FFmpeg/libavcodec/hevc_filter.c
Anton Khirnov 4abe3b049d hevc: rename hevc.[ch] to hevcdec.[ch]
This is more consistent with the rest of libav and frees up the hevc.h
name for decoder-independent shared declarations.
2016-10-16 20:26:17 +02:00

746 lines
32 KiB
C

/*
* HEVC video decoder
*
* Copyright (C) 2012 - 2013 Guillaume Martres
* Copyright (C) 2013 Seppo Tomperi
* Copyright (C) 2013 Wassim Hamidouche
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/common.h"
#include "libavutil/internal.h"
#include "cabac_functions.h"
#include "hevcdec.h"
#define LUMA 0
#define CB 1
#define CR 2
static const uint8_t tctable[54] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37
5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 // QP 38...53
};
static const uint8_t betatable[52] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37
38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 // QP 38...51
};
static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
{
static const int qp_c[] = {
29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
};
int qp, qp_i, offset, idxt;
// slice qp offset is not used for deblocking
if (c_idx == 1)
offset = s->ps.pps->cb_qp_offset;
else
offset = s->ps.pps->cr_qp_offset;
qp_i = av_clip(qp_y + offset, 0, 57);
if (qp_i < 30)
qp = qp_i;
else if (qp_i > 43)
qp = qp_i - 6;
else
qp = qp_c[qp_i - 30];
idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
return tctable[idxt];
}
static int get_qPy_pred(HEVCContext *s, int xC, int yC,
int xBase, int yBase, int log2_cb_size)
{
HEVCLocalContext *lc = &s->HEVClc;
int ctb_size_mask = (1 << s->ps.sps->log2_ctb_size) - 1;
int MinCuQpDeltaSizeMask = (1 << (s->ps.sps->log2_ctb_size -
s->ps.pps->diff_cu_qp_delta_depth)) - 1;
int xQgBase = xBase - (xBase & MinCuQpDeltaSizeMask);
int yQgBase = yBase - (yBase & MinCuQpDeltaSizeMask);
int min_cb_width = s->ps.sps->min_cb_width;
int min_cb_height = s->ps.sps->min_cb_height;
int x_cb = xQgBase >> s->ps.sps->log2_min_cb_size;
int y_cb = yQgBase >> s->ps.sps->log2_min_cb_size;
int availableA = (xBase & ctb_size_mask) &&
(xQgBase & ctb_size_mask);
int availableB = (yBase & ctb_size_mask) &&
(yQgBase & ctb_size_mask);
int qPy_pred, qPy_a, qPy_b;
// qPy_pred
if (lc->first_qp_group || (!xQgBase && !yQgBase)) {
lc->first_qp_group = !lc->tu.is_cu_qp_delta_coded;
qPy_pred = s->sh.slice_qp;
} else {
qPy_pred = lc->qp_y;
if (log2_cb_size < s->ps.sps->log2_ctb_size -
s->ps.pps->diff_cu_qp_delta_depth) {
static const int offsetX[8][8] = {
{ -1, 1, 3, 1, 7, 1, 3, 1 },
{ 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 3, 1, 3, 1, 3, 1, 3 },
{ 2, 2, 2, 2, 2, 2, 2, 2 },
{ 3, 5, 7, 5, 3, 5, 7, 5 },
{ 4, 4, 4, 4, 4, 4, 4, 4 },
{ 5, 7, 5, 7, 5, 7, 5, 7 },
{ 6, 6, 6, 6, 6, 6, 6, 6 }
};
static const int offsetY[8][8] = {
{ 7, 0, 1, 2, 3, 4, 5, 6 },
{ 0, 1, 2, 3, 4, 5, 6, 7 },
{ 1, 0, 3, 2, 5, 4, 7, 6 },
{ 0, 1, 2, 3, 4, 5, 6, 7 },
{ 3, 0, 1, 2, 7, 4, 5, 6 },
{ 0, 1, 2, 3, 4, 5, 6, 7 },
{ 1, 0, 3, 2, 5, 4, 7, 6 },
{ 0, 1, 2, 3, 4, 5, 6, 7 }
};
int xC0b = (xC - (xC & ctb_size_mask)) >> s->ps.sps->log2_min_cb_size;
int yC0b = (yC - (yC & ctb_size_mask)) >> s->ps.sps->log2_min_cb_size;
int idxX = (xQgBase & ctb_size_mask) >> s->ps.sps->log2_min_cb_size;
int idxY = (yQgBase & ctb_size_mask) >> s->ps.sps->log2_min_cb_size;
int idx_mask = ctb_size_mask >> s->ps.sps->log2_min_cb_size;
int x, y;
x = FFMIN(xC0b + offsetX[idxX][idxY], min_cb_width - 1);
y = FFMIN(yC0b + (offsetY[idxX][idxY] & idx_mask), min_cb_height - 1);
if (xC0b == (lc->start_of_tiles_x >> s->ps.sps->log2_min_cb_size) &&
offsetX[idxX][idxY] == -1) {
x = (lc->end_of_tiles_x >> s->ps.sps->log2_min_cb_size) - 1;
y = yC0b - 1;
}
qPy_pred = s->qp_y_tab[y * min_cb_width + x];
}
}
// qPy_a
if (availableA == 0)
qPy_a = qPy_pred;
else
qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];
// qPy_b
if (availableB == 0)
qPy_b = qPy_pred;
else
qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];
return (qPy_a + qPy_b + 1) >> 1;
}
void ff_hevc_set_qPy(HEVCContext *s, int xC, int yC,
int xBase, int yBase, int log2_cb_size)
{
int qp_y = get_qPy_pred(s, xC, yC, xBase, yBase, log2_cb_size);
if (s->HEVClc.tu.cu_qp_delta != 0) {
int off = s->ps.sps->qp_bd_offset;
s->HEVClc.qp_y = FFUMOD(qp_y + s->HEVClc.tu.cu_qp_delta + 52 + 2 * off,
52 + off) - off;
} else
s->HEVClc.qp_y = qp_y;
}
static int get_qPy(HEVCContext *s, int xC, int yC)
{
int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
int x = xC >> log2_min_cb_size;
int y = yC >> log2_min_cb_size;
return s->qp_y_tab[x + y * s->ps.sps->min_cb_width];
}
static void copy_CTB(uint8_t *dst, uint8_t *src,
int width, int height, ptrdiff_t stride)
{
int i;
for (i = 0; i < height; i++) {
memcpy(dst, src, width);
dst += stride;
src += stride;
}
}
#define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
static void sao_filter_CTB(HEVCContext *s, int x, int y)
{
// TODO: This should be easily parallelizable
// TODO: skip CBs when (cu_transquant_bypass_flag || (pcm_loop_filter_disable_flag && pcm_flag))
int c_idx = 0;
int class = 1, class_index;
int edges[4]; // 0 left 1 top 2 right 3 bottom
SAOParams *sao[4];
int classes[4];
int x_shift = 0, y_shift = 0;
int x_ctb = x >> s->ps.sps->log2_ctb_size;
int y_ctb = y >> s->ps.sps->log2_ctb_size;
int ctb_addr_rs = y_ctb * s->ps.sps->ctb_width + x_ctb;
int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
// flags indicating unfilterable edges
uint8_t vert_edge[] = { 0, 0, 0, 0 };
uint8_t horiz_edge[] = { 0, 0, 0, 0 };
uint8_t diag_edge[] = { 0, 0, 0, 0 };
uint8_t lfase[3]; // current, above, left
uint8_t no_tile_filter = s->ps.pps->tiles_enabled_flag &&
!s->ps.pps->loop_filter_across_tiles_enabled_flag;
uint8_t left_tile_edge = 0, up_tile_edge = 0;
sao[0] = &CTB(s->sao, x_ctb, y_ctb);
edges[0] = x_ctb == 0;
edges[1] = y_ctb == 0;
edges[2] = x_ctb == s->ps.sps->ctb_width - 1;
edges[3] = y_ctb == s->ps.sps->ctb_height - 1;
lfase[0] = CTB(s->filter_slice_edges, x_ctb, y_ctb);
classes[0] = 0;
if (!edges[0]) {
left_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb);
vert_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
vert_edge[2] = vert_edge[0];
lfase[2] = CTB(s->filter_slice_edges, x_ctb - 1, y_ctb);
classes[class] = 2;
class++;
x_shift = 8;
}
if (!edges[1]) {
up_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]];
sao[class] = &CTB(s->sao, x_ctb, y_ctb - 1);
horiz_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
horiz_edge[1] = horiz_edge[0];
lfase[1] = CTB(s->filter_slice_edges, x_ctb, y_ctb - 1);
classes[class] = 1;
class++;
y_shift = 4;
if (!edges[0]) {
classes[class] = 3;
sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb - 1);
class++;
// Tile check here is done current CTB row/col, not above/left like you'd expect,
//but that is because the tile boundary always extends through the whole pic
vert_edge[1] = (!lfase[1] && CTB(s->tab_slice_address, x_ctb, y_ctb - 1) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge;
vert_edge[3] = vert_edge[1];
horiz_edge[2] = (!lfase[2] && CTB(s->tab_slice_address, x_ctb - 1, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || up_tile_edge;
horiz_edge[3] = horiz_edge[2];
diag_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
diag_edge[3] = diag_edge[0];
// Does left CTB comes after above CTB?
if (CTB(s->tab_slice_address, x_ctb - 1, y_ctb) >
CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) {
diag_edge[2] = !lfase[2] || left_tile_edge || up_tile_edge;
diag_edge[1] = diag_edge[2];
} else if (CTB(s->tab_slice_address, x_ctb - 1, y_ctb) <
CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) {
diag_edge[1] = !lfase[1] || left_tile_edge || up_tile_edge;
diag_edge[2] = diag_edge[1];
} else {
// Same slice, only consider tiles
diag_edge[2] = left_tile_edge || up_tile_edge;
diag_edge[1] = diag_edge[2];
}
}
}
for (c_idx = 0; c_idx < 3; c_idx++) {
int chroma = c_idx ? 1 : 0;
int x0 = x >> chroma;
int y0 = y >> chroma;
ptrdiff_t stride = s->frame->linesize[c_idx];
int ctb_size = (1 << (s->ps.sps->log2_ctb_size)) >> s->ps.sps->hshift[c_idx];
int width = FFMIN(ctb_size,
(s->ps.sps->width >> s->ps.sps->hshift[c_idx]) - x0);
int height = FFMIN(ctb_size,
(s->ps.sps->height >> s->ps.sps->vshift[c_idx]) - y0);
uint8_t *src = &s->frame->data[c_idx][y0 * stride + (x0 << s->ps.sps->pixel_shift)];
uint8_t *dst = &s->sao_frame->data[c_idx][y0 * stride + (x0 << s->ps.sps->pixel_shift)];
int offset = (y_shift >> chroma) * stride + ((x_shift >> chroma) << s->ps.sps->pixel_shift);
copy_CTB(dst - offset, src - offset,
(edges[2] ? width + (x_shift >> chroma) : width) << s->ps.sps->pixel_shift,
(edges[3] ? height + (y_shift >> chroma) : height), stride);
for (class_index = 0; class_index < class; class_index++) {
switch (sao[class_index]->type_idx[c_idx]) {
case SAO_BAND:
s->hevcdsp.sao_band_filter[classes[class_index]](dst, src,
stride,
sao[class_index],
edges, width,
height, c_idx);
break;
case SAO_EDGE:
s->hevcdsp.sao_edge_filter[classes[class_index]](dst, src,
stride,
sao[class_index],
edges, width,
height, c_idx,
vert_edge[classes[class_index]],
horiz_edge[classes[class_index]],
diag_edge[classes[class_index]]);
break;
}
}
}
}
static int get_pcm(HEVCContext *s, int x, int y)
{
int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
int x_pu, y_pu;
if (x < 0 || y < 0)
return 2;
x_pu = x >> log2_min_pu_size;
y_pu = y >> log2_min_pu_size;
if (x_pu >= s->ps.sps->min_pu_width || y_pu >= s->ps.sps->min_pu_height)
return 2;
return s->is_pcm[y_pu * s->ps.sps->min_pu_width + x_pu];
}
#define TC_CALC(qp, bs) \
tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \
(tc_offset >> 1 << 1), \
0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
{
uint8_t *src;
int x, y, x_end, y_end, chroma;
int c_tc[2], tc[2], beta;
uint8_t no_p[2] = { 0 };
uint8_t no_q[2] = { 0 };
int log2_ctb_size = s->ps.sps->log2_ctb_size;
int ctb_size = 1 << log2_ctb_size;
int ctb = (x0 >> log2_ctb_size) +
(y0 >> log2_ctb_size) * s->ps.sps->ctb_width;
int cur_tc_offset = s->deblock[ctb].tc_offset;
int cur_beta_offset = s->deblock[ctb].beta_offset;
int tc_offset, left_tc_offset, beta_offset, left_beta_offset;
int pcmf = (s->ps.sps->pcm_enabled_flag &&
s->ps.sps->pcm.loop_filter_disable_flag) ||
s->ps.pps->transquant_bypass_enable_flag;
if (x0) {
left_tc_offset = s->deblock[ctb - 1].tc_offset;
left_beta_offset = s->deblock[ctb - 1].beta_offset;
}
x_end = x0 + ctb_size;
if (x_end > s->ps.sps->width)
x_end = s->ps.sps->width;
y_end = y0 + ctb_size;
if (y_end > s->ps.sps->height)
y_end = s->ps.sps->height;
tc_offset = cur_tc_offset;
beta_offset = cur_beta_offset;
// vertical filtering luma
for (y = y0; y < y_end; y += 8) {
for (x = x0 ? x0 : 8; x < x_end; x += 8) {
const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width];
const int bs1 = s->vertical_bs[(x >> 3) + ((y + 4) >> 2) * s->bs_width];
if (bs0 || bs1) {
const int qp = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->ps.sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(s, x - 1, y);
no_p[1] = get_pcm(s, x - 1, y + 4);
no_q[0] = get_pcm(s, x, y);
no_q[1] = get_pcm(s, x, y + 4);
s->hevcdsp.hevc_v_loop_filter_luma_c(src,
s->frame->linesize[LUMA],
beta, tc, no_p, no_q);
} else
s->hevcdsp.hevc_v_loop_filter_luma(src,
s->frame->linesize[LUMA],
beta, tc, no_p, no_q);
}
}
}
// vertical filtering chroma
for (chroma = 1; chroma <= 2; chroma++) {
for (y = y0; y < y_end; y += 16) {
for (x = x0 ? x0 : 16; x < x_end; x += 16) {
const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width];
const int bs1 = s->vertical_bs[(x >> 3) + ((y + 8) >> 2) * s->bs_width];
if ((bs0 == 2) || (bs1 == 2)) {
const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
const int qp1 = (get_qPy(s, x - 1, y + 8) + get_qPy(s, x, y + 8) + 1) >> 1;
c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0;
src = &s->frame->data[chroma][y / 2 * s->frame->linesize[chroma] + ((x / 2) << s->ps.sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(s, x - 1, y);
no_p[1] = get_pcm(s, x - 1, y + 8);
no_q[0] = get_pcm(s, x, y);
no_q[1] = get_pcm(s, x, y + 8);
s->hevcdsp.hevc_v_loop_filter_chroma_c(src,
s->frame->linesize[chroma],
c_tc, no_p, no_q);
} else
s->hevcdsp.hevc_v_loop_filter_chroma(src,
s->frame->linesize[chroma],
c_tc, no_p, no_q);
}
}
}
}
// horizontal filtering luma
if (x_end != s->ps.sps->width)
x_end -= 8;
for (y = y0 ? y0 : 8; y < y_end; y += 8) {
for (x = x0 ? x0 - 8 : 0; x < x_end; x += 8) {
const int bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
const int bs1 = s->horizontal_bs[(x + 4 + y * s->bs_width) >> 2];
if (bs0 || bs1) {
const int qp = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1;
tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->ps.sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(s, x, y - 1);
no_p[1] = get_pcm(s, x + 4, y - 1);
no_q[0] = get_pcm(s, x, y);
no_q[1] = get_pcm(s, x + 4, y);
s->hevcdsp.hevc_h_loop_filter_luma_c(src,
s->frame->linesize[LUMA],
beta, tc, no_p, no_q);
} else
s->hevcdsp.hevc_h_loop_filter_luma(src,
s->frame->linesize[LUMA],
beta, tc, no_p, no_q);
}
}
}
// horizontal filtering chroma
for (chroma = 1; chroma <= 2; chroma++) {
for (y = y0 ? y0 : 16; y < y_end; y += 16) {
for (x = x0 - 8; x < x_end; x += 16) {
int bs0, bs1;
// to make sure no memory access over boundary when x = -8
// TODO: simplify with row based deblocking
if (x < 0) {
bs0 = 0;
bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2];
} else if (x >= x_end - 8) {
bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
bs1 = 0;
} else {
bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2];
}
if ((bs0 == 2) || (bs1 == 2)) {
const int qp0 = bs0 == 2 ? (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1 : 0;
const int qp1 = bs1 == 2 ? (get_qPy(s, x + 8, y - 1) + get_qPy(s, x + 8, y) + 1) >> 1 : 0;
tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
c_tc[0] = bs0 == 2 ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
c_tc[1] = bs1 == 2 ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0;
src = &s->frame->data[chroma][y / 2 * s->frame->linesize[chroma] + ((x / 2) << s->ps.sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(s, x, y - 1);
no_p[1] = get_pcm(s, x + 8, y - 1);
no_q[0] = get_pcm(s, x, y);
no_q[1] = get_pcm(s, x + 8, y);
s->hevcdsp.hevc_h_loop_filter_chroma_c(src,
s->frame->linesize[chroma],
c_tc, no_p, no_q);
} else
s->hevcdsp.hevc_h_loop_filter_chroma(src,
s->frame->linesize[chroma],
c_tc, no_p, no_q);
}
}
}
}
}
static int boundary_strength(HEVCContext *s, MvField *curr,
uint8_t curr_cbf_luma, MvField *neigh,
uint8_t neigh_cbf_luma,
RefPicList *neigh_refPicList,
int tu_border)
{
int mvs = curr->pred_flag[0] + curr->pred_flag[1];
if (tu_border) {
if (curr->is_intra || neigh->is_intra)
return 2;
if (curr_cbf_luma || neigh_cbf_luma)
return 1;
}
if (mvs == neigh->pred_flag[0] + neigh->pred_flag[1]) {
if (mvs == 2) {
// same L0 and L1
if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] &&
s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] &&
neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
if ((abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
(abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4))
return 1;
else
return 0;
} else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
if (abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4)
return 1;
else
return 0;
} else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
if (abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4)
return 1;
else
return 0;
} else {
return 1;
}
} else { // 1 MV
Mv A, B;
int ref_A, ref_B;
if (curr->pred_flag[0]) {
A = curr->mv[0];
ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]];
} else {
A = curr->mv[1];
ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]];
}
if (neigh->pred_flag[0]) {
B = neigh->mv[0];
ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
} else {
B = neigh->mv[1];
ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
}
if (ref_A == ref_B) {
if (abs(A.x - B.x) >= 4 || abs(A.y - B.y) >= 4)
return 1;
else
return 0;
} else
return 1;
}
}
return 1;
}
void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0,
int log2_trafo_size)
{
HEVCLocalContext *lc = &s->HEVClc;
MvField *tab_mvf = s->ref->tab_mvf;
int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
int min_pu_width = s->ps.sps->min_pu_width;
int min_tu_width = s->ps.sps->min_tb_width;
int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
(x0 >> log2_min_pu_size)].is_intra;
int boundary_upper, boundary_left;
int i, j, bs;
boundary_upper = y0 > 0 && !(y0 & 7);
if (boundary_upper &&
((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
lc->boundary_flags & BOUNDARY_UPPER_SLICE &&
(y0 % (1 << s->ps.sps->log2_ctb_size)) == 0) ||
(!s->ps.pps->loop_filter_across_tiles_enabled_flag &&
lc->boundary_flags & BOUNDARY_UPPER_TILE &&
(y0 % (1 << s->ps.sps->log2_ctb_size)) == 0)))
boundary_upper = 0;
if (boundary_upper) {
RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ?
ff_hevc_get_ref_list(s, s->ref, x0, y0 - 1) :
s->ref->refPicList;
int yp_pu = (y0 - 1) >> log2_min_pu_size;
int yq_pu = y0 >> log2_min_pu_size;
int yp_tu = (y0 - 1) >> log2_min_tu_size;
int yq_tu = y0 >> log2_min_tu_size;
for (i = 0; i < (1 << log2_trafo_size); i += 4) {
int x_pu = (x0 + i) >> log2_min_pu_size;
int x_tu = (x0 + i) >> log2_min_tu_size;
MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
bs = boundary_strength(s, curr, curr_cbf_luma,
top, top_cbf_luma, rpl_top, 1);
if (bs)
s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
}
}
// bs for TU internal horizontal PU boundaries
if (log2_trafo_size > s->ps.sps->log2_min_pu_size && !is_intra) {
RefPicList *rpl = s->ref->refPicList;
for (j = 8; j < (1 << log2_trafo_size); j += 8) {
int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
int yq_pu = (y0 + j) >> log2_min_pu_size;
int yp_tu = (y0 + j - 1) >> log2_min_tu_size;
int yq_tu = (y0 + j) >> log2_min_tu_size;
for (i = 0; i < (1 << log2_trafo_size); i += 4) {
int x_pu = (x0 + i) >> log2_min_pu_size;
int x_tu = (x0 + i) >> log2_min_tu_size;
MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
bs = boundary_strength(s, curr, curr_cbf_luma,
top, top_cbf_luma, rpl, 0);
if (bs)
s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
}
}
}
// bs for vertical TU boundaries
boundary_left = x0 > 0 && !(x0 & 7);
if (boundary_left &&
((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
lc->boundary_flags & BOUNDARY_LEFT_SLICE &&
(x0 % (1 << s->ps.sps->log2_ctb_size)) == 0) ||
(!s->ps.pps->loop_filter_across_tiles_enabled_flag &&
lc->boundary_flags & BOUNDARY_LEFT_TILE &&
(x0 % (1 << s->ps.sps->log2_ctb_size)) == 0)))
boundary_left = 0;
if (boundary_left) {
RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ?
ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0) :
s->ref->refPicList;
int xp_pu = (x0 - 1) >> log2_min_pu_size;
int xq_pu = x0 >> log2_min_pu_size;
int xp_tu = (x0 - 1) >> log2_min_tu_size;
int xq_tu = x0 >> log2_min_tu_size;
for (i = 0; i < (1 << log2_trafo_size); i += 4) {
int y_pu = (y0 + i) >> log2_min_pu_size;
int y_tu = (y0 + i) >> log2_min_tu_size;
MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
bs = boundary_strength(s, curr, curr_cbf_luma,
left, left_cbf_luma, rpl_left, 1);
if (bs)
s->vertical_bs[(x0 >> 3) + ((y0 + i) >> 2) * s->bs_width] = bs;
}
}
// bs for TU internal vertical PU boundaries
if (log2_trafo_size > log2_min_pu_size && !is_intra) {
RefPicList *rpl = s->ref->refPicList;
for (j = 0; j < (1 << log2_trafo_size); j += 4) {
int y_pu = (y0 + j) >> log2_min_pu_size;
int y_tu = (y0 + j) >> log2_min_tu_size;
for (i = 8; i < (1 << log2_trafo_size); i += 8) {
int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
int xq_pu = (x0 + i) >> log2_min_pu_size;
int xp_tu = (x0 + i - 1) >> log2_min_tu_size;
int xq_tu = (x0 + i) >> log2_min_tu_size;
MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
bs = boundary_strength(s, curr, curr_cbf_luma,
left, left_cbf_luma, rpl, 0);
if (bs)
s->vertical_bs[((x0 + i) >> 3) + ((y0 + j) >> 2) * s->bs_width] = bs;
}
}
}
}
#undef LUMA
#undef CB
#undef CR
void ff_hevc_hls_filter(HEVCContext *s, int x, int y)
{
deblocking_filter_CTB(s, x, y);
if (s->ps.sps->sao_enabled)
sao_filter_CTB(s, x, y);
}
void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
{
if (y_ctb && x_ctb)
ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size);
if (y_ctb && x_ctb >= s->ps.sps->width - ctb_size) {
ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size);
ff_thread_report_progress(&s->ref->tf, y_ctb - ctb_size, 0);
}
if (x_ctb && y_ctb >= s->ps.sps->height - ctb_size)
ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb);
}