mirror of
https://github.com/xenia-project/FFmpeg.git
synced 2024-11-29 22:40:23 +00:00
223 lines
5.4 KiB
C
223 lines
5.4 KiB
C
/*
|
|
* (I)DCT Transforms
|
|
* Copyright (c) 2009 Peter Ross <pross@xvid.org>
|
|
* Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
|
|
* Copyright (c) 2010 Vitor Sessak
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* (Inverse) Discrete Cosine Transforms. These are also known as the
|
|
* type II and type III DCTs respectively.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include "libavutil/mathematics.h"
|
|
#include "dct.h"
|
|
#include "dct32.h"
|
|
|
|
/* sin((M_PI * x / (2 * n)) */
|
|
#define SIN(s, n, x) (s->costab[(n) - (x)])
|
|
|
|
/* cos((M_PI * x / (2 * n)) */
|
|
#define COS(s, n, x) (s->costab[x])
|
|
|
|
static void dst_calc_I_c(DCTContext *ctx, FFTSample *data)
|
|
{
|
|
int n = 1 << ctx->nbits;
|
|
int i;
|
|
|
|
data[0] = 0;
|
|
for (i = 1; i < n / 2; i++) {
|
|
float tmp1 = data[i ];
|
|
float tmp2 = data[n - i];
|
|
float s = SIN(ctx, n, 2 * i);
|
|
|
|
s *= tmp1 + tmp2;
|
|
tmp1 = (tmp1 - tmp2) * 0.5f;
|
|
data[i] = s + tmp1;
|
|
data[n - i] = s - tmp1;
|
|
}
|
|
|
|
data[n / 2] *= 2;
|
|
ctx->rdft.rdft_calc(&ctx->rdft, data);
|
|
|
|
data[0] *= 0.5f;
|
|
|
|
for (i = 1; i < n - 2; i += 2) {
|
|
data[i + 1] += data[i - 1];
|
|
data[i] = -data[i + 2];
|
|
}
|
|
|
|
data[n - 1] = 0;
|
|
}
|
|
|
|
static void dct_calc_I_c(DCTContext *ctx, FFTSample *data)
|
|
{
|
|
int n = 1 << ctx->nbits;
|
|
int i;
|
|
float next = -0.5f * (data[0] - data[n]);
|
|
|
|
for (i = 0; i < n / 2; i++) {
|
|
float tmp1 = data[i];
|
|
float tmp2 = data[n - i];
|
|
float s = SIN(ctx, n, 2 * i);
|
|
float c = COS(ctx, n, 2 * i);
|
|
|
|
c *= tmp1 - tmp2;
|
|
s *= tmp1 - tmp2;
|
|
|
|
next += c;
|
|
|
|
tmp1 = (tmp1 + tmp2) * 0.5f;
|
|
data[i] = tmp1 - s;
|
|
data[n - i] = tmp1 + s;
|
|
}
|
|
|
|
ctx->rdft.rdft_calc(&ctx->rdft, data);
|
|
data[n] = data[1];
|
|
data[1] = next;
|
|
|
|
for (i = 3; i <= n; i += 2)
|
|
data[i] = data[i - 2] - data[i];
|
|
}
|
|
|
|
static void dct_calc_III_c(DCTContext *ctx, FFTSample *data)
|
|
{
|
|
int n = 1 << ctx->nbits;
|
|
int i;
|
|
|
|
float next = data[n - 1];
|
|
float inv_n = 1.0f / n;
|
|
|
|
for (i = n - 2; i >= 2; i -= 2) {
|
|
float val1 = data[i];
|
|
float val2 = data[i - 1] - data[i + 1];
|
|
float c = COS(ctx, n, i);
|
|
float s = SIN(ctx, n, i);
|
|
|
|
data[i] = c * val1 + s * val2;
|
|
data[i + 1] = s * val1 - c * val2;
|
|
}
|
|
|
|
data[1] = 2 * next;
|
|
|
|
ctx->rdft.rdft_calc(&ctx->rdft, data);
|
|
|
|
for (i = 0; i < n / 2; i++) {
|
|
float tmp1 = data[i] * inv_n;
|
|
float tmp2 = data[n - i - 1] * inv_n;
|
|
float csc = ctx->csc2[i] * (tmp1 - tmp2);
|
|
|
|
tmp1 += tmp2;
|
|
data[i] = tmp1 + csc;
|
|
data[n - i - 1] = tmp1 - csc;
|
|
}
|
|
}
|
|
|
|
static void dct_calc_II_c(DCTContext *ctx, FFTSample *data)
|
|
{
|
|
int n = 1 << ctx->nbits;
|
|
int i;
|
|
float next;
|
|
|
|
for (i = 0; i < n / 2; i++) {
|
|
float tmp1 = data[i];
|
|
float tmp2 = data[n - i - 1];
|
|
float s = SIN(ctx, n, 2 * i + 1);
|
|
|
|
s *= tmp1 - tmp2;
|
|
tmp1 = (tmp1 + tmp2) * 0.5f;
|
|
|
|
data[i] = tmp1 + s;
|
|
data[n-i-1] = tmp1 - s;
|
|
}
|
|
|
|
ctx->rdft.rdft_calc(&ctx->rdft, data);
|
|
|
|
next = data[1] * 0.5;
|
|
data[1] *= -1;
|
|
|
|
for (i = n - 2; i >= 0; i -= 2) {
|
|
float inr = data[i ];
|
|
float ini = data[i + 1];
|
|
float c = COS(ctx, n, i);
|
|
float s = SIN(ctx, n, i);
|
|
|
|
data[i] = c * inr + s * ini;
|
|
data[i + 1] = next;
|
|
|
|
next += s * inr - c * ini;
|
|
}
|
|
}
|
|
|
|
static void dct32_func(DCTContext *ctx, FFTSample *data)
|
|
{
|
|
ctx->dct32(data, data);
|
|
}
|
|
|
|
av_cold int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType inverse)
|
|
{
|
|
int n = 1 << nbits;
|
|
int i;
|
|
|
|
memset(s, 0, sizeof(*s));
|
|
|
|
s->nbits = nbits;
|
|
s->inverse = inverse;
|
|
|
|
if (inverse == DCT_II && nbits == 5) {
|
|
s->dct_calc = dct32_func;
|
|
} else {
|
|
ff_init_ff_cos_tabs(nbits + 2);
|
|
|
|
s->costab = ff_cos_tabs[nbits + 2];
|
|
s->csc2 = av_malloc(n / 2 * sizeof(FFTSample));
|
|
|
|
if (ff_rdft_init(&s->rdft, nbits, inverse == DCT_III) < 0) {
|
|
av_free(s->csc2);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < n / 2; i++)
|
|
s->csc2[i] = 0.5 / sin((M_PI / (2 * n) * (2 * i + 1)));
|
|
|
|
switch (inverse) {
|
|
case DCT_I : s->dct_calc = dct_calc_I_c; break;
|
|
case DCT_II : s->dct_calc = dct_calc_II_c; break;
|
|
case DCT_III: s->dct_calc = dct_calc_III_c; break;
|
|
case DST_I : s->dct_calc = dst_calc_I_c; break;
|
|
}
|
|
}
|
|
|
|
s->dct32 = ff_dct32_float;
|
|
if (ARCH_X86)
|
|
ff_dct_init_x86(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
av_cold void ff_dct_end(DCTContext *s)
|
|
{
|
|
ff_rdft_end(&s->rdft);
|
|
av_free(s->csc2);
|
|
}
|