
|
if (ch_data->bs_num_env == 1)
|
|
ch_data->bs_amp_res = 0;
|
|
|
|
if (ch_data->bs_num_env > 4) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
|
|
ch_data->bs_num_env);
|
|
return -1;
|
|
}
|
|
|
|
ch_data->t_env[0] = 0;
|
|
ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
|
|
|
|
abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
|
|
ch_data->bs_num_env;
|
|
for (i = 0; i < num_rel_lead; i++)
|
|
ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
|
|
|
|
ch_data->bs_freq_res[1] = get_bits1(gb);
|
|
for (i = 1; i < ch_data->bs_num_env; i++)
|
|
ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
|
|
break;
|
|
case FIXVAR:
|
|
abs_bord_trail += get_bits(gb, 2);
|
|
num_rel_trail = get_bits(gb, 2);
|
|
ch_data->bs_num_env = num_rel_trail + 1;
|
|
ch_data->t_env[0] = 0;
|
|
ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
|
|
|
|
for (i = 0; i < num_rel_trail; i++)
|
|
ch_data->t_env[ch_data->bs_num_env - 1 - i] =
|
|
ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
|
|
|
|
bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
|
|
|
|
for (i = 0; i < ch_data->bs_num_env; i++)
|
|
ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
|
|
break;
|
|
case VARFIX:
|
|
ch_data->t_env[0] = get_bits(gb, 2);
|
|
num_rel_lead = get_bits(gb, 2);
|
|
ch_data->bs_num_env = num_rel_lead + 1;
|
|
ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
|
|
|
|
for (i = 0; i < num_rel_lead; i++)
|
|
ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
|
|
|
|
bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
|
|
|
|
get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
|
|
break;
|
|
case VARVAR:
|
|
ch_data->t_env[0] = get_bits(gb, 2);
|
|
abs_bord_trail += get_bits(gb, 2);
|
|
num_rel_lead = get_bits(gb, 2);
|
|
num_rel_trail = get_bits(gb, 2);
|
|
ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
|
|
|
|
if (ch_data->bs_num_env > 5) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
|
|
ch_data->bs_num_env);
|
|
return -1;
|
|
}
|
|
|
|
ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
|
|
|
|
for (i = 0; i < num_rel_lead; i++)
|
|
ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
|
|
for (i = 0; i < num_rel_trail; i++)
|
|
ch_data->t_env[ch_data->bs_num_env - 1 - i] =
|
|
ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
|
|
|
|
bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
|
|
|
|
get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
|
|
break;
|
|
}
|
|
|
|
if (bs_pointer > ch_data->bs_num_env + 1) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
|
|
bs_pointer);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 1; i <= ch_data->bs_num_env; i++) {
|
|
if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
|
|
|
|
ch_data->t_q[0] = ch_data->t_env[0];
|
|
ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
|
|
if (ch_data->bs_num_noise > 1) {
|
|
unsigned int idx;
|
|
if (ch_data->bs_frame_class == FIXFIX) {
|
|
idx = ch_data->bs_num_env >> 1;
|
|
} else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
|
|
idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
|
|
} else { // VARFIX
|
|
if (!bs_pointer)
|
|
idx = 1;
|
|
else if (bs_pointer == 1)
|
|
idx = ch_data->bs_num_env - 1;
|
|
else // bs_pointer > 1
|
|
idx = bs_pointer - 1;
|
|
}
|
|
ch_data->t_q[1] = ch_data->t_env[idx];
|
|
}
|
|
|
|
ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
|
|
ch_data->e_a[1] = -1;
|
|
if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
|
|
ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
|
|
} else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
|
|
ch_data->e_a[1] = bs_pointer - 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
|
|
//These variables are saved from the previous frame rather than copied
|
|
dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
|
|
dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
|
|
dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
|
|
|
|
//These variables are read from the bitstream and therefore copied
|
|
memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
|
|
memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
|
|
memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
|
|
dst->bs_num_env = src->bs_num_env;
|
|
dst->bs_amp_res = src->bs_amp_res;
|
|
dst->bs_num_noise = src->bs_num_noise;
|
|
dst->bs_frame_class = src->bs_frame_class;
|
|
dst->e_a[1] = src->e_a[1];
|
|
}
|
|
|
|
/// Read how the envelope and noise floor data is delta coded
|
|
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
|
|
SBRData *ch_data)
|
|
{
|
|
get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
|
|
get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
|
|
}
|
|
|
|
/// Read inverse filtering data
|
|
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
|
|
SBRData *ch_data)
|
|
{
|
|
int i;
|
|
|
|
memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
|
|
for (i = 0; i < sbr->n_q; i++)
|
|
ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
|
|
}
|
|
|
|
static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
|
|
SBRData *ch_data, int ch)
|
|
{
|
|
int bits;
|
|
int i, j, k;
|
|
VLC_TYPE (*t_huff)[2], (*f_huff)[2];
|
|
int t_lav, f_lav;
|
|
const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
|
|
const int odd = sbr->n[1] & 1;
|
|
|
|
if (sbr->bs_coupling && ch) {
|
|
if (ch_data->bs_amp_res) {
|
|
bits = 5;
|
|
t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
|
|
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
|
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
|
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
|
|
} else {
|
|
bits = 6;
|
|
t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
|
|
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
|
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
|
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
|
|
}
|
|
} else {
|
|
if (ch_data->bs_amp_res) {
|
|
bits = 6;
|
|
t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
|
|
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
|
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
|
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
|
|
} else {
|
|
bits = 7;
|
|
t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
|
|
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
|
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
|
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ch_data->bs_num_env; i++) {
|
|
if (ch_data->bs_df_env[i]) {
|
|
// bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
|
|
if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
|
|
for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
|
|
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
|
|
} else if (ch_data->bs_freq_res[i + 1]) {
|
|
for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
|
|
k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
|
|
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
|
|
}
|
|
} else {
|
|
for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
|
|
k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
|
|
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
|
|
}
|
|
}
|
|
} else {
|
|
ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
|
|
for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
|
|
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
|
|
}
|
|
}
|
|
|
|
//assign 0th elements of env_facs from last elements
|
|
memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
|
|
sizeof(ch_data->env_facs[0]));
|
|
}
|
|
|
|
static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
|
|
SBRData *ch_data, int ch)
|
|
{
|
|
int i, j;
|
|
VLC_TYPE (*t_huff)[2], (*f_huff)[2];
|
|
int t_lav, f_lav;
|
|
int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
|
|
|
|
if (sbr->bs_coupling && ch) {
|
|
t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
|
|
t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
|
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
|
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
|
|
} else {
|
|
t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
|
|
t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
|
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
|
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
|
|
}
|
|
|
|
for (i = 0; i < ch_data->bs_num_noise; i++) {
|
|
if (ch_data->bs_df_noise[i]) {
|
|
for (j = 0; j < sbr->n_q; j++)
|
|
ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
|
|
} else {
|
|
ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
|
|
for (j = 1; j < sbr->n_q; j++)
|
|
ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
|
|
}
|
|
}
|
|
|
|
//assign 0th elements of noise_facs from last elements
|
|
memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
|
|
sizeof(ch_data->noise_facs[0]));
|
|
}
|
|
|
|
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
|
|
GetBitContext *gb,
|
|
int bs_extension_id, int *num_bits_left)
|
|
{
|
|
switch (bs_extension_id) {
|
|
case EXTENSION_ID_PS:
|
|
if (!ac->oc[1].m4ac.ps) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
|
|
skip_bits_long(gb, *num_bits_left); // bs_fill_bits
|
|
*num_bits_left = 0;
|
|
} else {
|
|
#if 1
|
|
*num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
|
|
ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
|
|
#else
|
|
avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
|
|
skip_bits_long(gb, *num_bits_left); // bs_fill_bits
|
|
*num_bits_left = 0;
|
|
#endif
|
|
}
|
|
break;
|
|
default:
|
|
avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
|
|
skip_bits_long(gb, *num_bits_left); // bs_fill_bits
|
|
*num_bits_left = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int read_sbr_single_channel_element(AACContext *ac,
|
|
SpectralBandReplication *sbr,
|
|
GetBitContext *gb)
|
|
{
|
|
if (get_bits1(gb)) // bs_data_extra
|
|
skip_bits(gb, 4); // bs_reserved
|
|
|
|
if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
|
|
return -1;
|
|
read_sbr_dtdf(sbr, gb, &sbr->data[0]);
|
|
read_sbr_invf(sbr, gb, &sbr->data[0]);
|
|
read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
|
|
read_sbr_noise(sbr, gb, &sbr->data[0], 0);
|
|
|
|
if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
|
|
get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_sbr_channel_pair_element(AACContext *ac,
|
|
SpectralBandReplication *sbr,
|
|
GetBitContext *gb)
|
|
{
|
|
if (get_bits1(gb)) // bs_data_extra
|
|
skip_bits(gb, 8); // bs_reserved
|
|
|
|
if ((sbr->bs_coupling = get_bits1(gb))) {
|
|
if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
|
|
return -1;
|
|
copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
|
|
read_sbr_dtdf(sbr, gb, &sbr->data[0]);
|
|
read_sbr_dtdf(sbr, gb, &sbr->data[1]);
|
|
read_sbr_invf(sbr, gb, &sbr->data[0]);
|
|
memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
|
|
memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
|
|
read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
|
|
read_sbr_noise(sbr, gb, &sbr->data[0], 0);
|
|
read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
|
|
read_sbr_noise(sbr, gb, &sbr->data[1], 1);
|
|
} else {
|
|
if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
|
|
read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
|
|
return -1;
|
|
read_sbr_dtdf(sbr, gb, &sbr->data[0]);
|
|
read_sbr_dtdf(sbr, gb, &sbr->data[1]);
|
|
read_sbr_invf(sbr, gb, &sbr->data[0]);
|
|
read_sbr_invf(sbr, gb, &sbr->data[1]);
|
|
read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
|
|
read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
|
|
read_sbr_noise(sbr, gb, &sbr->data[0], 0);
|
|
read_sbr_noise(sbr, gb, &sbr->data[1], 1);
|
|
}
|
|
|
|
if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
|
|
get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
|
|
if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
|
|
get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
|
|
GetBitContext *gb, int id_aac)
|
|
{
|
|
unsigned int cnt = get_bits_count(gb);
|
|
|
|
if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
|
|
if (read_sbr_single_channel_element(ac, sbr, gb)) {
|
|
sbr_turnoff(sbr);
|
|
return get_bits_count(gb) - cnt;
|
|
}
|
|
} else if (id_aac == TYPE_CPE) {
|
|
if (read_sbr_channel_pair_element(ac, sbr, gb)) {
|
|
sbr_turnoff(sbr);
|
|
return get_bits_count(gb) - cnt;
|
|
}
|
|
} else {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
|
|
sbr_turnoff(sbr);
|
|
return get_bits_count(gb) - cnt;
|
|
}
|
|
if (get_bits1(gb)) { // bs_extended_data
|
|
int num_bits_left = get_bits(gb, 4); // bs_extension_size
|
|
if (num_bits_left == 15)
|
|
num_bits_left += get_bits(gb, 8); // bs_esc_count
|
|
|
|
num_bits_left <<= 3;
|
|
while (num_bits_left > 7) {
|
|
num_bits_left -= 2;
|
|
read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
|
|
}
|
|
if (num_bits_left < 0) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
|
|
}
|
|
if (num_bits_left > 0)
|
|
skip_bits(gb, num_bits_left);
|
|
}
|
|
|
|
return get_bits_count(gb) - cnt;
|
|
}
|
|
|
|
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
|
|
{
|
|
int err;
|
|
err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
|
|
if (err >= 0)
|
|
err = sbr_make_f_derived(ac, sbr);
|
|
if (err < 0) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"SBR reset failed. Switching SBR to pure upsampling mode.\n");
|
|
sbr_turnoff(sbr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decode Spectral Band Replication extension data; reference: table 4.55.
|
|
*
|
|
* @param crc flag indicating the presence of CRC checksum
|
|
* @param cnt length of TYPE_FIL syntactic element in bytes
|
|
*
|
|
* @return Returns number of bytes consumed from the TYPE_FIL element.
|
|
*/
|
|
int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
|
|
GetBitContext *gb_host, int crc, int cnt, int id_aac)
|
|
{
|
|
unsigned int num_sbr_bits = 0, num_align_bits;
|
|
unsigned bytes_read;
|
|
GetBitContext gbc = *gb_host, *gb = &gbc;
|
|
skip_bits_long(gb_host, cnt*8 - 4);
|
|
|
|
sbr->reset = 0;
|
|
|
|
if (!sbr->sample_rate)
|
|
sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
|
|
if (!ac->oc[1].m4ac.ext_sample_rate)
|
|
ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
|
|
|
|
if (crc) {
|
|
skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
|
|
num_sbr_bits += 10;
|
|
}
|
|
|
|
//Save some state from the previous frame.
|
|
sbr->kx[0] = sbr->kx[1];
|
|
sbr->m[0] = sbr->m[1];
|
|
sbr->kx_and_m_pushed = 1;
|
|
|
|
num_sbr_bits++;
|
|
if (get_bits1(gb)) // bs_header_flag
|
|
num_sbr_bits += read_sbr_header(sbr, gb);
|
|
|
|
if (sbr->reset)
|
|
sbr_reset(ac, sbr);
|
|
|
|
if (sbr->start)
|
|
num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
|
|
|
|
num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
|
|
bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
|
|
|
|
if (bytes_read > cnt) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
/// Dequantization and stereo decoding (14496-3 sp04 p203)
|
|
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
|
|
{
|
|
int k, e;
|
|
int ch;
|
|
|
|
if (id_aac == TYPE_CPE && sbr->bs_coupling) {
|
|
float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
|
|
float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
|
|
for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
|
|
for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
|
|
float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
|
|
float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
|
|
float fac = temp1 / (1.0f + temp2);
|
|
sbr->data[0].env_facs[e][k] = fac;
|
|
sbr->data[1].env_facs[e][k] = fac * temp2;
|
|
}
|
|
}
|
|
for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
|
|
for (k = 0; k < sbr->n_q; k++) {
|
|
float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
|
|
float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
|
|
float fac = temp1 / (1.0f + temp2);
|
|
sbr->data[0].noise_facs[e][k] = fac;
|
|
sbr->data[1].noise_facs[e][k] = fac * temp2;
|
|
}
|
|
}
|
|
} else { // SCE or one non-coupled CPE
|
|
for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
|
|
float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
|
|
for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
|
|
for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
|
|
sbr->data[ch].env_facs[e][k] =
|
|
exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
|
|
for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
|
|
for (k = 0; k < sbr->n_q; k++)
|
|
sbr->data[ch].noise_facs[e][k] =
|
|
exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Analysis QMF Bank (14496-3 sp04 p206)
|
|
*
|
|
* @param x pointer to the beginning of the first sample window
|
|
* @param W array of complex-valued samples split into subbands
|
|
*/
|
|
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
|
|
SBRDSPContext *sbrdsp, const float *in, float *x,
|
|
float z[320], float W[2][32][32][2], int buf_idx)
|
|
{
|
|
int i;
|
|
memcpy(x , x+1024, (320-32)*sizeof(x[0]));
|
|
memcpy(x+288, in, 1024*sizeof(x[0]));
|
|
for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
|
|
// are not supported
|
|
dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
|
|
sbrdsp->sum64x5(z);
|
|
sbrdsp->qmf_pre_shuffle(z);
|
|
mdct->imdct_half(mdct, z, z+64);
|
|
sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
|
|
x += 32;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
|
|
* (14496-3 sp04 p206)
|
|
*/
|
|
static void sbr_qmf_synthesis(FFTContext *mdct,
|
|
SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
|
|
float *out, float X[2][38][64],
|
|
float mdct_buf[2][64],
|
|
float *v0, int *v_off, const unsigned int div)
|
|
{
|
|
int i, n;
|
|
const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
|
|
const int step = 128 >> div;
|
|
float *v;
|
|
for (i = 0; i < 32; i++) {
|
|
if (*v_off < step) {
|
|
int saved_samples = (1280 - 128) >> div;
|
|
memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
|
|
*v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
|
|
} else {
|
|
*v_off -= step;
|
|
}
|
|
v = v0 + *v_off;
|
|
if (div) {
|
|
for (n = 0; n < 32; n++) {
|
|
X[0][i][ n] = -X[0][i][n];
|
|
X[0][i][32+n] = X[1][i][31-n];
|
|
}
|
|
mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
|
|
sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
|
|
} else {
|
|
sbrdsp->neg_odd_64(X[1][i]);
|
|
mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
|
|
mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
|
|
sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
|
|
}
|
|
dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
|
|
dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
|
|
dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
|
|
dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
|
|
dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
|
|
dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
|
|
dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
|
|
dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
|
|
dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
|
|
dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
|
|
out += 64 >> div;
|
|
}
|
|
}
|
|
|
|
/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
|
|
* (14496-3 sp04 p214)
|
|
* Warning: This routine does not seem numerically stable.
|
|
*/
|
|
static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
|
|
float (*alpha0)[2], float (*alpha1)[2],
|
|
const float X_low[32][40][2], int k0)
|
|
{
|
|
int k;
|
|
for (k = 0; k < k0; k++) {
|
|
LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
|
|
float dk;
|
|
|
|
dsp->autocorrelate(X_low[k], phi);
|
|
|
|
dk = phi[2][1][0] * phi[1][0][0] -
|
|
(phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
|
|
|
|
if (!dk) {
|
|
alpha1[k][0] = 0;
|
|
alpha1[k][1] = 0;
|
|
} else {
|
|
float temp_real, temp_im;
|
|
temp_real = phi[0][0][0] * phi[1][1][0] -
|
|
phi[0][0][1] * phi[1][1][1] -
|
|
phi[0][1][0] * phi[1][0][0];
|
|
temp_im = phi[0][0][0] * phi[1][1][1] +
|
|
phi[0][0][1] * phi[1][1][0] -
|
|
phi[0][1][1] * phi[1][0][0];
|
|
|
|
alpha1[k][0] = temp_real / dk;
|
|
alpha1[k][1] = temp_im / dk;
|
|
}
|
|
|
|
if (!phi[1][0][0]) {
|
|
alpha0[k][0] = 0;
|
|
alpha0[k][1] = 0;
|
|
} else {
|
|
float temp_real, temp_im;
|
|
temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
|
|
alpha1[k][1] * phi[1][1][1];
|
|
temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
|
|
alpha1[k][0] * phi[1][1][1];
|
|
|
|
alpha0[k][0] = -temp_real / phi[1][0][0];
|
|
alpha0[k][1] = -temp_im / phi[1][0][0];
|
|
}
|
|
|
|
if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
|
|
alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
|
|
alpha1[k][0] = 0;
|
|
alpha1[k][1] = 0;
|
|
alpha0[k][0] = 0;
|
|
alpha0[k][1] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Chirp Factors (14496-3 sp04 p214)
|
|
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
|
|
{
|
|
int i;
|
|
float new_bw;
|
|
static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
|
|
|
|
for (i = 0; i < sbr->n_q; i++) {
|
|
if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
|
|
new_bw = 0.6f;
|
|
} else
|
|
new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
|
|
|
|
if (new_bw < ch_data->bw_array[i]) {
|
|
new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
|
|
} else
|
|
new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
|
|
ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
|
|
}
|
|
}
|
|
|
|
/// Generate the subband filtered lowband
|
|
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
|
|
float X_low[32][40][2], const float W[2][32][32][2],
|
|
int buf_idx)
|
|
{
|
|
int i, k;
|
|
const int t_HFGen = 8;
|
|
const int i_f = 32;
|
|
memset(X_low, 0, 32*sizeof(*X_low));
|
|
for (k = 0; k < sbr->kx[1]; k++) {
|
|
for (i = t_HFGen; i < i_f + t_HFGen; i++) {
|
|
X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
|
|
X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
|
|
}
|
|
}
|
|
buf_idx = 1-buf_idx;
|
|
for (k = 0; k < sbr->kx[0]; k++) {
|
|
for (i = 0; i < t_HFGen; i++) {
|
|
X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
|
|
X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// High Frequency Generator (14496-3 sp04 p215)
|
|
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
|
|
float X_high[64][40][2], const float X_low[32][40][2],
|
|
const float (*alpha0)[2], const float (*alpha1)[2],
|
|
const float bw_array[5], const uint8_t *t_env,
|
|
int bs_num_env)
|
|
{
|
|
int j, x;
|
|
int g = 0;
|
|
int k = sbr->kx[1];
|
|
for (j = 0; j < sbr->num_patches; j++) {
|
|
for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
|
|
const int p = sbr->patch_start_subband[j] + x;
|
|
while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
|
|
g++;
|
|
g--;
|
|
|
|
if (g < 0) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"ERROR : no subband found for frequency %d\n", k);
|
|
return -1;
|
|
}
|
|
|
|
sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
|
|
X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
|
|
alpha0[p], alpha1[p], bw_array[g],
|
|
2 * t_env[0], 2 * t_env[bs_num_env]);
|
|
}
|
|
}
|
|
if (k < sbr->m[1] + sbr->kx[1])
|
|
memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// Generate the subband filtered lowband
|
|
static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
|
|
const float Y0[38][64][2], const float Y1[38][64][2],
|
|
const float X_low[32][40][2], int ch)
|
|
{
|
|
int k, i;
|
|
const int i_f = 32;
|
|
const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
|
|
memset(X, 0, 2*sizeof(*X));
|
|
for (k = 0; k < sbr->kx[0]; k++) {
|
|
for (i = 0; i < i_Temp; i++) {
|
|
X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
|
|
X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
|
|
}
|
|
}
|
|
for (; k < sbr->kx[0] + sbr->m[0]; k++) {
|
|
for (i = 0; i < i_Temp; i++) {
|
|
X[0][i][k] = Y0[i + i_f][k][0];
|
|
X[1][i][k] = Y0[i + i_f][k][1];
|
|
}
|
|
}
|
|
|
|
for (k = 0; k < sbr->kx[1]; k++) {
|
|
for (i = i_Temp; i < 38; i++) {
|
|
X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
|
|
X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
|
|
}
|
|
}
|
|
for (; k < sbr->kx[1] + sbr->m[1]; k++) {
|
|
for (i = i_Temp; i < i_f; i++) {
|
|
X[0][i][k] = Y1[i][k][0];
|
|
X[1][i][k] = Y1[i][k][1];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
|
|
* (14496-3 sp04 p217)
|
|
*/
|
|
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
|
|
SBRData *ch_data, int e_a[2])
|
|
{
|
|
int e, i, m;
|
|
|
|
memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
|
|
for (e = 0; e < ch_data->bs_num_env; e++) {
|
|
const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
|
|
uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
|
|
int k;
|
|
|
|
if (sbr->kx[1] != table[0]) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
|
|
"Derived frequency tables were not regenerated.\n");
|
|
sbr_turnoff(sbr);
|
|
return AVERROR_BUG;
|
|
}
|
|
for (i = 0; i < ilim; i++)
|
|
for (m = table[i]; m < table[i + 1]; m++)
|
|
sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
|
|
|
|
// ch_data->bs_num_noise > 1 => 2 noise floors
|
|
k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
|
|
for (i = 0; i < sbr->n_q; i++)
|
|
for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
|
|
sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
|
|
|
|
for (i = 0; i < sbr->n[1]; i++) {
|
|
if (ch_data->bs_add_harmonic_flag) {
|
|
const unsigned int m_midpoint =
|
|
(sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
|
|
|
|
ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
|
|
(e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ilim; i++) {
|
|
int additional_sinusoid_present = 0;
|
|
for (m = table[i]; m < table[i + 1]; m++) {
|
|
if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
|
|
additional_sinusoid_present = 1;
|
|
break;
|
|
}
|
|
}
|
|
memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
|
|
(table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
|
|
}
|
|
}
|
|
|
|
memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
|
|
return 0;
|
|
}
|
|
|
|
/// Estimation of current envelope (14496-3 sp04 p218)
|
|
static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
|
|
SpectralBandReplication *sbr, SBRData *ch_data)
|
|
{
|
|
int e, m;
|
|
int kx1 = sbr->kx[1];
|
|
|
|
if (sbr->bs_interpol_freq) {
|
|
for (e = 0; e < ch_data->bs_num_env; e++) {
|
|
const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
|
|
int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
|
|
int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
|
|
|
|
for (m = 0; m < sbr->m[1]; m++) {
|
|
float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
|
|
e_curr[e][m] = sum * recip_env_size;
|
|
}
|
|
}
|
|
} else {
|
|
int k, p;
|
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) {
|
|
const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
|
|
int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
|
|
int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
|
|
const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
|
|
|
|
for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
|
|
float sum = 0.0f;
|
|
const int den = env_size * (table[p + 1] - table[p]);
|
|
|
|
for (k = table[p]; k < table[p + 1]; k++) {
|
|
sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
|
|
}
|
|
sum /= den;
|
|
for (k = table[p]; k < table[p + 1]; k++) {
|
|
e_curr[e][k - kx1] = sum;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculation of levels of additional HF signal components (14496-3 sp04 p219)
|
|
* and Calculation of gain (14496-3 sp04 p219)
|
|
*/
|
|
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
|
|
SBRData *ch_data, const int e_a[2])
|
|
{
|
|
int e, k, m;
|
|
// max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
|
|
static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
|
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) {
|
|
int delta = !((e == e_a[1]) || (e == e_a[0]));
|
|
for (k = 0; k < sbr->n_lim; k++) {
|
|
float gain_boost, gain_max;
|
|
float sum[2] = { 0.0f, 0.0f };
|
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
|
|
const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
|
|
sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
|
|
sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
|
|
if (!sbr->s_mapped[e][m]) {
|
|
sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
|
|
((1.0f + sbr->e_curr[e][m]) *
|
|
(1.0f + sbr->q_mapped[e][m] * delta)));
|
|
} else {
|
|
sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
|
|
((1.0f + sbr->e_curr[e][m]) *
|
|
(1.0f + sbr->q_mapped[e][m])));
|
|
}
|
|
}
|
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
|
|
sum[0] += sbr->e_origmapped[e][m];
|
|
sum[1] += sbr->e_curr[e][m];
|
|
}
|
|
gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
|
|
gain_max = FFMIN(100000.f, gain_max);
|
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
|
|
float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
|
|
sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
|
|
sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
|
|
}
|
|
sum[0] = sum[1] = 0.0f;
|
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
|
|
sum[0] += sbr->e_origmapped[e][m];
|
|
sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
|
|
+ sbr->s_m[e][m] * sbr->s_m[e][m]
|
|
+ (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
|
|
}
|
|
gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
|
|
gain_boost = FFMIN(1.584893192f, gain_boost);
|
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
|
|
sbr->gain[e][m] *= gain_boost;
|
|
sbr->q_m[e][m] *= gain_boost;
|
|
sbr->s_m[e][m] *= gain_boost;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Assembling HF Signals (14496-3 sp04 p220)
|
|
static void sbr_hf_assemble(float Y1[38][64][2],
|
|
const float X_high[64][40][2],
|
|
SpectralBandReplication *sbr, SBRData *ch_data,
|
|
const int e_a[2])
|
|
{
|
|
int e, i, j, m;
|
|
const int h_SL = 4 * !sbr->bs_smoothing_mode;
|
|
const int kx = sbr->kx[1];
|
|
const int m_max = sbr->m[1];
|
|
static const float h_smooth[5] = {
|
|
0.33333333333333,
|
|
0.30150283239582,
|
|
0.21816949906249,
|
|
0.11516383427084,
|
|
0.03183050093751,
|
|
};
|
|
static const int8_t phi[2][4] = {
|
|
{ 1, 0, -1, 0}, // real
|
|
{ 0, 1, 0, -1}, // imaginary
|
|
};
|
|
float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
|
|
int indexnoise = ch_data->f_indexnoise;
|
|
int indexsine = ch_data->f_indexsine;
|
|
|
|
if (sbr->reset) {
|
|
for (i = 0; i < h_SL; i++) {
|
|
memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
|
|
memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
|
|
}
|
|
} else if (h_SL) {
|
|
memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
|
|
memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
|
|
}
|
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) {
|
|
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
|
|
memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
|
|
memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
|
|
}
|
|
}
|
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) {
|
|
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
|
|
int phi_sign = (1 - 2*(kx & 1));
|
|
LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
|
|
LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
|
|
float *g_filt, *q_filt;
|
|
|
|
if (h_SL && e != e_a[0] && e != e_a[1]) {
|
|
g_filt = g_filt_tab;
|
|
q_filt = q_filt_tab;
|
|
for (m = 0; m < m_max; m++) {
|
|
const int idx1 = i + h_SL;
|
|
g_filt[m] = 0.0f;
|
|
q_filt[m] = 0.0f;
|
|
for (j = 0; j <= h_SL; j++) {
|
|
g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
|
|
q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
|
|
}
|
|
}
|
|
} else {
|
|
g_filt = g_temp[i + h_SL];
|
|
q_filt = q_temp[i];
|
|
}
|
|
|
|
sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
|
|
i + ENVELOPE_ADJUSTMENT_OFFSET);
|
|
|
|
if (e != e_a[0] && e != e_a[1]) {
|
|
sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
|
|
q_filt, indexnoise,
|
|
kx, m_max);
|
|
} else {
|
|
for (m = 0; m < m_max; m++) {
|
|
Y1[i][m + kx][0] +=
|
|
sbr->s_m[e][m] * phi[0][indexsine];
|
|
Y1[i][m + kx][1] +=
|
|
sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
|
|
phi_sign = -phi_sign;
|
|
}
|
|
}
|
|
indexnoise = (indexnoise + m_max) & 0x1ff;
|
|
indexsine = (indexsine + 1) & 3;
|
|
}
|
|
}
|
|
ch_data->f_indexnoise = indexnoise;
|
|
ch_data->f_indexsine = indexsine;
|
|
}
|
|
|
|
void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
|
|
float* L, float* R)
|
|
{
|
|
int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
|
|
int ch;
|
|
int nch = (id_aac == TYPE_CPE) ? 2 : 1;
|
|
int err;
|
|
|
|
if (!sbr->kx_and_m_pushed) {
|
|
sbr->kx[0] = sbr->kx[1];
|
|
sbr->m[0] = sbr->m[1];
|
|
} else {
|
|
sbr->kx_and_m_pushed = 0;
|
|
}
|
|
|
|
if (sbr->start) {
|
|
sbr_dequant(sbr, id_aac);
|
|
}
|
|
for (ch = 0; ch < nch; ch++) {
|
|
/* decode channel */
|
|
sbr_qmf_analysis(&ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
|
|
(float*)sbr->qmf_filter_scratch,
|
|
sbr->data[ch].W, sbr->data[ch].Ypos);
|
|
sbr_lf_gen(ac, sbr, sbr->X_low,
|
|
(const float (*)[32][32][2]) sbr->data[ch].W,
|
|
sbr->data[ch].Ypos);
|
|
sbr->data[ch].Ypos ^= 1;
|
|
if (sbr->start) {
|
|
sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
|
|
(const float (*)[40][2]) sbr->X_low, sbr->k[0]);
|
|
sbr_chirp(sbr, &sbr->data[ch]);
|
|
sbr_hf_gen(ac, sbr, sbr->X_high,
|
|
(const float (*)[40][2]) sbr->X_low,
|
|
(const float (*)[2]) sbr->alpha0,
|
|
(const float (*)[2]) sbr->alpha1,
|
|
sbr->data[ch].bw_array, sbr->data[ch].t_env,
|
|
sbr->data[ch].bs_num_env);
|
|
|
|
// hf_adj
|
|
err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
|
|
if (!err) {
|
|
sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
|
|
sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
|
|
sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
|
|
(const float (*)[40][2]) sbr->X_high,
|
|
sbr, &sbr->data[ch],
|
|
sbr->data[ch].e_a);
|
|
}
|
|
}
|
|
|
|
/* synthesis */
|
|
sbr_x_gen(sbr, sbr->X[ch],
|
|
(const float (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
|
|
(const float (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
|
|
(const float (*)[40][2]) sbr->X_low, ch);
|
|
}
|
|
|
|
if (ac->oc[1].m4ac.ps == 1) {
|
|
if (sbr->ps.start) {
|
|
ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
|
|
} else {
|
|
memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
|
|
}
|
|
nch = 2;
|
|
}
|
|
|
|
sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
|
|
L, sbr->X[0], sbr->qmf_filter_scratch,
|
|
sbr->data[0].synthesis_filterbank_samples,
|
|
&sbr->data[0].synthesis_filterbank_samples_offset,
|
|
downsampled);
|
|
if (nch == 2)
|
|
sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
|
|
R, sbr->X[1], sbr->qmf_filter_scratch,
|
|
sbr->data[1].synthesis_filterbank_samples,
|
|
&sbr->data[1].synthesis_filterbank_samples_offset,
|
|
downsampled);
|
|
}
|