mirror of
https://github.com/xenia-project/FFmpeg.git
synced 2024-12-05 18:17:06 +00:00
8337b5db96
Replace mpz_random by mpz_urandomb with a random state initialization in order to improve the randomness. Signed-off-by: Martin Storsjö <martin@martin.st>
340 lines
9.9 KiB
C
340 lines
9.9 KiB
C
/*
|
|
* RTMP Diffie-Hellmann utilities
|
|
* Copyright (c) 2009 Andrej Stepanchuk
|
|
* Copyright (c) 2009-2010 Howard Chu
|
|
* Copyright (c) 2012 Samuel Pitoiset
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* RTMP Diffie-Hellmann utilities
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "rtmpdh.h"
|
|
#include "libavutil/random_seed.h"
|
|
|
|
#define P1024 \
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
|
|
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
|
|
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
|
|
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
|
|
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
|
|
"FFFFFFFFFFFFFFFF"
|
|
|
|
#define Q1024 \
|
|
"7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68" \
|
|
"948127044533E63A0105DF531D89CD9128A5043CC71A026E" \
|
|
"F7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122" \
|
|
"F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6" \
|
|
"F71C35FDAD44CFD2D74F9208BE258FF324943328F67329C0" \
|
|
"FFFFFFFFFFFFFFFF"
|
|
|
|
#if CONFIG_NETTLE || CONFIG_GCRYPT
|
|
#if CONFIG_NETTLE
|
|
#define bn_new(bn) \
|
|
do { \
|
|
bn = av_malloc(sizeof(*bn)); \
|
|
if (bn) \
|
|
mpz_init2(bn, 1); \
|
|
} while (0)
|
|
#define bn_free(bn) \
|
|
do { \
|
|
mpz_clear(bn); \
|
|
av_free(bn); \
|
|
} while (0)
|
|
#define bn_set_word(bn, w) mpz_set_ui(bn, w)
|
|
#define bn_cmp(a, b) mpz_cmp(a, b)
|
|
#define bn_copy(to, from) mpz_set(to, from)
|
|
#define bn_sub_word(bn, w) mpz_sub_ui(bn, bn, w)
|
|
#define bn_cmp_1(bn) mpz_cmp_ui(bn, 1)
|
|
#define bn_num_bytes(bn) (mpz_sizeinbase(bn, 2) + 7) / 8
|
|
#define bn_bn2bin(bn, buf, len) nettle_mpz_get_str_256(len, buf, bn)
|
|
#define bn_bin2bn(bn, buf, len) \
|
|
do { \
|
|
bn_new(bn); \
|
|
if (bn) \
|
|
nettle_mpz_set_str_256_u(bn, len, buf); \
|
|
} while (0)
|
|
#define bn_hex2bn(bn, buf, ret) \
|
|
do { \
|
|
bn_new(bn); \
|
|
if (bn) \
|
|
ret = (mpz_set_str(bn, buf, 16) == 0); \
|
|
} while (0)
|
|
#define bn_modexp(bn, y, q, p) mpz_powm(bn, y, q, p)
|
|
#define bn_random(bn, num_bytes) \
|
|
do { \
|
|
gmp_randstate_t rs; \
|
|
gmp_randinit_mt(rs); \
|
|
gmp_randseed_ui(rs, av_get_random_seed()); \
|
|
mpz_urandomb(bn, rs, num_bytes); \
|
|
gmp_randclear(rs); \
|
|
} while (0)
|
|
#elif CONFIG_GCRYPT
|
|
#define bn_new(bn) bn = gcry_mpi_new(1)
|
|
#define bn_free(bn) gcry_mpi_release(bn)
|
|
#define bn_set_word(bn, w) gcry_mpi_set_ui(bn, w)
|
|
#define bn_cmp(a, b) gcry_mpi_cmp(a, b)
|
|
#define bn_copy(to, from) gcry_mpi_set(to, from)
|
|
#define bn_sub_word(bn, w) gcry_mpi_sub_ui(bn, bn, w)
|
|
#define bn_cmp_1(bn) gcry_mpi_cmp_ui(bn, 1)
|
|
#define bn_num_bytes(bn) (gcry_mpi_get_nbits(bn) + 7) / 8
|
|
#define bn_bn2bin(bn, buf, len) gcry_mpi_print(GCRYMPI_FMT_USG, buf, len, NULL, bn)
|
|
#define bn_bin2bn(bn, buf, len) gcry_mpi_scan(&bn, GCRYMPI_FMT_USG, buf, len, NULL)
|
|
#define bn_hex2bn(bn, buf, ret) ret = (gcry_mpi_scan(&bn, GCRYMPI_FMT_HEX, buf, 0, 0) == 0)
|
|
#define bn_modexp(bn, y, q, p) gcry_mpi_powm(bn, y, q, p)
|
|
#define bn_random(bn, num_bytes) gcry_mpi_randomize(bn, num_bytes, GCRY_WEAK_RANDOM)
|
|
#endif
|
|
|
|
#define MAX_BYTES 18000
|
|
|
|
#define dh_new() av_malloc(sizeof(FF_DH))
|
|
|
|
static FFBigNum dh_generate_key(FF_DH *dh)
|
|
{
|
|
int num_bytes;
|
|
|
|
num_bytes = bn_num_bytes(dh->p) - 1;
|
|
if (num_bytes <= 0 || num_bytes > MAX_BYTES)
|
|
return NULL;
|
|
|
|
bn_new(dh->priv_key);
|
|
if (!dh->priv_key)
|
|
return NULL;
|
|
bn_random(dh->priv_key, num_bytes);
|
|
|
|
bn_new(dh->pub_key);
|
|
if (!dh->pub_key) {
|
|
bn_free(dh->priv_key);
|
|
return NULL;
|
|
}
|
|
|
|
bn_modexp(dh->pub_key, dh->g, dh->priv_key, dh->p);
|
|
|
|
return dh->pub_key;
|
|
}
|
|
|
|
static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn,
|
|
uint32_t pub_key_len, uint8_t *secret_key)
|
|
{
|
|
FFBigNum k;
|
|
int num_bytes;
|
|
|
|
num_bytes = bn_num_bytes(dh->p);
|
|
if (num_bytes <= 0 || num_bytes > MAX_BYTES)
|
|
return -1;
|
|
|
|
bn_new(k);
|
|
if (!k)
|
|
return -1;
|
|
|
|
bn_modexp(k, pub_key_bn, dh->priv_key, dh->p);
|
|
bn_bn2bin(k, secret_key, pub_key_len);
|
|
bn_free(k);
|
|
|
|
/* return the length of the shared secret key like DH_compute_key */
|
|
return pub_key_len;
|
|
}
|
|
|
|
void ff_dh_free(FF_DH *dh)
|
|
{
|
|
bn_free(dh->p);
|
|
bn_free(dh->g);
|
|
bn_free(dh->pub_key);
|
|
bn_free(dh->priv_key);
|
|
av_free(dh);
|
|
}
|
|
#elif CONFIG_OPENSSL
|
|
#define bn_new(bn) bn = BN_new()
|
|
#define bn_free(bn) BN_free(bn)
|
|
#define bn_set_word(bn, w) BN_set_word(bn, w)
|
|
#define bn_cmp(a, b) BN_cmp(a, b)
|
|
#define bn_copy(to, from) BN_copy(to, from)
|
|
#define bn_sub_word(bn, w) BN_sub_word(bn, w)
|
|
#define bn_cmp_1(bn) BN_cmp(bn, BN_value_one())
|
|
#define bn_num_bytes(bn) BN_num_bytes(bn)
|
|
#define bn_bn2bin(bn, buf, len) BN_bn2bin(bn, buf)
|
|
#define bn_bin2bn(bn, buf, len) bn = BN_bin2bn(buf, len, 0)
|
|
#define bn_hex2bn(bn, buf, ret) ret = BN_hex2bn(&bn, buf)
|
|
#define bn_modexp(bn, y, q, p) \
|
|
do { \
|
|
BN_CTX *ctx = BN_CTX_new(); \
|
|
if (!ctx) \
|
|
return AVERROR(ENOMEM); \
|
|
if (!BN_mod_exp(bn, y, q, p, ctx)) { \
|
|
BN_CTX_free(ctx); \
|
|
return AVERROR(EINVAL); \
|
|
} \
|
|
BN_CTX_free(ctx); \
|
|
} while (0)
|
|
|
|
#define dh_new() DH_new()
|
|
#define dh_generate_key(dh) DH_generate_key(dh)
|
|
#define dh_compute_key(dh, pub, len, secret) DH_compute_key(secret, pub, dh)
|
|
|
|
void ff_dh_free(FF_DH *dh)
|
|
{
|
|
DH_free(dh);
|
|
}
|
|
#endif
|
|
|
|
static int dh_is_valid_public_key(FFBigNum y, FFBigNum p, FFBigNum q)
|
|
{
|
|
FFBigNum bn = NULL;
|
|
int ret = AVERROR(EINVAL);
|
|
|
|
bn_new(bn);
|
|
if (!bn)
|
|
return AVERROR(ENOMEM);
|
|
|
|
/* y must lie in [2, p - 1] */
|
|
bn_set_word(bn, 1);
|
|
if (!bn_cmp(y, bn))
|
|
goto fail;
|
|
|
|
/* bn = p - 2 */
|
|
bn_copy(bn, p);
|
|
bn_sub_word(bn, 1);
|
|
if (!bn_cmp(y, bn))
|
|
goto fail;
|
|
|
|
/* Verify with Sophie-Germain prime
|
|
*
|
|
* This is a nice test to make sure the public key position is calculated
|
|
* correctly. This test will fail in about 50% of the cases if applied to
|
|
* random data.
|
|
*/
|
|
/* y must fulfill y^q mod p = 1 */
|
|
bn_modexp(bn, y, q, p);
|
|
|
|
if (bn_cmp_1(bn))
|
|
goto fail;
|
|
|
|
ret = 0;
|
|
fail:
|
|
bn_free(bn);
|
|
|
|
return ret;
|
|
}
|
|
|
|
av_cold FF_DH *ff_dh_init(int key_len)
|
|
{
|
|
FF_DH *dh;
|
|
int ret;
|
|
|
|
if (!(dh = dh_new()))
|
|
return NULL;
|
|
|
|
bn_new(dh->g);
|
|
if (!dh->g)
|
|
goto fail;
|
|
|
|
bn_hex2bn(dh->p, P1024, ret);
|
|
if (!ret)
|
|
goto fail;
|
|
|
|
bn_set_word(dh->g, 2);
|
|
dh->length = key_len;
|
|
|
|
return dh;
|
|
|
|
fail:
|
|
ff_dh_free(dh);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int ff_dh_generate_public_key(FF_DH *dh)
|
|
{
|
|
int ret = 0;
|
|
|
|
while (!ret) {
|
|
FFBigNum q1 = NULL;
|
|
|
|
if (!dh_generate_key(dh))
|
|
return AVERROR(EINVAL);
|
|
|
|
bn_hex2bn(q1, Q1024, ret);
|
|
if (!ret)
|
|
return AVERROR(ENOMEM);
|
|
|
|
ret = dh_is_valid_public_key(dh->pub_key, dh->p, q1);
|
|
bn_free(q1);
|
|
|
|
if (!ret) {
|
|
/* the public key is valid */
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ff_dh_write_public_key(FF_DH *dh, uint8_t *pub_key, int pub_key_len)
|
|
{
|
|
int len;
|
|
|
|
/* compute the length of the public key */
|
|
len = bn_num_bytes(dh->pub_key);
|
|
if (len <= 0 || len > pub_key_len)
|
|
return AVERROR(EINVAL);
|
|
|
|
/* convert the public key value into big-endian form */
|
|
memset(pub_key, 0, pub_key_len);
|
|
bn_bn2bin(dh->pub_key, pub_key + pub_key_len - len, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ff_dh_compute_shared_secret_key(FF_DH *dh, const uint8_t *pub_key,
|
|
int pub_key_len, uint8_t *secret_key)
|
|
{
|
|
FFBigNum q1 = NULL, pub_key_bn = NULL;
|
|
int ret;
|
|
|
|
/* convert the big-endian form of the public key into a bignum */
|
|
bn_bin2bn(pub_key_bn, pub_key, pub_key_len);
|
|
if (!pub_key_bn)
|
|
return AVERROR(ENOMEM);
|
|
|
|
/* convert the string containing a hexadecimal number into a bignum */
|
|
bn_hex2bn(q1, Q1024, ret);
|
|
if (!ret) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto fail;
|
|
}
|
|
|
|
/* when the public key is valid we have to compute the shared secret key */
|
|
if ((ret = dh_is_valid_public_key(pub_key_bn, dh->p, q1)) < 0) {
|
|
goto fail;
|
|
} else if ((ret = dh_compute_key(dh, pub_key_bn, pub_key_len,
|
|
secret_key)) < 0) {
|
|
ret = AVERROR(EINVAL);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
bn_free(pub_key_bn);
|
|
bn_free(q1);
|
|
|
|
return ret;
|
|
}
|
|
|