FFmpeg/libavcodec/cfhd.c
Michael Niedermayer 659658d08b avcodec/cfhd: Check transform type
Fixes: out of array access
Fixes: 24823/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_CFHD_fuzzer-4855119863349248

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-08-30 16:18:37 +02:00

1391 lines
56 KiB
C

/*
* Copyright (c) 2015-2016 Kieran Kunhya <kieran@kunhya.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Cineform HD video decoder
*/
#include "libavutil/attributes.h"
#include "libavutil/buffer.h"
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "bytestream.h"
#include "get_bits.h"
#include "internal.h"
#include "thread.h"
#include "cfhd.h"
#define ALPHA_COMPAND_DC_OFFSET 256
#define ALPHA_COMPAND_GAIN 9400
static av_cold int cfhd_init(AVCodecContext *avctx)
{
CFHDContext *s = avctx->priv_data;
s->avctx = avctx;
for (int i = 0; i < 64; i++) {
int val = i;
if (val >= 40) {
if (val >= 54) {
val -= 54;
val <<= 2;
val += 54;
}
val -= 40;
val <<= 2;
val += 40;
}
s->lut[0][i] = val;
}
for (int i = 0; i < 256; i++)
s->lut[1][i] = i + ((768LL * i * i * i) / (256 * 256 * 256));
return ff_cfhd_init_vlcs(s);
}
static void init_plane_defaults(CFHDContext *s)
{
s->subband_num = 0;
s->level = 0;
s->subband_num_actual = 0;
}
static void init_peak_table_defaults(CFHDContext *s)
{
s->peak.level = 0;
s->peak.offset = 0;
memset(&s->peak.base, 0, sizeof(s->peak.base));
}
static void init_frame_defaults(CFHDContext *s)
{
s->coded_width = 0;
s->coded_height = 0;
s->coded_format = AV_PIX_FMT_YUV422P10;
s->cropped_height = 0;
s->bpc = 10;
s->channel_cnt = 3;
s->subband_cnt = SUBBAND_COUNT;
s->channel_num = 0;
s->lowpass_precision = 16;
s->quantisation = 1;
s->codebook = 0;
s->difference_coding = 0;
s->frame_type = 0;
s->sample_type = 0;
init_plane_defaults(s);
init_peak_table_defaults(s);
}
static inline int dequant_and_decompand(CFHDContext *s, int level, int quantisation, int codebook)
{
if (codebook == 0 || codebook == 1) {
return s->lut[codebook][abs(level)] * FFSIGN(level) * quantisation;
} else
return level * quantisation;
}
static inline void difference_coding(int16_t *band, int width, int height)
{
int i,j;
for (i = 0; i < height; i++) {
for (j = 1; j < width; j++) {
band[j] += band[j-1];
}
band += width;
}
}
static inline void peak_table(int16_t *band, Peak *peak, int length)
{
int i;
for (i = 0; i < length; i++)
if (abs(band[i]) > peak->level)
band[i] = bytestream2_get_le16(&peak->base);
}
static inline void process_alpha(int16_t *alpha, int width)
{
int i, channel;
for (i = 0; i < width; i++) {
channel = alpha[i];
channel -= ALPHA_COMPAND_DC_OFFSET;
channel <<= 3;
channel *= ALPHA_COMPAND_GAIN;
channel >>= 16;
channel = av_clip_uintp2(channel, 12);
alpha[i] = channel;
}
}
static inline void process_bayer(AVFrame *frame, int bpc)
{
const int linesize = frame->linesize[0];
uint16_t *r = (uint16_t *)frame->data[0];
uint16_t *g1 = (uint16_t *)(frame->data[0] + 2);
uint16_t *g2 = (uint16_t *)(frame->data[0] + frame->linesize[0]);
uint16_t *b = (uint16_t *)(frame->data[0] + frame->linesize[0] + 2);
const int mid = 1 << (bpc - 1);
const int factor = 1 << (16 - bpc);
for (int y = 0; y < frame->height >> 1; y++) {
for (int x = 0; x < frame->width; x += 2) {
int R, G1, G2, B;
int g, rg, bg, gd;
g = r[x];
rg = g1[x];
bg = g2[x];
gd = b[x];
gd -= mid;
R = (rg - mid) * 2 + g;
G1 = g + gd;
G2 = g - gd;
B = (bg - mid) * 2 + g;
R = av_clip_uintp2(R * factor, 16);
G1 = av_clip_uintp2(G1 * factor, 16);
G2 = av_clip_uintp2(G2 * factor, 16);
B = av_clip_uintp2(B * factor, 16);
r[x] = R;
g1[x] = G1;
g2[x] = G2;
b[x] = B;
}
r += linesize;
g1 += linesize;
g2 += linesize;
b += linesize;
}
}
static inline void interlaced_vertical_filter(int16_t *output, int16_t *low, int16_t *high,
int width, int linesize, int plane)
{
int i;
int16_t even, odd;
for (i = 0; i < width; i++) {
even = (low[i] - high[i])/2;
odd = (low[i] + high[i])/2;
output[i] = av_clip_uintp2(even, 10);
output[i + linesize] = av_clip_uintp2(odd, 10);
}
}
static inline void inverse_temporal_filter(int16_t *low, int16_t *high, int width)
{
for (int i = 0; i < width; i++) {
int even = (low[i] - high[i]) / 2;
int odd = (low[i] + high[i]) / 2;
low[i] = even;
high[i] = odd;
}
}
static void free_buffers(CFHDContext *s)
{
int i, j;
for (i = 0; i < FF_ARRAY_ELEMS(s->plane); i++) {
av_freep(&s->plane[i].idwt_buf);
av_freep(&s->plane[i].idwt_tmp);
s->plane[i].idwt_size = 0;
for (j = 0; j < SUBBAND_COUNT_3D; j++)
s->plane[i].subband[j] = NULL;
for (j = 0; j < 10; j++)
s->plane[i].l_h[j] = NULL;
}
s->a_height = 0;
s->a_width = 0;
}
static int alloc_buffers(AVCodecContext *avctx)
{
CFHDContext *s = avctx->priv_data;
int i, j, ret, planes, bayer = 0;
int chroma_x_shift, chroma_y_shift;
unsigned k;
if ((ret = ff_set_dimensions(avctx, s->coded_width, s->coded_height)) < 0)
return ret;
avctx->pix_fmt = s->coded_format;
ff_cfhddsp_init(&s->dsp, s->bpc, avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16);
if ((ret = av_pix_fmt_get_chroma_sub_sample(s->coded_format,
&chroma_x_shift,
&chroma_y_shift)) < 0)
return ret;
planes = av_pix_fmt_count_planes(s->coded_format);
if (s->coded_format == AV_PIX_FMT_BAYER_RGGB16) {
planes = 4;
chroma_x_shift = 1;
chroma_y_shift = 1;
bayer = 1;
}
for (i = 0; i < planes; i++) {
int w8, h8, w4, h4, w2, h2;
int width = (i || bayer) ? s->coded_width >> chroma_x_shift : s->coded_width;
int height = (i || bayer) ? s->coded_height >> chroma_y_shift : s->coded_height;
ptrdiff_t stride = (FFALIGN(width / 8, 8) + 64) * 8;
if (chroma_y_shift && !bayer)
height = FFALIGN(height / 8, 2) * 8;
s->plane[i].width = width;
s->plane[i].height = height;
s->plane[i].stride = stride;
w8 = FFALIGN(s->plane[i].width / 8, 8) + 64;
h8 = FFALIGN(height, 8) / 8;
w4 = w8 * 2;
h4 = h8 * 2;
w2 = w4 * 2;
h2 = h4 * 2;
if (s->transform_type == 0) {
s->plane[i].idwt_size = FFALIGN(height, 8) * stride;
s->plane[i].idwt_buf =
av_mallocz_array(s->plane[i].idwt_size, sizeof(*s->plane[i].idwt_buf));
s->plane[i].idwt_tmp =
av_malloc_array(s->plane[i].idwt_size, sizeof(*s->plane[i].idwt_tmp));
} else {
s->plane[i].idwt_size = FFALIGN(height, 8) * stride * 2;
s->plane[i].idwt_buf =
av_mallocz_array(s->plane[i].idwt_size, sizeof(*s->plane[i].idwt_buf));
s->plane[i].idwt_tmp =
av_malloc_array(s->plane[i].idwt_size, sizeof(*s->plane[i].idwt_tmp));
}
if (!s->plane[i].idwt_buf || !s->plane[i].idwt_tmp)
return AVERROR(ENOMEM);
s->plane[i].subband[0] = s->plane[i].idwt_buf;
s->plane[i].subband[1] = s->plane[i].idwt_buf + 2 * w8 * h8;
s->plane[i].subband[2] = s->plane[i].idwt_buf + 1 * w8 * h8;
s->plane[i].subband[3] = s->plane[i].idwt_buf + 3 * w8 * h8;
s->plane[i].subband[4] = s->plane[i].idwt_buf + 2 * w4 * h4;
s->plane[i].subband[5] = s->plane[i].idwt_buf + 1 * w4 * h4;
s->plane[i].subband[6] = s->plane[i].idwt_buf + 3 * w4 * h4;
if (s->transform_type == 0) {
s->plane[i].subband[7] = s->plane[i].idwt_buf + 2 * w2 * h2;
s->plane[i].subband[8] = s->plane[i].idwt_buf + 1 * w2 * h2;
s->plane[i].subband[9] = s->plane[i].idwt_buf + 3 * w2 * h2;
} else {
int16_t *frame2 =
s->plane[i].subband[7] = s->plane[i].idwt_buf + 4 * w2 * h2;
s->plane[i].subband[8] = frame2 + 2 * w4 * h4;
s->plane[i].subband[9] = frame2 + 1 * w4 * h4;
s->plane[i].subband[10] = frame2 + 3 * w4 * h4;
s->plane[i].subband[11] = frame2 + 2 * w2 * h2;
s->plane[i].subband[12] = frame2 + 1 * w2 * h2;
s->plane[i].subband[13] = frame2 + 3 * w2 * h2;
s->plane[i].subband[14] = s->plane[i].idwt_buf + 2 * w2 * h2;
s->plane[i].subband[15] = s->plane[i].idwt_buf + 1 * w2 * h2;
s->plane[i].subband[16] = s->plane[i].idwt_buf + 3 * w2 * h2;
}
if (s->transform_type == 0) {
for (j = 0; j < DWT_LEVELS; j++) {
for (k = 0; k < FF_ARRAY_ELEMS(s->plane[i].band[j]); k++) {
s->plane[i].band[j][k].a_width = w8 << j;
s->plane[i].band[j][k].a_height = h8 << j;
}
}
} else {
for (j = 0; j < DWT_LEVELS_3D; j++) {
int t = j < 1 ? 0 : (j < 3 ? 1 : 2);
for (k = 0; k < FF_ARRAY_ELEMS(s->plane[i].band[j]); k++) {
s->plane[i].band[j][k].a_width = w8 << t;
s->plane[i].band[j][k].a_height = h8 << t;
}
}
}
/* ll2 and ll1 commented out because they are done in-place */
s->plane[i].l_h[0] = s->plane[i].idwt_tmp;
s->plane[i].l_h[1] = s->plane[i].idwt_tmp + 2 * w8 * h8;
// s->plane[i].l_h[2] = ll2;
s->plane[i].l_h[3] = s->plane[i].idwt_tmp;
s->plane[i].l_h[4] = s->plane[i].idwt_tmp + 2 * w4 * h4;
// s->plane[i].l_h[5] = ll1;
s->plane[i].l_h[6] = s->plane[i].idwt_tmp;
s->plane[i].l_h[7] = s->plane[i].idwt_tmp + 2 * w2 * h2;
if (s->transform_type != 0) {
int16_t *frame2 = s->plane[i].idwt_tmp + 4 * w2 * h2;
s->plane[i].l_h[8] = frame2;
s->plane[i].l_h[9] = frame2 + 2 * w2 * h2;
}
}
s->a_height = s->coded_height;
s->a_width = s->coded_width;
s->a_format = s->coded_format;
return 0;
}
static int cfhd_decode(AVCodecContext *avctx, void *data, int *got_frame,
AVPacket *avpkt)
{
CFHDContext *s = avctx->priv_data;
CFHDDSPContext *dsp = &s->dsp;
GetByteContext gb;
ThreadFrame frame = { .f = data };
AVFrame *pic = data;
int ret = 0, i, j, plane, got_buffer = 0;
int16_t *coeff_data;
init_frame_defaults(s);
s->planes = av_pix_fmt_count_planes(s->coded_format);
bytestream2_init(&gb, avpkt->data, avpkt->size);
while (bytestream2_get_bytes_left(&gb) >= 4) {
/* Bit weird but implement the tag parsing as the spec says */
uint16_t tagu = bytestream2_get_be16(&gb);
int16_t tag = (int16_t)tagu;
int8_t tag8 = (int8_t)(tagu >> 8);
uint16_t abstag = abs(tag);
int8_t abs_tag8 = abs(tag8);
uint16_t data = bytestream2_get_be16(&gb);
if (abs_tag8 >= 0x60 && abs_tag8 <= 0x6f) {
av_log(avctx, AV_LOG_DEBUG, "large len %x\n", ((tagu & 0xff) << 16) | data);
} else if (tag == SampleFlags) {
av_log(avctx, AV_LOG_DEBUG, "Progressive? %"PRIu16"\n", data);
s->progressive = data & 0x0001;
} else if (tag == FrameType) {
s->frame_type = data;
av_log(avctx, AV_LOG_DEBUG, "Frame type %"PRIu16"\n", data);
} else if (abstag == VersionMajor) {
av_log(avctx, AV_LOG_DEBUG, "Version major %"PRIu16"\n", data);
} else if (abstag == VersionMinor) {
av_log(avctx, AV_LOG_DEBUG, "Version minor %"PRIu16"\n", data);
} else if (abstag == VersionRevision) {
av_log(avctx, AV_LOG_DEBUG, "Version revision %"PRIu16"\n", data);
} else if (abstag == VersionEdit) {
av_log(avctx, AV_LOG_DEBUG, "Version edit %"PRIu16"\n", data);
} else if (abstag == Version) {
av_log(avctx, AV_LOG_DEBUG, "Version %"PRIu16"\n", data);
} else if (tag == ImageWidth) {
av_log(avctx, AV_LOG_DEBUG, "Width %"PRIu16"\n", data);
s->coded_width = data;
} else if (tag == ImageHeight) {
av_log(avctx, AV_LOG_DEBUG, "Height %"PRIu16"\n", data);
s->coded_height = data;
} else if (tag == ChannelCount) {
av_log(avctx, AV_LOG_DEBUG, "Channel Count: %"PRIu16"\n", data);
s->channel_cnt = data;
if (data > 4) {
av_log(avctx, AV_LOG_ERROR, "Channel Count of %"PRIu16" is unsupported\n", data);
ret = AVERROR_PATCHWELCOME;
break;
}
} else if (tag == SubbandCount) {
av_log(avctx, AV_LOG_DEBUG, "Subband Count: %"PRIu16"\n", data);
if (data != SUBBAND_COUNT && data != SUBBAND_COUNT_3D) {
av_log(avctx, AV_LOG_ERROR, "Subband Count of %"PRIu16" is unsupported\n", data);
ret = AVERROR_PATCHWELCOME;
break;
}
} else if (tag == ChannelNumber) {
s->channel_num = data;
av_log(avctx, AV_LOG_DEBUG, "Channel number %"PRIu16"\n", data);
if (s->channel_num >= s->planes) {
av_log(avctx, AV_LOG_ERROR, "Invalid channel number\n");
ret = AVERROR(EINVAL);
break;
}
init_plane_defaults(s);
} else if (tag == SubbandNumber) {
if (s->subband_num != 0 && data == 1) // hack
s->level++;
av_log(avctx, AV_LOG_DEBUG, "Subband number %"PRIu16"\n", data);
s->subband_num = data;
if ((s->transform_type == 0 && s->level >= DWT_LEVELS) ||
(s->transform_type == 2 && s->level >= DWT_LEVELS_3D)) {
av_log(avctx, AV_LOG_ERROR, "Invalid level\n");
ret = AVERROR(EINVAL);
break;
}
if (s->subband_num > 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid subband number\n");
ret = AVERROR(EINVAL);
break;
}
} else if (tag == SubbandBand) {
av_log(avctx, AV_LOG_DEBUG, "Subband number actual %"PRIu16"\n", data);
s->subband_num_actual = data;
if ((s->transform_type == 0 && s->subband_num_actual >= SUBBAND_COUNT) ||
(s->transform_type == 2 && s->subband_num_actual >= SUBBAND_COUNT_3D && s->subband_num_actual != 255)) {
av_log(avctx, AV_LOG_ERROR, "Invalid subband number actual\n");
ret = AVERROR(EINVAL);
break;
}
} else if (tag == LowpassPrecision)
av_log(avctx, AV_LOG_DEBUG, "Lowpass precision bits: %"PRIu16"\n", data);
else if (tag == Quantization) {
s->quantisation = data;
av_log(avctx, AV_LOG_DEBUG, "Quantisation: %"PRIu16"\n", data);
} else if (tag == PrescaleTable) {
for (i = 0; i < 8; i++)
s->prescale_table[i] = (data >> (14 - i * 2)) & 0x3;
av_log(avctx, AV_LOG_DEBUG, "Prescale table: %x\n", data);
} else if (tag == BandEncoding) {
if (!data || data > 5) {
av_log(avctx, AV_LOG_ERROR, "Invalid band encoding\n");
ret = AVERROR(EINVAL);
break;
}
s->band_encoding = data;
av_log(avctx, AV_LOG_DEBUG, "Encode Method for Subband %d : %x\n", s->subband_num_actual, data);
} else if (tag == LowpassWidth) {
av_log(avctx, AV_LOG_DEBUG, "Lowpass width %"PRIu16"\n", data);
s->plane[s->channel_num].band[0][0].width = data;
s->plane[s->channel_num].band[0][0].stride = data;
} else if (tag == LowpassHeight) {
av_log(avctx, AV_LOG_DEBUG, "Lowpass height %"PRIu16"\n", data);
s->plane[s->channel_num].band[0][0].height = data;
} else if (tag == SampleType) {
s->sample_type = data;
av_log(avctx, AV_LOG_DEBUG, "Sample type? %"PRIu16"\n", data);
} else if (tag == TransformType) {
if (data > 2) {
av_log(avctx, AV_LOG_ERROR, "Invalid transform type\n");
ret = AVERROR(EINVAL);
break;
} else if (data == 1) {
av_log(avctx, AV_LOG_ERROR, "unsupported transform type\n");
ret = AVERROR_PATCHWELCOME;
break;
}
s->transform_type = data;
av_log(avctx, AV_LOG_DEBUG, "Transform type %"PRIu16"\n", data);
} else if (abstag >= 0x4000 && abstag <= 0x40ff) {
if (abstag == 0x4001)
s->peak.level = 0;
av_log(avctx, AV_LOG_DEBUG, "Small chunk length %d %s\n", data * 4, tag < 0 ? "optional" : "required");
bytestream2_skipu(&gb, data * 4);
} else if (tag == FrameIndex) {
av_log(avctx, AV_LOG_DEBUG, "Frame index %"PRIu16"\n", data);
s->frame_index = data;
} else if (tag == SampleIndexTable) {
av_log(avctx, AV_LOG_DEBUG, "Sample index table - skipping %i values\n", data);
if (data > bytestream2_get_bytes_left(&gb) / 4) {
av_log(avctx, AV_LOG_ERROR, "too many values (%d)\n", data);
ret = AVERROR_INVALIDDATA;
break;
}
for (i = 0; i < data; i++) {
uint32_t offset = bytestream2_get_be32(&gb);
av_log(avctx, AV_LOG_DEBUG, "Offset = %"PRIu32"\n", offset);
}
} else if (tag == HighpassWidth) {
av_log(avctx, AV_LOG_DEBUG, "Highpass width %i channel %i level %i subband %i\n", data, s->channel_num, s->level, s->subband_num);
if (data < 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid highpass width\n");
ret = AVERROR(EINVAL);
break;
}
s->plane[s->channel_num].band[s->level][s->subband_num].width = data;
s->plane[s->channel_num].band[s->level][s->subband_num].stride = FFALIGN(data, 8);
} else if (tag == HighpassHeight) {
av_log(avctx, AV_LOG_DEBUG, "Highpass height %i\n", data);
if (data < 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid highpass height\n");
ret = AVERROR(EINVAL);
break;
}
s->plane[s->channel_num].band[s->level][s->subband_num].height = data;
} else if (tag == BandWidth) {
av_log(avctx, AV_LOG_DEBUG, "Highpass width2 %i\n", data);
if (data < 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid highpass width2\n");
ret = AVERROR(EINVAL);
break;
}
s->plane[s->channel_num].band[s->level][s->subband_num].width = data;
s->plane[s->channel_num].band[s->level][s->subband_num].stride = FFALIGN(data, 8);
} else if (tag == BandHeight) {
av_log(avctx, AV_LOG_DEBUG, "Highpass height2 %i\n", data);
if (data < 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid highpass height2\n");
ret = AVERROR(EINVAL);
break;
}
s->plane[s->channel_num].band[s->level][s->subband_num].height = data;
} else if (tag == InputFormat) {
av_log(avctx, AV_LOG_DEBUG, "Input format %i\n", data);
if (s->coded_format == AV_PIX_FMT_NONE ||
s->coded_format == AV_PIX_FMT_YUV422P10) {
if (data >= 100 && data <= 105) {
s->coded_format = AV_PIX_FMT_BAYER_RGGB16;
} else if (data >= 122 && data <= 128) {
s->coded_format = AV_PIX_FMT_GBRP12;
} else if (data == 30) {
s->coded_format = AV_PIX_FMT_GBRAP12;
} else {
s->coded_format = AV_PIX_FMT_YUV422P10;
}
s->planes = s->coded_format == AV_PIX_FMT_BAYER_RGGB16 ? 4 : av_pix_fmt_count_planes(s->coded_format);
}
} else if (tag == BandCodingFlags) {
s->codebook = data & 0xf;
s->difference_coding = (data >> 4) & 1;
av_log(avctx, AV_LOG_DEBUG, "Other codebook? %i\n", s->codebook);
} else if (tag == Precision) {
av_log(avctx, AV_LOG_DEBUG, "Precision %i\n", data);
if (!(data == 10 || data == 12)) {
av_log(avctx, AV_LOG_ERROR, "Invalid bits per channel\n");
ret = AVERROR(EINVAL);
break;
}
avctx->bits_per_raw_sample = s->bpc = data;
} else if (tag == EncodedFormat) {
av_log(avctx, AV_LOG_DEBUG, "Sample format? %i\n", data);
if (data == 1) {
s->coded_format = AV_PIX_FMT_YUV422P10;
} else if (data == 2) {
s->coded_format = AV_PIX_FMT_BAYER_RGGB16;
} else if (data == 3) {
s->coded_format = AV_PIX_FMT_GBRP12;
} else if (data == 4) {
s->coded_format = AV_PIX_FMT_GBRAP12;
} else {
avpriv_report_missing_feature(avctx, "Sample format of %"PRIu16, data);
ret = AVERROR_PATCHWELCOME;
break;
}
s->planes = data == 2 ? 4 : av_pix_fmt_count_planes(s->coded_format);
} else if (tag == -DisplayHeight) {
av_log(avctx, AV_LOG_DEBUG, "Cropped height %"PRIu16"\n", data);
s->cropped_height = data;
} else if (tag == -PeakOffsetLow) {
s->peak.offset &= ~0xffff;
s->peak.offset |= (data & 0xffff);
s->peak.base = gb;
s->peak.level = 0;
} else if (tag == -PeakOffsetHigh) {
s->peak.offset &= 0xffff;
s->peak.offset |= (data & 0xffffU)<<16;
s->peak.base = gb;
s->peak.level = 0;
} else if (tag == -PeakLevel && s->peak.offset) {
s->peak.level = data;
bytestream2_seek(&s->peak.base, s->peak.offset - 4, SEEK_CUR);
} else
av_log(avctx, AV_LOG_DEBUG, "Unknown tag %i data %x\n", tag, data);
if (tag == BitstreamMarker && data == 0xf0f &&
s->coded_format != AV_PIX_FMT_NONE) {
int lowpass_height = s->plane[s->channel_num].band[0][0].height;
int lowpass_width = s->plane[s->channel_num].band[0][0].width;
int factor = s->coded_format == AV_PIX_FMT_BAYER_RGGB16 ? 2 : 1;
if (s->coded_width) {
s->coded_width *= factor;
}
if (s->coded_height) {
s->coded_height *= factor;
}
if (!s->a_width && !s->coded_width) {
s->coded_width = lowpass_width * factor * 8;
}
if (!s->a_height && !s->coded_height) {
s->coded_height = lowpass_height * factor * 8;
}
if (s->a_width && !s->coded_width)
s->coded_width = s->a_width;
if (s->a_height && !s->coded_height)
s->coded_height = s->a_height;
if (s->a_width != s->coded_width || s->a_height != s->coded_height ||
s->a_format != s->coded_format) {
free_buffers(s);
if ((ret = alloc_buffers(avctx)) < 0) {
free_buffers(s);
return ret;
}
}
ret = ff_set_dimensions(avctx, s->coded_width, s->coded_height);
if (ret < 0)
return ret;
if (s->cropped_height) {
unsigned height = s->cropped_height << (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16);
if (avctx->height < height)
return AVERROR_INVALIDDATA;
avctx->height = height;
}
frame.f->width =
frame.f->height = 0;
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
s->coded_width = 0;
s->coded_height = 0;
s->coded_format = AV_PIX_FMT_NONE;
got_buffer = 1;
} else if (tag == FrameIndex && data == 1 && s->sample_type == 1 && s->frame_type == 2) {
frame.f->width =
frame.f->height = 0;
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
s->coded_width = 0;
s->coded_height = 0;
s->coded_format = AV_PIX_FMT_NONE;
got_buffer = 1;
}
if (s->subband_num_actual == 255)
goto finish;
coeff_data = s->plane[s->channel_num].subband[s->subband_num_actual];
/* Lowpass coefficients */
if (tag == BitstreamMarker && data == 0xf0f && s->a_width && s->a_height) {
int lowpass_height = s->plane[s->channel_num].band[0][0].height;
int lowpass_width = s->plane[s->channel_num].band[0][0].width;
int lowpass_a_height = s->plane[s->channel_num].band[0][0].a_height;
int lowpass_a_width = s->plane[s->channel_num].band[0][0].a_width;
if (lowpass_width < 3 ||
lowpass_width > lowpass_a_width) {
av_log(avctx, AV_LOG_ERROR, "Invalid lowpass width\n");
ret = AVERROR(EINVAL);
goto end;
}
if (lowpass_height < 3 ||
lowpass_height > lowpass_a_height) {
av_log(avctx, AV_LOG_ERROR, "Invalid lowpass height\n");
ret = AVERROR(EINVAL);
goto end;
}
if (!got_buffer) {
av_log(avctx, AV_LOG_ERROR, "No end of header tag found\n");
ret = AVERROR(EINVAL);
goto end;
}
if (lowpass_height > lowpass_a_height || lowpass_width > lowpass_a_width ||
lowpass_width * lowpass_height * sizeof(int16_t) > bytestream2_get_bytes_left(&gb)) {
av_log(avctx, AV_LOG_ERROR, "Too many lowpass coefficients\n");
ret = AVERROR(EINVAL);
goto end;
}
av_log(avctx, AV_LOG_DEBUG, "Start of lowpass coeffs component %d height:%d, width:%d\n", s->channel_num, lowpass_height, lowpass_width);
for (i = 0; i < lowpass_height; i++) {
for (j = 0; j < lowpass_width; j++)
coeff_data[j] = bytestream2_get_be16u(&gb);
coeff_data += lowpass_width;
}
/* Align to mod-4 position to continue reading tags */
bytestream2_seek(&gb, bytestream2_tell(&gb) & 3, SEEK_CUR);
/* Copy last line of coefficients if odd height */
if (lowpass_height & 1) {
memcpy(&coeff_data[lowpass_height * lowpass_width],
&coeff_data[(lowpass_height - 1) * lowpass_width],
lowpass_width * sizeof(*coeff_data));
}
av_log(avctx, AV_LOG_DEBUG, "Lowpass coefficients %d\n", lowpass_width * lowpass_height);
}
if ((tag == BandHeader || tag == BandSecondPass) && s->subband_num_actual != 255 && s->a_width && s->a_height) {
int highpass_height = s->plane[s->channel_num].band[s->level][s->subband_num].height;
int highpass_width = s->plane[s->channel_num].band[s->level][s->subband_num].width;
int highpass_a_width = s->plane[s->channel_num].band[s->level][s->subband_num].a_width;
int highpass_a_height = s->plane[s->channel_num].band[s->level][s->subband_num].a_height;
int highpass_stride = s->plane[s->channel_num].band[s->level][s->subband_num].stride;
int expected;
int a_expected = highpass_a_height * highpass_a_width;
int level, run, coeff;
int count = 0, bytes;
if (!got_buffer) {
av_log(avctx, AV_LOG_ERROR, "No end of header tag found\n");
ret = AVERROR(EINVAL);
goto end;
}
if (highpass_height > highpass_a_height || highpass_width > highpass_a_width || a_expected < highpass_height * (uint64_t)highpass_stride) {
av_log(avctx, AV_LOG_ERROR, "Too many highpass coefficients\n");
ret = AVERROR(EINVAL);
goto end;
}
expected = highpass_height * highpass_stride;
av_log(avctx, AV_LOG_DEBUG, "Start subband coeffs plane %i level %i codebook %i expected %i\n", s->channel_num, s->level, s->codebook, expected);
ret = init_get_bits8(&s->gb, gb.buffer, bytestream2_get_bytes_left(&gb));
if (ret < 0)
goto end;
{
OPEN_READER(re, &s->gb);
const int lossless = s->band_encoding == 5;
if (s->codebook == 0 && s->transform_type == 2 && s->subband_num_actual == 7)
s->codebook = 1;
if (!s->codebook) {
while (1) {
UPDATE_CACHE(re, &s->gb);
GET_RL_VLC(level, run, re, &s->gb, s->table_9_rl_vlc,
VLC_BITS, 3, 1);
/* escape */
if (level == 64)
break;
count += run;
if (count > expected)
break;
if (!lossless)
coeff = dequant_and_decompand(s, level, s->quantisation, 0);
else
coeff = level;
if (tag == BandSecondPass) {
const uint16_t q = s->quantisation;
for (i = 0; i < run; i++) {
*coeff_data |= coeff << 8;
*coeff_data++ *= q;
}
} else {
for (i = 0; i < run; i++)
*coeff_data++ = coeff;
}
}
} else {
while (1) {
UPDATE_CACHE(re, &s->gb);
GET_RL_VLC(level, run, re, &s->gb, s->table_18_rl_vlc,
VLC_BITS, 3, 1);
/* escape */
if (level == 255 && run == 2)
break;
count += run;
if (count > expected)
break;
if (!lossless)
coeff = dequant_and_decompand(s, level, s->quantisation, s->codebook);
else
coeff = level;
if (tag == BandSecondPass) {
const uint16_t q = s->quantisation;
for (i = 0; i < run; i++) {
*coeff_data |= coeff << 8;
*coeff_data++ *= q;
}
} else {
for (i = 0; i < run; i++)
*coeff_data++ = coeff;
}
}
}
CLOSE_READER(re, &s->gb);
}
if (count > expected) {
av_log(avctx, AV_LOG_ERROR, "Escape codeword not found, probably corrupt data\n");
ret = AVERROR(EINVAL);
goto end;
}
if (s->peak.level)
peak_table(coeff_data - count, &s->peak, count);
if (s->difference_coding)
difference_coding(s->plane[s->channel_num].subband[s->subband_num_actual], highpass_width, highpass_height);
bytes = FFALIGN(AV_CEIL_RSHIFT(get_bits_count(&s->gb), 3), 4);
if (bytes > bytestream2_get_bytes_left(&gb)) {
av_log(avctx, AV_LOG_ERROR, "Bitstream overread error\n");
ret = AVERROR(EINVAL);
goto end;
} else
bytestream2_seek(&gb, bytes, SEEK_CUR);
av_log(avctx, AV_LOG_DEBUG, "End subband coeffs %i extra %i\n", count, count - expected);
finish:
if (s->subband_num_actual != 255)
s->codebook = 0;
}
}
s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16) {
s->progressive = 1;
s->planes = 4;
}
ff_thread_finish_setup(avctx);
if (!s->a_width || !s->a_height || s->a_format == AV_PIX_FMT_NONE ||
s->coded_width || s->coded_height || s->coded_format != AV_PIX_FMT_NONE) {
av_log(avctx, AV_LOG_ERROR, "Invalid dimensions\n");
ret = AVERROR(EINVAL);
goto end;
}
if (!got_buffer) {
av_log(avctx, AV_LOG_ERROR, "No end of header tag found\n");
ret = AVERROR(EINVAL);
goto end;
}
if (s->transform_type == 0 && s->sample_type != 1) {
for (plane = 0; plane < s->planes && !ret; plane++) {
/* level 1 */
int lowpass_height = s->plane[plane].band[0][0].height;
int output_stride = s->plane[plane].band[0][0].a_width;
int lowpass_width = s->plane[plane].band[0][0].width;
int highpass_stride = s->plane[plane].band[0][1].stride;
int act_plane = plane == 1 ? 2 : plane == 2 ? 1 : plane;
ptrdiff_t dst_linesize;
int16_t *low, *high, *output, *dst;
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16) {
act_plane = 0;
dst_linesize = pic->linesize[act_plane];
} else {
dst_linesize = pic->linesize[act_plane] / 2;
}
if (lowpass_height > s->plane[plane].band[0][0].a_height || lowpass_width > s->plane[plane].band[0][0].a_width ||
!highpass_stride || s->plane[plane].band[0][1].width > s->plane[plane].band[0][1].a_width) {
av_log(avctx, AV_LOG_ERROR, "Invalid plane dimensions\n");
ret = AVERROR(EINVAL);
goto end;
}
av_log(avctx, AV_LOG_DEBUG, "Decoding level 1 plane %i %i %i %i\n", plane, lowpass_height, lowpass_width, highpass_stride);
low = s->plane[plane].subband[0];
high = s->plane[plane].subband[2];
output = s->plane[plane].l_h[0];
dsp->vert_filter(output, output_stride, low, lowpass_width, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].subband[1];
high = s->plane[plane].subband[3];
output = s->plane[plane].l_h[1];
dsp->vert_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].l_h[0];
high = s->plane[plane].l_h[1];
output = s->plane[plane].subband[0];
dsp->horiz_filter(output, output_stride, low, output_stride, high, output_stride, lowpass_width, lowpass_height * 2);
if (s->bpc == 12) {
output = s->plane[plane].subband[0];
for (i = 0; i < lowpass_height * 2; i++) {
for (j = 0; j < lowpass_width * 2; j++)
output[j] *= 4;
output += output_stride * 2;
}
}
/* level 2 */
lowpass_height = s->plane[plane].band[1][1].height;
output_stride = s->plane[plane].band[1][1].a_width;
lowpass_width = s->plane[plane].band[1][1].width;
highpass_stride = s->plane[plane].band[1][1].stride;
if (lowpass_height > s->plane[plane].band[1][1].a_height || lowpass_width > s->plane[plane].band[1][1].a_width ||
!highpass_stride || s->plane[plane].band[1][1].width > s->plane[plane].band[1][1].a_width) {
av_log(avctx, AV_LOG_ERROR, "Invalid plane dimensions\n");
ret = AVERROR(EINVAL);
goto end;
}
av_log(avctx, AV_LOG_DEBUG, "Level 2 plane %i %i %i %i\n", plane, lowpass_height, lowpass_width, highpass_stride);
low = s->plane[plane].subband[0];
high = s->plane[plane].subband[5];
output = s->plane[plane].l_h[3];
dsp->vert_filter(output, output_stride, low, output_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].subband[4];
high = s->plane[plane].subband[6];
output = s->plane[plane].l_h[4];
dsp->vert_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].l_h[3];
high = s->plane[plane].l_h[4];
output = s->plane[plane].subband[0];
dsp->horiz_filter(output, output_stride, low, output_stride, high, output_stride, lowpass_width, lowpass_height * 2);
output = s->plane[plane].subband[0];
for (i = 0; i < lowpass_height * 2; i++) {
for (j = 0; j < lowpass_width * 2; j++)
output[j] *= 4;
output += output_stride * 2;
}
/* level 3 */
lowpass_height = s->plane[plane].band[2][1].height;
output_stride = s->plane[plane].band[2][1].a_width;
lowpass_width = s->plane[plane].band[2][1].width;
highpass_stride = s->plane[plane].band[2][1].stride;
if (lowpass_height > s->plane[plane].band[2][1].a_height || lowpass_width > s->plane[plane].band[2][1].a_width ||
!highpass_stride || s->plane[plane].band[2][1].width > s->plane[plane].band[2][1].a_width) {
av_log(avctx, AV_LOG_ERROR, "Invalid plane dimensions\n");
ret = AVERROR(EINVAL);
goto end;
}
av_log(avctx, AV_LOG_DEBUG, "Level 3 plane %i %i %i %i\n", plane, lowpass_height, lowpass_width, highpass_stride);
if (s->progressive) {
low = s->plane[plane].subband[0];
high = s->plane[plane].subband[8];
output = s->plane[plane].l_h[6];
dsp->vert_filter(output, output_stride, low, output_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].subband[7];
high = s->plane[plane].subband[9];
output = s->plane[plane].l_h[7];
dsp->vert_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
dst = (int16_t *)pic->data[act_plane];
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16) {
if (plane & 1)
dst++;
if (plane > 1)
dst += pic->linesize[act_plane] >> 1;
}
low = s->plane[plane].l_h[6];
high = s->plane[plane].l_h[7];
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16 &&
(lowpass_height * 2 > avctx->coded_height / 2 ||
lowpass_width * 2 > avctx->coded_width / 2 )
) {
ret = AVERROR_INVALIDDATA;
goto end;
}
for (i = 0; i < lowpass_height * 2; i++) {
dsp->horiz_filter_clip(dst, low, high, lowpass_width, s->bpc);
if (avctx->pix_fmt == AV_PIX_FMT_GBRAP12 && act_plane == 3)
process_alpha(dst, lowpass_width * 2);
low += output_stride;
high += output_stride;
dst += dst_linesize;
}
} else {
av_log(avctx, AV_LOG_DEBUG, "interlaced frame ? %d", pic->interlaced_frame);
pic->interlaced_frame = 1;
low = s->plane[plane].subband[0];
high = s->plane[plane].subband[7];
output = s->plane[plane].l_h[6];
dsp->horiz_filter(output, output_stride, low, output_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].subband[8];
high = s->plane[plane].subband[9];
output = s->plane[plane].l_h[7];
dsp->horiz_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
dst = (int16_t *)pic->data[act_plane];
low = s->plane[plane].l_h[6];
high = s->plane[plane].l_h[7];
for (i = 0; i < lowpass_height; i++) {
interlaced_vertical_filter(dst, low, high, lowpass_width * 2, pic->linesize[act_plane]/2, act_plane);
low += output_stride * 2;
high += output_stride * 2;
dst += pic->linesize[act_plane];
}
}
}
} else if (s->transform_type == 2 && (avctx->internal->is_copy || s->frame_index == 1 || s->sample_type != 1)) {
for (plane = 0; plane < s->planes && !ret; plane++) {
int lowpass_height = s->plane[plane].band[0][0].height;
int output_stride = s->plane[plane].band[0][0].a_width;
int lowpass_width = s->plane[plane].band[0][0].width;
int highpass_stride = s->plane[plane].band[0][1].stride;
int act_plane = plane == 1 ? 2 : plane == 2 ? 1 : plane;
int16_t *low, *high, *output, *dst;
ptrdiff_t dst_linesize;
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16) {
act_plane = 0;
dst_linesize = pic->linesize[act_plane];
} else {
dst_linesize = pic->linesize[act_plane] / 2;
}
if (lowpass_height > s->plane[plane].band[0][0].a_height || lowpass_width > s->plane[plane].band[0][0].a_width ||
!highpass_stride || s->plane[plane].band[0][1].width > s->plane[plane].band[0][1].a_width) {
av_log(avctx, AV_LOG_ERROR, "Invalid plane dimensions\n");
ret = AVERROR(EINVAL);
goto end;
}
av_log(avctx, AV_LOG_DEBUG, "Decoding level 1 plane %i %i %i %i\n", plane, lowpass_height, lowpass_width, highpass_stride);
low = s->plane[plane].subband[0];
high = s->plane[plane].subband[2];
output = s->plane[plane].l_h[0];
dsp->vert_filter(output, output_stride, low, lowpass_width, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].subband[1];
high = s->plane[plane].subband[3];
output = s->plane[plane].l_h[1];
dsp->vert_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].l_h[0];
high = s->plane[plane].l_h[1];
output = s->plane[plane].l_h[7];
dsp->horiz_filter(output, output_stride, low, output_stride, high, output_stride, lowpass_width, lowpass_height * 2);
if (s->bpc == 12) {
output = s->plane[plane].l_h[7];
for (i = 0; i < lowpass_height * 2; i++) {
for (j = 0; j < lowpass_width * 2; j++)
output[j] *= 4;
output += output_stride * 2;
}
}
lowpass_height = s->plane[plane].band[1][1].height;
output_stride = s->plane[plane].band[1][1].a_width;
lowpass_width = s->plane[plane].band[1][1].width;
highpass_stride = s->plane[plane].band[1][1].stride;
if (lowpass_height > s->plane[plane].band[1][1].a_height || lowpass_width > s->plane[plane].band[1][1].a_width ||
!highpass_stride || s->plane[plane].band[1][1].width > s->plane[plane].band[1][1].a_width) {
av_log(avctx, AV_LOG_ERROR, "Invalid plane dimensions\n");
ret = AVERROR(EINVAL);
goto end;
}
av_log(avctx, AV_LOG_DEBUG, "Level 2 lowpass plane %i %i %i %i\n", plane, lowpass_height, lowpass_width, highpass_stride);
low = s->plane[plane].l_h[7];
high = s->plane[plane].subband[5];
output = s->plane[plane].l_h[3];
dsp->vert_filter(output, output_stride, low, output_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].subband[4];
high = s->plane[plane].subband[6];
output = s->plane[plane].l_h[4];
dsp->vert_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].l_h[3];
high = s->plane[plane].l_h[4];
output = s->plane[plane].l_h[7];
dsp->horiz_filter(output, output_stride, low, output_stride, high, output_stride, lowpass_width, lowpass_height * 2);
output = s->plane[plane].l_h[7];
for (i = 0; i < lowpass_height * 2; i++) {
for (j = 0; j < lowpass_width * 2; j++)
output[j] *= 4;
output += output_stride * 2;
}
low = s->plane[plane].subband[7];
high = s->plane[plane].subband[9];
output = s->plane[plane].l_h[3];
dsp->vert_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].subband[8];
high = s->plane[plane].subband[10];
output = s->plane[plane].l_h[4];
dsp->vert_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].l_h[3];
high = s->plane[plane].l_h[4];
output = s->plane[plane].l_h[9];
dsp->horiz_filter(output, output_stride, low, output_stride, high, output_stride, lowpass_width, lowpass_height * 2);
lowpass_height = s->plane[plane].band[4][1].height;
output_stride = s->plane[plane].band[4][1].a_width;
lowpass_width = s->plane[plane].band[4][1].width;
highpass_stride = s->plane[plane].band[4][1].stride;
av_log(avctx, AV_LOG_DEBUG, "temporal level %i %i %i %i\n", plane, lowpass_height, lowpass_width, highpass_stride);
if (lowpass_height > s->plane[plane].band[4][1].a_height || lowpass_width > s->plane[plane].band[4][1].a_width ||
!highpass_stride || s->plane[plane].band[4][1].width > s->plane[plane].band[4][1].a_width) {
av_log(avctx, AV_LOG_ERROR, "Invalid plane dimensions\n");
ret = AVERROR(EINVAL);
goto end;
}
low = s->plane[plane].l_h[7];
high = s->plane[plane].l_h[9];
output = s->plane[plane].l_h[7];
for (i = 0; i < lowpass_height; i++) {
inverse_temporal_filter(low, high, lowpass_width);
low += output_stride;
high += output_stride;
}
if (s->progressive) {
low = s->plane[plane].l_h[7];
high = s->plane[plane].subband[15];
output = s->plane[plane].l_h[6];
dsp->vert_filter(output, output_stride, low, output_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].subband[14];
high = s->plane[plane].subband[16];
output = s->plane[plane].l_h[7];
dsp->vert_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].l_h[9];
high = s->plane[plane].subband[12];
output = s->plane[plane].l_h[8];
dsp->vert_filter(output, output_stride, low, output_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].subband[11];
high = s->plane[plane].subband[13];
output = s->plane[plane].l_h[9];
dsp->vert_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
if (s->sample_type == 1)
continue;
dst = (int16_t *)pic->data[act_plane];
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16) {
if (plane & 1)
dst++;
if (plane > 1)
dst += pic->linesize[act_plane] >> 1;
}
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16 &&
(lowpass_height * 2 > avctx->coded_height / 2 ||
lowpass_width * 2 > avctx->coded_width / 2 )
) {
ret = AVERROR_INVALIDDATA;
goto end;
}
low = s->plane[plane].l_h[6];
high = s->plane[plane].l_h[7];
for (i = 0; i < lowpass_height * 2; i++) {
dsp->horiz_filter_clip(dst, low, high, lowpass_width, s->bpc);
low += output_stride;
high += output_stride;
dst += dst_linesize;
}
} else {
pic->interlaced_frame = 1;
low = s->plane[plane].l_h[7];
high = s->plane[plane].subband[14];
output = s->plane[plane].l_h[6];
dsp->horiz_filter(output, output_stride, low, output_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].subband[15];
high = s->plane[plane].subband[16];
output = s->plane[plane].l_h[7];
dsp->horiz_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].l_h[9];
high = s->plane[plane].subband[11];
output = s->plane[plane].l_h[8];
dsp->horiz_filter(output, output_stride, low, output_stride, high, highpass_stride, lowpass_width, lowpass_height);
low = s->plane[plane].subband[12];
high = s->plane[plane].subband[13];
output = s->plane[plane].l_h[9];
dsp->horiz_filter(output, output_stride, low, highpass_stride, high, highpass_stride, lowpass_width, lowpass_height);
if (s->sample_type == 1)
continue;
dst = (int16_t *)pic->data[act_plane];
low = s->plane[plane].l_h[6];
high = s->plane[plane].l_h[7];
for (i = 0; i < lowpass_height; i++) {
interlaced_vertical_filter(dst, low, high, lowpass_width * 2, pic->linesize[act_plane]/2, act_plane);
low += output_stride * 2;
high += output_stride * 2;
dst += pic->linesize[act_plane];
}
}
}
}
if (s->transform_type == 2 && s->sample_type == 1) {
int16_t *low, *high, *dst;
int output_stride, lowpass_height, lowpass_width;
ptrdiff_t dst_linesize;
for (plane = 0; plane < s->planes; plane++) {
int act_plane = plane == 1 ? 2 : plane == 2 ? 1 : plane;
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16) {
act_plane = 0;
dst_linesize = pic->linesize[act_plane];
} else {
dst_linesize = pic->linesize[act_plane] / 2;
}
lowpass_height = s->plane[plane].band[4][1].height;
output_stride = s->plane[plane].band[4][1].a_width;
lowpass_width = s->plane[plane].band[4][1].width;
if (s->progressive) {
dst = (int16_t *)pic->data[act_plane];
low = s->plane[plane].l_h[8];
high = s->plane[plane].l_h[9];
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16) {
if (plane & 1)
dst++;
if (plane > 1)
dst += pic->linesize[act_plane] >> 1;
}
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16 &&
(lowpass_height * 2 > avctx->coded_height / 2 ||
lowpass_width * 2 > avctx->coded_width / 2 )
) {
ret = AVERROR_INVALIDDATA;
goto end;
}
for (i = 0; i < lowpass_height * 2; i++) {
dsp->horiz_filter_clip(dst, low, high, lowpass_width, s->bpc);
low += output_stride;
high += output_stride;
dst += dst_linesize;
}
} else {
dst = (int16_t *)pic->data[act_plane];
low = s->plane[plane].l_h[8];
high = s->plane[plane].l_h[9];
for (i = 0; i < lowpass_height; i++) {
interlaced_vertical_filter(dst, low, high, lowpass_width * 2, pic->linesize[act_plane]/2, act_plane);
low += output_stride * 2;
high += output_stride * 2;
dst += pic->linesize[act_plane];
}
}
}
}
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16)
process_bayer(pic, s->bpc);
end:
if (ret < 0)
return ret;
*got_frame = 1;
return avpkt->size;
}
static av_cold int cfhd_close(AVCodecContext *avctx)
{
CFHDContext *s = avctx->priv_data;
free_buffers(s);
ff_free_vlc(&s->vlc_9);
ff_free_vlc(&s->vlc_18);
return 0;
}
#if HAVE_THREADS
static int update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
{
CFHDContext *psrc = src->priv_data;
CFHDContext *pdst = dst->priv_data;
int ret;
if (dst == src || psrc->transform_type == 0)
return 0;
pdst->a_format = psrc->a_format;
pdst->a_width = psrc->a_width;
pdst->a_height = psrc->a_height;
pdst->transform_type = psrc->transform_type;
pdst->progressive = psrc->progressive;
pdst->planes = psrc->planes;
if (!pdst->plane[0].idwt_buf) {
pdst->coded_width = pdst->a_width;
pdst->coded_height = pdst->a_height;
pdst->coded_format = pdst->a_format;
ret = alloc_buffers(dst);
if (ret < 0)
return ret;
}
for (int plane = 0; plane < pdst->planes; plane++) {
memcpy(pdst->plane[plane].band, psrc->plane[plane].band, sizeof(pdst->plane[plane].band));
memcpy(pdst->plane[plane].idwt_buf, psrc->plane[plane].idwt_buf,
pdst->plane[plane].idwt_size * sizeof(int16_t));
}
return 0;
}
#endif
AVCodec ff_cfhd_decoder = {
.name = "cfhd",
.long_name = NULL_IF_CONFIG_SMALL("GoPro CineForm HD"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_CFHD,
.priv_data_size = sizeof(CFHDContext),
.init = cfhd_init,
.close = cfhd_close,
.decode = cfhd_decode,
.update_thread_context = ONLY_IF_THREADS_ENABLED(update_thread_context),
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
};