mirror of
https://github.com/BillyOutlast/rocm-stable-diffusion.cpp.git
synced 2026-02-04 03:01:18 +01:00
feat: add support for Flux Controls and Flex.2 (#692)
This commit is contained in:
@@ -37,6 +37,8 @@ const char* model_version_to_str[] = {
|
||||
"SD3.x",
|
||||
"Flux",
|
||||
"Flux Fill",
|
||||
"Flux Control",
|
||||
"Flex.2",
|
||||
"Wan 2.x",
|
||||
"Wan 2.2 I2V",
|
||||
"Wan 2.2 TI2V",
|
||||
@@ -102,7 +104,7 @@ public:
|
||||
std::shared_ptr<DiffusionModel> high_noise_diffusion_model;
|
||||
std::shared_ptr<VAE> first_stage_model;
|
||||
std::shared_ptr<TinyAutoEncoder> tae_first_stage;
|
||||
std::shared_ptr<ControlNet> control_net;
|
||||
std::shared_ptr<ControlNet> control_net = NULL;
|
||||
std::shared_ptr<PhotoMakerIDEncoder> pmid_model;
|
||||
std::shared_ptr<LoraModel> pmid_lora;
|
||||
std::shared_ptr<PhotoMakerIDEmbed> pmid_id_embeds;
|
||||
@@ -320,6 +322,11 @@ public:
|
||||
scale_factor = 1.0f;
|
||||
}
|
||||
|
||||
if (sd_version_is_control(version)) {
|
||||
// Might need vae encode for control cond
|
||||
vae_decode_only = false;
|
||||
}
|
||||
|
||||
bool clip_on_cpu = sd_ctx_params->keep_clip_on_cpu;
|
||||
|
||||
{
|
||||
@@ -1147,7 +1154,7 @@ public:
|
||||
|
||||
std::vector<struct ggml_tensor*> controls;
|
||||
|
||||
if (control_hint != NULL) {
|
||||
if (control_hint != NULL && control_net != NULL) {
|
||||
control_net->compute(n_threads, noised_input, control_hint, timesteps, cond.c_crossattn, cond.c_vector);
|
||||
controls = control_net->controls;
|
||||
// print_ggml_tensor(controls[12]);
|
||||
@@ -1185,7 +1192,7 @@ public:
|
||||
float* negative_data = NULL;
|
||||
if (has_unconditioned) {
|
||||
// uncond
|
||||
if (control_hint != NULL) {
|
||||
if (control_hint != NULL && control_net != NULL) {
|
||||
control_net->compute(n_threads, noised_input, control_hint, timesteps, uncond.c_crossattn, uncond.c_vector);
|
||||
controls = control_net->controls;
|
||||
}
|
||||
@@ -2070,10 +2077,24 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
|
||||
int W = width / 8;
|
||||
int H = height / 8;
|
||||
LOG_INFO("sampling using %s method", sampling_methods_str[sample_method]);
|
||||
|
||||
struct ggml_tensor* control_latent = NULL;
|
||||
if (sd_version_is_control(sd_ctx->sd->version) && image_hint != NULL) {
|
||||
if (!sd_ctx->sd->use_tiny_autoencoder) {
|
||||
struct ggml_tensor* control_moments = sd_ctx->sd->encode_first_stage(work_ctx, image_hint);
|
||||
control_latent = sd_ctx->sd->get_first_stage_encoding(work_ctx, control_moments);
|
||||
} else {
|
||||
control_latent = sd_ctx->sd->encode_first_stage(work_ctx, image_hint);
|
||||
}
|
||||
ggml_tensor_scale(control_latent, control_strength);
|
||||
}
|
||||
|
||||
if (sd_version_is_inpaint(sd_ctx->sd->version)) {
|
||||
int64_t mask_channels = 1;
|
||||
if (sd_ctx->sd->version == VERSION_FLUX_FILL) {
|
||||
mask_channels = 8 * 8; // flatten the whole mask
|
||||
} else if (sd_ctx->sd->version == VERSION_FLEX_2) {
|
||||
mask_channels = 1 + init_latent->ne[2];
|
||||
}
|
||||
auto empty_latent = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, init_latent->ne[0], init_latent->ne[1], mask_channels + init_latent->ne[2], 1);
|
||||
// no mask, set the whole image as masked
|
||||
@@ -2087,6 +2108,11 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
|
||||
for (int64_t c = init_latent->ne[2]; c < empty_latent->ne[2]; c++) {
|
||||
ggml_tensor_set_f32(empty_latent, 1, x, y, c);
|
||||
}
|
||||
} else if (sd_ctx->sd->version == VERSION_FLEX_2) {
|
||||
for (int64_t c = 0; c < empty_latent->ne[2]; c++) {
|
||||
// 0x16,1x1,0x16
|
||||
ggml_tensor_set_f32(empty_latent, c == init_latent->ne[2], x, y, c);
|
||||
}
|
||||
} else {
|
||||
ggml_tensor_set_f32(empty_latent, 1, x, y, 0);
|
||||
for (int64_t c = 1; c < empty_latent->ne[2]; c++) {
|
||||
@@ -2095,7 +2121,28 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
|
||||
}
|
||||
}
|
||||
}
|
||||
if (concat_latent == NULL) {
|
||||
|
||||
if (sd_ctx->sd->version == VERSION_FLEX_2 && control_latent != NULL && sd_ctx->sd->control_net == NULL) {
|
||||
bool no_inpaint = concat_latent == NULL;
|
||||
if (no_inpaint) {
|
||||
concat_latent = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, init_latent->ne[0], init_latent->ne[1], mask_channels + init_latent->ne[2], 1);
|
||||
}
|
||||
// fill in the control image here
|
||||
for (int64_t x = 0; x < control_latent->ne[0]; x++) {
|
||||
for (int64_t y = 0; y < control_latent->ne[1]; y++) {
|
||||
if (no_inpaint) {
|
||||
for (int64_t c = 0; c < concat_latent->ne[2] - control_latent->ne[2]; c++) {
|
||||
// 0x16,1x1,0x16
|
||||
ggml_tensor_set_f32(concat_latent, c == init_latent->ne[2], x, y, c);
|
||||
}
|
||||
}
|
||||
for (int64_t c = 0; c < control_latent->ne[2]; c++) {
|
||||
float v = ggml_tensor_get_f32(control_latent, x, y, c);
|
||||
ggml_tensor_set_f32(concat_latent, v, x, y, concat_latent->ne[2] - control_latent->ne[2] + c);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (concat_latent == NULL) {
|
||||
concat_latent = empty_latent;
|
||||
}
|
||||
cond.c_concat = concat_latent;
|
||||
@@ -2105,10 +2152,20 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
|
||||
auto empty_latent = ggml_dup_tensor(work_ctx, init_latent);
|
||||
ggml_set_f32(empty_latent, 0);
|
||||
uncond.c_concat = empty_latent;
|
||||
if (concat_latent == NULL) {
|
||||
concat_latent = empty_latent;
|
||||
cond.c_concat = ref_latents[0];
|
||||
if (cond.c_concat == NULL) {
|
||||
cond.c_concat = empty_latent;
|
||||
}
|
||||
} else if (sd_version_is_control(sd_ctx->sd->version)) {
|
||||
auto empty_latent = ggml_dup_tensor(work_ctx, init_latent);
|
||||
ggml_set_f32(empty_latent, 0);
|
||||
uncond.c_concat = empty_latent;
|
||||
if (sd_ctx->sd->control_net == NULL) {
|
||||
cond.c_concat = control_latent;
|
||||
}
|
||||
if (cond.c_concat == NULL) {
|
||||
cond.c_concat = empty_latent;
|
||||
}
|
||||
cond.c_concat = ref_latents[0];
|
||||
}
|
||||
SDCondition img_cond;
|
||||
if (uncond.c_crossattn != NULL &&
|
||||
@@ -2291,6 +2348,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
|
||||
std::vector<float> sigmas = sd_ctx->sd->denoiser->get_sigmas(sample_steps);
|
||||
|
||||
ggml_tensor* init_latent = NULL;
|
||||
ggml_tensor* init_moments = NULL;
|
||||
ggml_tensor* concat_latent = NULL;
|
||||
ggml_tensor* denoise_mask = NULL;
|
||||
if (sd_img_gen_params->init_image.data) {
|
||||
@@ -2310,19 +2368,35 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
|
||||
sd_image_to_tensor(sd_img_gen_params->mask_image, mask_img);
|
||||
sd_image_to_tensor(sd_img_gen_params->init_image, init_img);
|
||||
|
||||
if (!sd_ctx->sd->use_tiny_autoencoder) {
|
||||
init_moments = sd_ctx->sd->encode_first_stage(work_ctx, init_img);
|
||||
init_latent = sd_ctx->sd->get_first_stage_encoding(work_ctx, init_moments);
|
||||
} else {
|
||||
init_latent = sd_ctx->sd->encode_first_stage(work_ctx, init_img);
|
||||
}
|
||||
|
||||
if (sd_version_is_inpaint(sd_ctx->sd->version)) {
|
||||
int64_t mask_channels = 1;
|
||||
if (sd_ctx->sd->version == VERSION_FLUX_FILL) {
|
||||
mask_channels = 8 * 8; // flatten the whole mask
|
||||
} else if (sd_ctx->sd->version == VERSION_FLEX_2) {
|
||||
mask_channels = 1 + init_latent->ne[2];
|
||||
}
|
||||
ggml_tensor* masked_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
|
||||
sd_apply_mask(init_img, mask_img, masked_img);
|
||||
ggml_tensor* masked_latent = NULL;
|
||||
if (!sd_ctx->sd->use_tiny_autoencoder) {
|
||||
ggml_tensor* moments = sd_ctx->sd->encode_first_stage(work_ctx, masked_img);
|
||||
masked_latent = sd_ctx->sd->get_first_stage_encoding(work_ctx, moments);
|
||||
if (sd_ctx->sd->version != VERSION_FLEX_2) {
|
||||
// most inpaint models mask before vae
|
||||
ggml_tensor* masked_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
|
||||
sd_apply_mask(init_img, mask_img, masked_img);
|
||||
if (!sd_ctx->sd->use_tiny_autoencoder) {
|
||||
ggml_tensor* moments = sd_ctx->sd->encode_first_stage(work_ctx, masked_img);
|
||||
masked_latent = sd_ctx->sd->get_first_stage_encoding(work_ctx, moments);
|
||||
} else {
|
||||
masked_latent = sd_ctx->sd->encode_first_stage(work_ctx, masked_img);
|
||||
}
|
||||
} else {
|
||||
masked_latent = sd_ctx->sd->encode_first_stage(work_ctx, masked_img);
|
||||
// mask after vae
|
||||
masked_latent = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, init_latent->ne[0], init_latent->ne[1], init_latent->ne[2], 1);
|
||||
sd_apply_mask(init_latent, mask_img, masked_latent, 0.);
|
||||
}
|
||||
concat_latent = ggml_new_tensor_4d(work_ctx,
|
||||
GGML_TYPE_F32,
|
||||
@@ -2348,12 +2422,18 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
|
||||
ggml_tensor_set_f32(concat_latent, m, ix, iy, masked_latent->ne[2] + x * 8 + y);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
} else if (sd_ctx->sd->version == VERSION_FLEX_2) {
|
||||
float m = ggml_tensor_get_f32(mask_img, mx, my);
|
||||
ggml_tensor_set_f32(concat_latent, m, ix, iy, 0);
|
||||
// masked image
|
||||
for (int k = 0; k < masked_latent->ne[2]; k++) {
|
||||
float v = ggml_tensor_get_f32(masked_latent, ix, iy, k);
|
||||
ggml_tensor_set_f32(concat_latent, v, ix, iy, k + mask_channels);
|
||||
ggml_tensor_set_f32(concat_latent, v, ix, iy, k);
|
||||
}
|
||||
// downsampled mask
|
||||
ggml_tensor_set_f32(concat_latent, m, ix, iy, masked_latent->ne[2]);
|
||||
// control (todo: support this)
|
||||
for (int k = 0; k < masked_latent->ne[2]; k++) {
|
||||
ggml_tensor_set_f32(concat_latent, 0, ix, iy, masked_latent->ne[2] + 1 + k);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -2373,12 +2453,6 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
|
||||
}
|
||||
}
|
||||
|
||||
if (!sd_ctx->sd->use_tiny_autoencoder) {
|
||||
ggml_tensor* moments = sd_ctx->sd->encode_first_stage(work_ctx, init_img);
|
||||
init_latent = sd_ctx->sd->get_first_stage_encoding(work_ctx, moments);
|
||||
} else {
|
||||
init_latent = sd_ctx->sd->encode_first_stage(work_ctx, init_img);
|
||||
}
|
||||
} else {
|
||||
LOG_INFO("TXT2IMG");
|
||||
if (sd_version_is_inpaint(sd_ctx->sd->version)) {
|
||||
|
||||
Reference in New Issue
Block a user