mirror of
https://github.com/xenia-project/xenia.git
synced 2024-12-11 13:25:52 +00:00
903 lines
31 KiB
C
903 lines
31 KiB
C
/* This file is part of libmspack.
|
|
* (C) 2003-2004 Stuart Caie.
|
|
*
|
|
* The LZX method was created by Jonathan Forbes and Tomi Poutanen, adapted
|
|
* by Microsoft Corporation.
|
|
*
|
|
* libmspack is free software; you can redistribute it and/or modify it under
|
|
* the terms of the GNU Lesser General Public License (LGPL) version 2.1
|
|
*
|
|
* For further details, see the file COPYING.LIB distributed with libmspack
|
|
*/
|
|
|
|
/* LZX decompression implementation */
|
|
|
|
#include "mspack.h"
|
|
#include "lzx.h"
|
|
|
|
/* Microsoft's LZX document and their implementation of the
|
|
* com.ms.util.cab Java package do not concur.
|
|
*
|
|
* In the LZX document, there is a table showing the correlation between
|
|
* window size and the number of position slots. It states that the 1MB
|
|
* window = 40 slots and the 2MB window = 42 slots. In the implementation,
|
|
* 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the
|
|
* first slot whose position base is equal to or more than the required
|
|
* window size'. This would explain why other tables in the document refer
|
|
* to 50 slots rather than 42.
|
|
*
|
|
* The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode
|
|
* is not defined in the specification.
|
|
*
|
|
* The LZX document does not state the uncompressed block has an
|
|
* uncompressed length field. Where does this length field come from, so
|
|
* we can know how large the block is? The implementation has it as the 24
|
|
* bits following after the 3 blocktype bits, before the alignment
|
|
* padding.
|
|
*
|
|
* The LZX document states that aligned offset blocks have their aligned
|
|
* offset huffman tree AFTER the main and length trees. The implementation
|
|
* suggests that the aligned offset tree is BEFORE the main and length
|
|
* trees.
|
|
*
|
|
* The LZX document decoding algorithm states that, in an aligned offset
|
|
* block, if an extra_bits value is 1, 2 or 3, then that number of bits
|
|
* should be read and the result added to the match offset. This is
|
|
* correct for 1 and 2, but not 3, where just a huffman symbol (using the
|
|
* aligned tree) should be read.
|
|
*
|
|
* Regarding the E8 preprocessing, the LZX document states 'No translation
|
|
* may be performed on the last 6 bytes of the input block'. This is
|
|
* correct. However, the pseudocode provided checks for the *E8 leader*
|
|
* up to the last 6 bytes. If the leader appears between -10 and -7 bytes
|
|
* from the end, this would cause the next four bytes to be modified, at
|
|
* least one of which would be in the last 6 bytes, which is not allowed
|
|
* according to the spec.
|
|
*
|
|
* The specification states that the huffman trees must always contain at
|
|
* least one element. However, many CAB files contain blocks where the
|
|
* length tree is completely empty (because there are no matches), and
|
|
* this is expected to succeed.
|
|
*/
|
|
|
|
|
|
/* LZX decompressor input macros
|
|
*
|
|
* STORE_BITS stores bitstream state in lzxd_stream structure
|
|
* RESTORE_BITS restores bitstream state from lzxd_stream structure
|
|
* READ_BITS(var,n) takes N bits from the buffer and puts them in var
|
|
* ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
|
|
* PEEK_BITS(n) extracts without removing N bits from the bit buffer
|
|
* REMOVE_BITS(n) removes N bits from the bit buffer
|
|
*
|
|
* These bit access routines work by using the area beyond the MSB and the
|
|
* LSB as a free source of zeroes when shifting. This avoids having to
|
|
* mask any bits. So we have to know the bit width of the bit buffer
|
|
* variable.
|
|
*
|
|
* The bit buffer datatype should be at least 32 bits wide: it must be
|
|
* possible to ENSURE_BITS(16), so it must be possible to add 16 new bits
|
|
* to the bit buffer when the bit buffer already has 1 to 15 bits left.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#ifndef CHAR_BIT
|
|
# define CHAR_BIT (8)
|
|
#endif
|
|
#define BITBUF_WIDTH (sizeof(bit_buffer) * CHAR_BIT)
|
|
|
|
#ifdef LZXDEBUG
|
|
# include <stdio.h>
|
|
# define D(x) do { printf("%s:%d (%s) ",__FILE__, __LINE__, __FUNCTION__); \
|
|
printf x ; fputc('\n', stdout); fflush(stdout);} while (0);
|
|
#else
|
|
# define D(x)
|
|
#endif
|
|
|
|
#define STORE_BITS do { \
|
|
lzx->i_ptr = i_ptr; \
|
|
lzx->i_end = i_end; \
|
|
lzx->bit_buffer = bit_buffer; \
|
|
lzx->bits_left = bits_left; \
|
|
} while (0)
|
|
|
|
#define RESTORE_BITS do { \
|
|
i_ptr = lzx->i_ptr; \
|
|
i_end = lzx->i_end; \
|
|
bit_buffer = lzx->bit_buffer; \
|
|
bits_left = lzx->bits_left; \
|
|
} while (0)
|
|
|
|
#define ENSURE_BITS(nbits) \
|
|
while (bits_left < (nbits)) { \
|
|
if (i_ptr >= i_end) { \
|
|
if (lzxd_read_input(lzx)) return lzx->error; \
|
|
i_ptr = lzx->i_ptr; \
|
|
i_end = lzx->i_end; \
|
|
} \
|
|
bit_buffer |= ((i_ptr[1] << 8) | i_ptr[0]) \
|
|
<< (BITBUF_WIDTH - 16 - bits_left); \
|
|
bits_left += 16; \
|
|
i_ptr += 2; \
|
|
}
|
|
|
|
#define PEEK_BITS(nbits) (bit_buffer >> (BITBUF_WIDTH - (nbits)))
|
|
|
|
#define REMOVE_BITS(nbits) ((bit_buffer <<= (nbits)), (bits_left -= (nbits)))
|
|
|
|
#define READ_BITS(val, nbits) do { \
|
|
ENSURE_BITS(nbits); \
|
|
(val) = PEEK_BITS(nbits); \
|
|
REMOVE_BITS(nbits); \
|
|
} while (0)
|
|
|
|
static int lzxd_read_input(struct lzxd_stream *lzx) {
|
|
int read = lzx->sys->read(lzx->input, &lzx->inbuf[0], (int)lzx->inbuf_size);
|
|
if (read < 0) return lzx->error = MSPACK_ERR_READ;
|
|
|
|
/* huff decode's ENSURE_BYTES(16) might overrun the input stream, even
|
|
* if those bits aren't used, so fake 2 more bytes */
|
|
if (read == 0) {
|
|
if (lzx->input_end) {
|
|
D(("out of input bytes"))
|
|
return lzx->error = MSPACK_ERR_READ;
|
|
}
|
|
else {
|
|
read = 2;
|
|
lzx->inbuf[0] = lzx->inbuf[1] = 0;
|
|
lzx->input_end = 1;
|
|
}
|
|
}
|
|
|
|
lzx->i_ptr = &lzx->inbuf[0];
|
|
lzx->i_end = &lzx->inbuf[read];
|
|
|
|
return MSPACK_ERR_OK;
|
|
}
|
|
|
|
/* Huffman decoding macros */
|
|
|
|
/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
|
|
* bitstream using the stated table and puts it in var.
|
|
*/
|
|
#define READ_HUFFSYM(tbl, var) do { \
|
|
/* huffman symbols can be up to 16 bits long */ \
|
|
ENSURE_BITS(16); \
|
|
/* immediate table lookup of [tablebits] bits of the code */ \
|
|
sym = lzx->tbl##_table[PEEK_BITS(LZX_##tbl##_TABLEBITS)]; \
|
|
/* is the symbol is longer than [tablebits] bits? (i=node index) */ \
|
|
if (sym >= LZX_##tbl##_MAXSYMBOLS) { \
|
|
/* decode remaining bits by tree traversal */ \
|
|
i = 1 << (BITBUF_WIDTH - LZX_##tbl##_TABLEBITS); \
|
|
do { \
|
|
/* one less bit. error if we run out of bits before decode */ \
|
|
i >>= 1; \
|
|
if (i == 0) { \
|
|
D(("out of bits in huffman decode")) \
|
|
return lzx->error = MSPACK_ERR_DECRUNCH; \
|
|
} \
|
|
/* double node index and add 0 (left branch) or 1 (right) */ \
|
|
sym <<= 1; sym |= (bit_buffer & i) ? 1 : 0; \
|
|
/* hop to next node index / decoded symbol */ \
|
|
sym = lzx->tbl##_table[sym]; \
|
|
/* while we are still in node indicies, not decoded symbols */ \
|
|
} while (sym >= LZX_##tbl##_MAXSYMBOLS); \
|
|
} \
|
|
/* result */ \
|
|
(var) = sym; \
|
|
/* look up the code length of that symbol and discard those bits */ \
|
|
i = lzx->tbl##_len[sym]; \
|
|
REMOVE_BITS(i); \
|
|
} while (0)
|
|
|
|
/* BUILD_TABLE(tbl) builds a huffman lookup table from code lengths */
|
|
#define BUILD_TABLE(tbl) \
|
|
if (make_decode_table(LZX_##tbl##_MAXSYMBOLS, LZX_##tbl##_TABLEBITS, \
|
|
&lzx->tbl##_len[0], &lzx->tbl##_table[0])) \
|
|
{ \
|
|
D(("failed to build %s table", #tbl)) \
|
|
return lzx->error = MSPACK_ERR_DECRUNCH; \
|
|
}
|
|
|
|
/* make_decode_table(nsyms, nbits, length[], table[])
|
|
*
|
|
* This function was coded by David Tritscher. It builds a fast huffman
|
|
* decoding table from a canonical huffman code lengths table.
|
|
*
|
|
* nsyms = total number of symbols in this huffman tree.
|
|
* nbits = any symbols with a code length of nbits or less can be decoded
|
|
* in one lookup of the table.
|
|
* length = A table to get code lengths from [0 to syms-1]
|
|
* table = The table to fill up with decoded symbols and pointers.
|
|
*
|
|
* Returns 0 for OK or 1 for error
|
|
*/
|
|
|
|
static int make_decode_table(unsigned int nsyms, unsigned int nbits,
|
|
unsigned char *length, unsigned short *table)
|
|
{
|
|
register unsigned short sym;
|
|
register unsigned int leaf, fill;
|
|
register unsigned char bit_num;
|
|
unsigned int pos = 0; /* the current position in the decode table */
|
|
unsigned int table_mask = 1 << nbits;
|
|
unsigned int bit_mask = table_mask >> 1; /* don't do 0 length codes */
|
|
unsigned int next_symbol = bit_mask; /* base of allocation for long codes */
|
|
|
|
/* fill entries for codes short enough for a direct mapping */
|
|
for (bit_num = 1; bit_num <= nbits; bit_num++) {
|
|
for (sym = 0; sym < nsyms; sym++) {
|
|
if (length[sym] != bit_num) continue;
|
|
leaf = pos;
|
|
if((pos += bit_mask) > table_mask) return 1; /* table overrun */
|
|
/* fill all possible lookups of this symbol with the symbol itself */
|
|
for (fill = bit_mask; fill-- > 0;) table[leaf++] = sym;
|
|
}
|
|
bit_mask >>= 1;
|
|
}
|
|
|
|
/* full table already? */
|
|
if (pos == table_mask) return 0;
|
|
|
|
/* clear the remainder of the table */
|
|
for (sym = pos; sym < table_mask; sym++) table[sym] = 0xFFFF;
|
|
|
|
/* allow codes to be up to nbits+16 long, instead of nbits */
|
|
pos <<= 16;
|
|
table_mask <<= 16;
|
|
bit_mask = 1 << 15;
|
|
|
|
for (bit_num = nbits+1; bit_num <= 16; bit_num++) {
|
|
for (sym = 0; sym < nsyms; sym++) {
|
|
if (length[sym] != bit_num) continue;
|
|
|
|
leaf = pos >> 16;
|
|
for (fill = 0; fill < bit_num - nbits; fill++) {
|
|
/* if this path hasn't been taken yet, 'allocate' two entries */
|
|
if (table[leaf] == 0xFFFF) {
|
|
table[(next_symbol << 1)] = 0xFFFF;
|
|
table[(next_symbol << 1) + 1] = 0xFFFF;
|
|
table[leaf] = next_symbol++;
|
|
}
|
|
/* follow the path and select either left or right for next bit */
|
|
leaf = table[leaf] << 1;
|
|
if ((pos >> (15-fill)) & 1) leaf++;
|
|
}
|
|
table[leaf] = sym;
|
|
|
|
if ((pos += bit_mask) > table_mask) return 1; /* table overflow */
|
|
}
|
|
bit_mask >>= 1;
|
|
}
|
|
|
|
/* full table? */
|
|
if (pos == table_mask) return 0;
|
|
|
|
/* either erroneous table, or all elements are 0 - let's find out. */
|
|
for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
|
|
* first to last in the given table. The code lengths are stored in their
|
|
* own special LZX way.
|
|
*/
|
|
#define READ_LENGTHS(tbl, first, last) do { \
|
|
STORE_BITS; \
|
|
if (lzxd_read_lens(lzx, &lzx->tbl##_len[0], (first), \
|
|
(unsigned int)(last))) return lzx->error; \
|
|
RESTORE_BITS; \
|
|
} while (0)
|
|
|
|
static int lzxd_read_lens(struct lzxd_stream *lzx, unsigned char *lens,
|
|
unsigned int first, unsigned int last)
|
|
{
|
|
/* bit buffer and huffman symbol decode variables */
|
|
register unsigned int bit_buffer;
|
|
register int bits_left, i;
|
|
register unsigned short sym;
|
|
unsigned char *i_ptr, *i_end;
|
|
|
|
unsigned int x, y;
|
|
int z;
|
|
|
|
RESTORE_BITS;
|
|
|
|
/* read lengths for pretree (20 symbols, lengths stored in fixed 4 bits) */
|
|
for (x = 0; x < 20; x++) {
|
|
READ_BITS(y, 4);
|
|
lzx->PRETREE_len[x] = y;
|
|
}
|
|
BUILD_TABLE(PRETREE);
|
|
|
|
for (x = first; x < last; ) {
|
|
READ_HUFFSYM(PRETREE, z);
|
|
if (z == 17) {
|
|
/* code = 17, run of ([read 4 bits]+4) zeros */
|
|
READ_BITS(y, 4); y += 4;
|
|
while (y--) lens[x++] = 0;
|
|
}
|
|
else if (z == 18) {
|
|
/* code = 18, run of ([read 5 bits]+20) zeros */
|
|
READ_BITS(y, 5); y += 20;
|
|
while (y--) lens[x++] = 0;
|
|
}
|
|
else if (z == 19) {
|
|
/* code = 19, run of ([read 1 bit]+4) [read huffman symbol] */
|
|
READ_BITS(y, 1); y += 4;
|
|
READ_HUFFSYM(PRETREE, z);
|
|
z = lens[x] - z; if (z < 0) z += 17;
|
|
while (y--) lens[x++] = z;
|
|
}
|
|
else {
|
|
/* code = 0 to 16, delta current length entry */
|
|
z = lens[x] - z; if (z < 0) z += 17;
|
|
lens[x++] = z;
|
|
}
|
|
}
|
|
|
|
STORE_BITS;
|
|
|
|
return MSPACK_ERR_OK;
|
|
}
|
|
|
|
/* LZX static data tables:
|
|
*
|
|
* LZX uses 'position slots' to represent match offsets. For every match,
|
|
* a small 'position slot' number and a small offset from that slot are
|
|
* encoded instead of one large offset.
|
|
*
|
|
* position_base[] is an index to the position slot bases
|
|
*
|
|
* extra_bits[] states how many bits of offset-from-base data is needed.
|
|
*/
|
|
static unsigned int position_base[51];
|
|
static unsigned char extra_bits[51];
|
|
|
|
static void lzxd_static_init() {
|
|
int i, j;
|
|
|
|
for (i = 0, j = 0; i < 51; i += 2) {
|
|
extra_bits[i] = j; /* 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7... */
|
|
extra_bits[i+1] = j;
|
|
if ((i != 0) && (j < 17)) j++; /* 0,0,1,2,3,4...15,16,17,17,17,17... */
|
|
}
|
|
|
|
for (i = 0, j = 0; i < 51; i++) {
|
|
position_base[i] = j; /* 0,1,2,3,4,6,8,12,16,24,32,... */
|
|
j += 1 << extra_bits[i]; /* 1,1,1,1,2,2,4,4,8,8,16,16,32,32,... */
|
|
}
|
|
}
|
|
|
|
static void lzxd_reset_state(struct lzxd_stream *lzx) {
|
|
int i;
|
|
|
|
lzx->R0 = 1;
|
|
lzx->R1 = 1;
|
|
lzx->R2 = 1;
|
|
lzx->header_read = 0;
|
|
lzx->block_remaining = 0;
|
|
lzx->block_type = LZX_BLOCKTYPE_INVALID;
|
|
|
|
/* initialise tables to 0 (because deltas will be applied to them) */
|
|
for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS; i++) lzx->MAINTREE_len[i] = 0;
|
|
for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) lzx->LENGTH_len[i] = 0;
|
|
}
|
|
|
|
/*-------- main LZX code --------*/
|
|
|
|
struct lzxd_stream *lzxd_init(struct mspack_system *system,
|
|
struct mspack_file *input,
|
|
struct mspack_file *output,
|
|
int window_bits,
|
|
int reset_interval,
|
|
int input_buffer_size,
|
|
off_t output_length)
|
|
{
|
|
unsigned int window_size = 1 << window_bits;
|
|
struct lzxd_stream *lzx;
|
|
|
|
if (!system) return NULL;
|
|
|
|
/* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */
|
|
if (window_bits < 15 || window_bits > 21) return NULL;
|
|
|
|
input_buffer_size = (input_buffer_size + 1) & -2;
|
|
if (!input_buffer_size) return NULL;
|
|
|
|
/* initialise static data */
|
|
lzxd_static_init();
|
|
|
|
/* allocate decompression state */
|
|
if (!(lzx = (struct lzxd_stream *)system->alloc(system, sizeof(struct lzxd_stream)))) {
|
|
return NULL;
|
|
}
|
|
|
|
/* allocate decompression window and input buffer */
|
|
lzx->window = (unsigned char *)system->alloc(system, (size_t) window_size);
|
|
lzx->inbuf = (unsigned char *)system->alloc(system, (size_t) input_buffer_size);
|
|
if (!lzx->window || !lzx->inbuf) {
|
|
system->free(lzx->window);
|
|
system->free(lzx->inbuf);
|
|
system->free(lzx);
|
|
return NULL;
|
|
}
|
|
|
|
/* initialise decompression state */
|
|
lzx->sys = system;
|
|
lzx->input = input;
|
|
lzx->output = output;
|
|
lzx->offset = 0;
|
|
lzx->length = output_length;
|
|
|
|
lzx->inbuf_size = input_buffer_size;
|
|
lzx->window_size = 1 << window_bits;
|
|
lzx->window_posn = 0;
|
|
lzx->frame_posn = 0;
|
|
lzx->frame = 0;
|
|
lzx->reset_interval = reset_interval;
|
|
lzx->intel_filesize = 0;
|
|
lzx->intel_curpos = 0;
|
|
|
|
/* window bits: 15 16 17 18 19 20 21
|
|
* position slots: 30 32 34 36 38 42 50 */
|
|
lzx->posn_slots = ((window_bits == 21) ? 50 :
|
|
((window_bits == 20) ? 42 : (window_bits << 1)));
|
|
lzx->intel_started = 0;
|
|
lzx->input_end = 0;
|
|
|
|
lzx->error = MSPACK_ERR_OK;
|
|
|
|
lzx->i_ptr = lzx->i_end = &lzx->inbuf[0];
|
|
lzx->o_ptr = lzx->o_end = &lzx->e8_buf[0];
|
|
lzx->bit_buffer = lzx->bits_left = 0;
|
|
|
|
lzxd_reset_state(lzx);
|
|
return lzx;
|
|
}
|
|
|
|
void lzxd_set_output_length(struct lzxd_stream *lzx, off_t out_bytes) {
|
|
if (lzx) lzx->length = out_bytes;
|
|
}
|
|
|
|
int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|
/* bitstream reading and huffman variables */
|
|
register unsigned int bit_buffer;
|
|
register int bits_left, i=0;
|
|
register unsigned short sym;
|
|
unsigned char *i_ptr, *i_end;
|
|
|
|
int match_length, length_footer, extra, verbatim_bits, bytes_todo;
|
|
int this_run, main_element, aligned_bits, j;
|
|
unsigned char *window, *runsrc, *rundest, buf[12];
|
|
unsigned int frame_size=0, end_frame, match_offset, window_posn;
|
|
unsigned int R0, R1, R2;
|
|
|
|
/* easy answers */
|
|
if (!lzx || (out_bytes < 0)) return MSPACK_ERR_ARGS;
|
|
if (lzx->error) return lzx->error;
|
|
|
|
/* flush out any stored-up bytes before we begin */
|
|
i = (int)(lzx->o_end - lzx->o_ptr);
|
|
if ((off_t) i > out_bytes) i = (int) out_bytes;
|
|
if (i) {
|
|
if (lzx->sys->write(lzx->output, lzx->o_ptr, i) != i) {
|
|
return lzx->error = MSPACK_ERR_WRITE;
|
|
}
|
|
lzx->o_ptr += i;
|
|
lzx->offset += i;
|
|
out_bytes -= i;
|
|
}
|
|
if (out_bytes == 0) return MSPACK_ERR_OK;
|
|
|
|
/* restore local state */
|
|
RESTORE_BITS;
|
|
window = lzx->window;
|
|
window_posn = lzx->window_posn;
|
|
R0 = lzx->R0;
|
|
R1 = lzx->R1;
|
|
R2 = lzx->R2;
|
|
|
|
end_frame = (unsigned int)((lzx->offset + out_bytes) / LZX_FRAME_SIZE) + 1;
|
|
|
|
while (lzx->frame < end_frame) {
|
|
/* have we reached the reset interval? (if there is one?) */
|
|
if (lzx->reset_interval && ((lzx->frame % lzx->reset_interval) == 0)) {
|
|
if (lzx->block_remaining) {
|
|
D(("%d bytes remaining at reset interval", lzx->block_remaining))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
|
|
/* re-read the intel header and reset the huffman lengths */
|
|
lzxd_reset_state(lzx);
|
|
}
|
|
|
|
/* read header if necessary */
|
|
if (!lzx->header_read) {
|
|
/* read 1 bit. if bit=0, intel filesize = 0.
|
|
* if bit=1, read intel filesize (32 bits) */
|
|
j = 0; READ_BITS(i, 1); if (i) { READ_BITS(i, 16); READ_BITS(j, 16); }
|
|
lzx->intel_filesize = (i << 16) | j;
|
|
lzx->header_read = 1;
|
|
}
|
|
|
|
/* calculate size of frame: all frames are 32k except the final frame
|
|
* which is 32kb or less. this can only be calculated when lzx->length
|
|
* has been filled in. */
|
|
frame_size = LZX_FRAME_SIZE;
|
|
if (lzx->length && (lzx->length - lzx->offset) < (off_t)frame_size) {
|
|
frame_size = (unsigned int)(lzx->length - lzx->offset);
|
|
}
|
|
|
|
/* decode until one more frame is available */
|
|
bytes_todo = lzx->frame_posn + frame_size - window_posn;
|
|
while (bytes_todo > 0) {
|
|
/* initialise new block, if one is needed */
|
|
if (lzx->block_remaining == 0) {
|
|
/* realign if previous block was an odd-sized UNCOMPRESSED block */
|
|
if ((lzx->block_type == LZX_BLOCKTYPE_UNCOMPRESSED) &&
|
|
(lzx->block_length & 1))
|
|
{
|
|
if (i_ptr == i_end) {
|
|
if (lzxd_read_input(lzx)) return lzx->error;
|
|
i_ptr = lzx->i_ptr;
|
|
i_end = lzx->i_end;
|
|
}
|
|
i_ptr++;
|
|
}
|
|
|
|
/* read block type (3 bits) and block length (24 bits) */
|
|
READ_BITS(lzx->block_type, 3);
|
|
READ_BITS(i, 16); READ_BITS(j, 8);
|
|
lzx->block_remaining = lzx->block_length = (i << 8) | j;
|
|
/*D(("new block t%d len %u", lzx->block_type, lzx->block_length))*/
|
|
|
|
/* read individual block headers */
|
|
switch (lzx->block_type) {
|
|
case LZX_BLOCKTYPE_ALIGNED:
|
|
/* read lengths of and build aligned huffman decoding tree */
|
|
for (i = 0; i < 8; i++) { READ_BITS(j, 3); lzx->ALIGNED_len[i] = j; }
|
|
BUILD_TABLE(ALIGNED);
|
|
/* no break -- rest of aligned header is same as verbatim */
|
|
case LZX_BLOCKTYPE_VERBATIM:
|
|
/* read lengths of and build main huffman decoding tree */
|
|
READ_LENGTHS(MAINTREE, 0, 256);
|
|
READ_LENGTHS(MAINTREE, 256, LZX_NUM_CHARS + (lzx->posn_slots << 3));
|
|
BUILD_TABLE(MAINTREE);
|
|
/* if the literal 0xE8 is anywhere in the block... */
|
|
if (lzx->MAINTREE_len[0xE8] != 0) lzx->intel_started = 1;
|
|
/* read lengths of and build lengths huffman decoding tree */
|
|
READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS);
|
|
BUILD_TABLE(LENGTH);
|
|
break;
|
|
|
|
case LZX_BLOCKTYPE_UNCOMPRESSED:
|
|
/* because we can't assume otherwise */
|
|
lzx->intel_started = 1;
|
|
|
|
/* read 1-16 (not 0-15) bits to align to bytes */
|
|
ENSURE_BITS(16);
|
|
if (bits_left > 16) i_ptr -= 2;
|
|
bits_left = 0; bit_buffer = 0;
|
|
|
|
/* read 12 bytes of stored R0 / R1 / R2 values */
|
|
for (rundest = &buf[0], i = 0; i < 12; i++) {
|
|
if (i_ptr == i_end) {
|
|
if (lzxd_read_input(lzx)) return lzx->error;
|
|
i_ptr = lzx->i_ptr;
|
|
i_end = lzx->i_end;
|
|
}
|
|
*rundest++ = *i_ptr++;
|
|
}
|
|
R0 = buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
|
|
R1 = buf[4] | (buf[5] << 8) | (buf[6] << 16) | (buf[7] << 24);
|
|
R2 = buf[8] | (buf[9] << 8) | (buf[10] << 16) | (buf[11] << 24);
|
|
break;
|
|
|
|
default:
|
|
D(("bad block type"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
}
|
|
|
|
/* decode more of the block:
|
|
* run = min(what's available, what's needed) */
|
|
this_run = lzx->block_remaining;
|
|
if (this_run > bytes_todo) this_run = bytes_todo;
|
|
|
|
/* assume we decode exactly this_run bytes, for now */
|
|
bytes_todo -= this_run;
|
|
lzx->block_remaining -= this_run;
|
|
|
|
/* decode at least this_run bytes */
|
|
switch (lzx->block_type) {
|
|
case LZX_BLOCKTYPE_VERBATIM:
|
|
while (this_run > 0) {
|
|
READ_HUFFSYM(MAINTREE, main_element);
|
|
if (main_element < LZX_NUM_CHARS) {
|
|
/* literal: 0 to LZX_NUM_CHARS-1 */
|
|
window[window_posn++] = main_element;
|
|
this_run--;
|
|
}
|
|
else {
|
|
/* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
|
|
main_element -= LZX_NUM_CHARS;
|
|
|
|
/* get match length */
|
|
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
|
|
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
|
|
READ_HUFFSYM(LENGTH, length_footer);
|
|
match_length += length_footer;
|
|
}
|
|
match_length += LZX_MIN_MATCH;
|
|
|
|
/* get match offset */
|
|
switch ((match_offset = (main_element >> 3))) {
|
|
case 0: match_offset = R0; break;
|
|
case 1: match_offset = R1; R1=R0; R0 = match_offset; break;
|
|
case 2: match_offset = R2; R2=R0; R0 = match_offset; break;
|
|
case 3: match_offset = 1; R2=R1; R1=R0; R0 = match_offset; break;
|
|
default:
|
|
extra = extra_bits[match_offset];
|
|
READ_BITS(verbatim_bits, extra);
|
|
match_offset = position_base[match_offset] - 2 + verbatim_bits;
|
|
R2 = R1; R1 = R0; R0 = match_offset;
|
|
}
|
|
|
|
if ((window_posn + match_length) > lzx->window_size) {
|
|
D(("match ran over window wrap"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
|
|
/* copy match */
|
|
rundest = &window[window_posn];
|
|
i = match_length;
|
|
/* does match offset wrap the window? */
|
|
if (match_offset > window_posn) {
|
|
/* j = length from match offset to end of window */
|
|
j = match_offset - window_posn;
|
|
if (j > (int) lzx->window_size) {
|
|
D(("match offset beyond window boundaries"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
runsrc = &window[lzx->window_size - j];
|
|
if (j < i) {
|
|
/* if match goes over the window edge, do two copy runs */
|
|
i -= j; while (j-- > 0) *rundest++ = *runsrc++;
|
|
runsrc = window;
|
|
}
|
|
while (i-- > 0) *rundest++ = *runsrc++;
|
|
}
|
|
else {
|
|
runsrc = rundest - match_offset;
|
|
while (i-- > 0) *rundest++ = *runsrc++;
|
|
}
|
|
|
|
this_run -= match_length;
|
|
window_posn += match_length;
|
|
}
|
|
} /* while (this_run > 0) */
|
|
break;
|
|
|
|
case LZX_BLOCKTYPE_ALIGNED:
|
|
while (this_run > 0) {
|
|
READ_HUFFSYM(MAINTREE, main_element);
|
|
if (main_element < LZX_NUM_CHARS) {
|
|
/* literal: 0 to LZX_NUM_CHARS-1 */
|
|
window[window_posn++] = main_element;
|
|
this_run--;
|
|
}
|
|
else {
|
|
/* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
|
|
main_element -= LZX_NUM_CHARS;
|
|
|
|
/* get match length */
|
|
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
|
|
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
|
|
READ_HUFFSYM(LENGTH, length_footer);
|
|
match_length += length_footer;
|
|
}
|
|
match_length += LZX_MIN_MATCH;
|
|
|
|
/* get match offset */
|
|
switch ((match_offset = (main_element >> 3))) {
|
|
case 0: match_offset = R0; break;
|
|
case 1: match_offset = R1; R1 = R0; R0 = match_offset; break;
|
|
case 2: match_offset = R2; R2 = R0; R0 = match_offset; break;
|
|
default:
|
|
extra = extra_bits[match_offset];
|
|
match_offset = position_base[match_offset] - 2;
|
|
if (extra > 3) {
|
|
/* verbatim and aligned bits */
|
|
extra -= 3;
|
|
READ_BITS(verbatim_bits, extra);
|
|
match_offset += (verbatim_bits << 3);
|
|
READ_HUFFSYM(ALIGNED, aligned_bits);
|
|
match_offset += aligned_bits;
|
|
}
|
|
else if (extra == 3) {
|
|
/* aligned bits only */
|
|
READ_HUFFSYM(ALIGNED, aligned_bits);
|
|
match_offset += aligned_bits;
|
|
}
|
|
else if (extra > 0) { /* extra==1, extra==2 */
|
|
/* verbatim bits only */
|
|
READ_BITS(verbatim_bits, extra);
|
|
match_offset += verbatim_bits;
|
|
}
|
|
else /* extra == 0 */ {
|
|
/* ??? not defined in LZX specification! */
|
|
match_offset = 1;
|
|
}
|
|
/* update repeated offset LRU queue */
|
|
R2 = R1; R1 = R0; R0 = match_offset;
|
|
}
|
|
|
|
if ((window_posn + match_length) > lzx->window_size) {
|
|
D(("match ran over window wrap"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
|
|
/* copy match */
|
|
rundest = &window[window_posn];
|
|
i = match_length;
|
|
/* does match offset wrap the window? */
|
|
if (match_offset > window_posn) {
|
|
/* j = length from match offset to end of window */
|
|
j = match_offset - window_posn;
|
|
if (j > (int) lzx->window_size) {
|
|
D(("match offset beyond window boundaries"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
runsrc = &window[lzx->window_size - j];
|
|
if (j < i) {
|
|
/* if match goes over the window edge, do two copy runs */
|
|
i -= j; while (j-- > 0) *rundest++ = *runsrc++;
|
|
runsrc = window;
|
|
}
|
|
while (i-- > 0) *rundest++ = *runsrc++;
|
|
}
|
|
else {
|
|
runsrc = rundest - match_offset;
|
|
while (i-- > 0) *rundest++ = *runsrc++;
|
|
}
|
|
|
|
this_run -= match_length;
|
|
window_posn += match_length;
|
|
}
|
|
} /* while (this_run > 0) */
|
|
break;
|
|
|
|
case LZX_BLOCKTYPE_UNCOMPRESSED:
|
|
/* as this_run is limited not to wrap a frame, this also means it
|
|
* won't wrap the window (as the window is a multiple of 32k) */
|
|
rundest = &window[window_posn];
|
|
window_posn += this_run;
|
|
while (this_run > 0) {
|
|
if ((i = (int)(i_end - i_ptr))) {
|
|
if (i > this_run) i = this_run;
|
|
lzx->sys->copy(i_ptr, rundest, (size_t) i);
|
|
rundest += i;
|
|
i_ptr += i;
|
|
this_run -= i;
|
|
}
|
|
else {
|
|
if (lzxd_read_input(lzx)) return lzx->error;
|
|
i_ptr = lzx->i_ptr;
|
|
i_end = lzx->i_end;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return lzx->error = MSPACK_ERR_DECRUNCH; /* might as well */
|
|
}
|
|
|
|
/* did the final match overrun our desired this_run length? */
|
|
if (this_run < 0) {
|
|
if ((unsigned int)(-this_run) > lzx->block_remaining) {
|
|
D(("overrun went past end of block by %d (%d remaining)",
|
|
-this_run, lzx->block_remaining ))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
lzx->block_remaining -= -this_run;
|
|
}
|
|
} /* while (bytes_todo > 0) */
|
|
|
|
/* streams don't extend over frame boundaries */
|
|
if ((window_posn - lzx->frame_posn) != frame_size) {
|
|
D(("decode beyond output frame limits! %d != %d",
|
|
window_posn - lzx->frame_posn, frame_size))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
|
|
/* re-align input bitstream */
|
|
if (bits_left > 0) ENSURE_BITS(16);
|
|
if (bits_left & 15) REMOVE_BITS(bits_left & 15);
|
|
|
|
/* check that we've used all of the previous frame first */
|
|
if (lzx->o_ptr != lzx->o_end) {
|
|
D(("%d avail bytes, new %d frame", lzx->o_end-lzx->o_ptr, frame_size))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
|
|
/* does this intel block _really_ need decoding? */
|
|
if (lzx->intel_started && lzx->intel_filesize &&
|
|
(lzx->frame <= 32768) && (frame_size > 10))
|
|
{
|
|
unsigned char *data = &lzx->e8_buf[0];
|
|
unsigned char *dataend = &lzx->e8_buf[frame_size - 10];
|
|
signed int curpos = lzx->intel_curpos;
|
|
signed int filesize = lzx->intel_filesize;
|
|
signed int abs_off, rel_off;
|
|
|
|
/* copy e8 block to the e8 buffer and tweak if needed */
|
|
lzx->o_ptr = data;
|
|
lzx->sys->copy(&lzx->window[lzx->frame_posn], data, frame_size);
|
|
|
|
while (data < dataend) {
|
|
if (*data++ != 0xE8) { curpos++; continue; }
|
|
abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24);
|
|
if ((abs_off >= -curpos) && (abs_off < filesize)) {
|
|
rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize;
|
|
data[0] = (unsigned char) rel_off;
|
|
data[1] = (unsigned char) (rel_off >> 8);
|
|
data[2] = (unsigned char) (rel_off >> 16);
|
|
data[3] = (unsigned char) (rel_off >> 24);
|
|
}
|
|
data += 4;
|
|
curpos += 5;
|
|
}
|
|
lzx->intel_curpos += frame_size;
|
|
}
|
|
else {
|
|
lzx->o_ptr = &lzx->window[lzx->frame_posn];
|
|
if (lzx->intel_filesize) lzx->intel_curpos += frame_size;
|
|
}
|
|
lzx->o_end = &lzx->o_ptr[frame_size];
|
|
|
|
/* write a frame */
|
|
i = (out_bytes < (off_t)frame_size) ? (unsigned int)out_bytes : frame_size;
|
|
if (lzx->sys->write(lzx->output, lzx->o_ptr, i) != i) {
|
|
return lzx->error = MSPACK_ERR_WRITE;
|
|
}
|
|
lzx->o_ptr += i;
|
|
lzx->offset += i;
|
|
out_bytes -= i;
|
|
|
|
/* advance frame start position */
|
|
lzx->frame_posn += frame_size;
|
|
lzx->frame++;
|
|
|
|
/* wrap window / frame position pointers */
|
|
if (window_posn == lzx->window_size) window_posn = 0;
|
|
if (lzx->frame_posn == lzx->window_size) lzx->frame_posn = 0;
|
|
|
|
} /* while (lzx->frame < end_frame) */
|
|
|
|
if (out_bytes) {
|
|
D(("bytes left to output"))
|
|
return lzx->error = MSPACK_ERR_DECRUNCH;
|
|
}
|
|
|
|
/* store local state */
|
|
STORE_BITS;
|
|
lzx->window_posn = window_posn;
|
|
lzx->R0 = R0;
|
|
lzx->R1 = R1;
|
|
lzx->R2 = R2;
|
|
|
|
return MSPACK_ERR_OK;
|
|
}
|
|
|
|
void lzxd_free(struct lzxd_stream *lzx) {
|
|
struct mspack_system *sys;
|
|
if (lzx) {
|
|
sys = lzx->sys;
|
|
sys->free(lzx->inbuf);
|
|
sys->free(lzx->window);
|
|
sys->free(lzx);
|
|
}
|
|
}
|