mirror of
https://github.com/BillyOutlast/posthog.git
synced 2026-02-04 11:11:24 +01:00
posthog-agent-toolkit
Tools to give agents access to your PostHog data, manage feature flags, create insights, and more.
This is a Python wrapper around the PostHog MCP (Model Context Protocol) server, providing easy integration with AI frameworks like LangChain.
Installation
pip install posthog-agent-toolkit
Quick Start
The toolkit provides integrations for popular AI frameworks:
Using with LangChain
from langchain_openai import ChatOpenAI
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from posthog_agent_toolkit.integrations.langchain.toolkit import PostHogAgentToolkit
# Initialize the PostHog toolkit
toolkit = PostHogAgentToolkit(
personal_api_key="your_posthog_personal_api_key",
url="https://mcp.posthog.com/mcp" # or your own, if you are self hosting the MCP server
)
# Get the tools
tools = await toolkit.get_tools()
# Initialize the LLM
llm = ChatOpenAI(model="gpt-5-mini")
# Create a prompt
prompt = ChatPromptTemplate.from_messages([
("system", "You are a data analyst with access to PostHog analytics"),
("human", "{input}"),
MessagesPlaceholder("agent_scratchpad"),
])
# Create and run the agent
agent = create_tool_calling_agent(llm=llm, tools=tools, prompt=prompt)
executor = AgentExecutor(agent=agent, tools=tools)
result = await executor.ainvoke({
"input": "Analyze our product usage by getting the top 5 most interesting insights and summarising the data from them."
})
Available Tools
For a list of all available tools, please see the docs.