feat: add PhotoMaker Version 2 support (#358)

* first attempt at updating to photomaker v2

* continue adding photomaker v2 modules

* finishing the last few pieces for photomaker v2; id_embeds need to be done by a manual step and pass as an input file

* added a name converter for Photomaker V2; build ok

* more debugging underway

* failing at cuda mat_mul

* updated chunk_half to be more efficient; redo feedforward

* fixed a bug: carefully using ggml_view_4d to get chunks of a tensor; strides need to be recalculated or set properly; still failing at soft_max cuda op

* redo weight calculation and weight*v

* fixed a bug now Photomaker V2 kinds of working

* add python script for face detection (Photomaker V2 needs)

* updated readme for photomaker

* fixed a bug causing PMV1 crashing; both V1 and V2 work

* fixed clean_input_ids for PMV2

* fixed a double counting bug in tokenize_with_trigger_token

* updated photomaker readme

* removed some commented code

* improved reconstructing class word free prompt

* changed reading id_embed to raw binary using existing load tensor function; this is more efficient than using model load and also makes it easier to work with sd server

* minor clean up

---------

Co-authored-by: bssrdf <bssrdf@gmail.com>
This commit is contained in:
bssrdf
2024-11-22 22:50:14 -05:00
committed by GitHub
parent b99cbfe4dc
commit 2b1bc06477
11 changed files with 844 additions and 56 deletions

View File

@@ -146,6 +146,33 @@ std::unordered_map<std::string, std::string> vae_decoder_name_map = {
{"first_stage_model.decoder.mid.attn_1.to_v.weight", "first_stage_model.decoder.mid.attn_1.v.weight"},
};
std::unordered_map<std::string, std::string> pmid_v2_name_map = {
{"pmid.qformer_perceiver.perceiver_resampler.layers.0.1.1.weight",
"pmid.qformer_perceiver.perceiver_resampler.layers.0.1.1.fc1.weight"},
{"pmid.qformer_perceiver.perceiver_resampler.layers.0.1.3.weight",
"pmid.qformer_perceiver.perceiver_resampler.layers.0.1.1.fc2.weight"},
{"pmid.qformer_perceiver.perceiver_resampler.layers.1.1.1.weight",
"pmid.qformer_perceiver.perceiver_resampler.layers.1.1.1.fc1.weight"},
{"pmid.qformer_perceiver.perceiver_resampler.layers.1.1.3.weight",
"pmid.qformer_perceiver.perceiver_resampler.layers.1.1.1.fc2.weight"},
{"pmid.qformer_perceiver.perceiver_resampler.layers.2.1.1.weight",
"pmid.qformer_perceiver.perceiver_resampler.layers.2.1.1.fc1.weight"},
{"pmid.qformer_perceiver.perceiver_resampler.layers.2.1.3.weight",
"pmid.qformer_perceiver.perceiver_resampler.layers.2.1.1.fc2.weight"},
{"pmid.qformer_perceiver.perceiver_resampler.layers.3.1.1.weight",
"pmid.qformer_perceiver.perceiver_resampler.layers.3.1.1.fc1.weight"},
{"pmid.qformer_perceiver.perceiver_resampler.layers.3.1.3.weight",
"pmid.qformer_perceiver.perceiver_resampler.layers.3.1.1.fc2.weight"},
{"pmid.qformer_perceiver.token_proj.0.bias",
"pmid.qformer_perceiver.token_proj.fc1.bias"},
{"pmid.qformer_perceiver.token_proj.2.bias",
"pmid.qformer_perceiver.token_proj.fc2.bias"},
{"pmid.qformer_perceiver.token_proj.0.weight",
"pmid.qformer_perceiver.token_proj.fc1.weight"},
{"pmid.qformer_perceiver.token_proj.2.weight",
"pmid.qformer_perceiver.token_proj.fc2.weight"},
};
std::string convert_open_clip_to_hf_clip(const std::string& name) {
std::string new_name = name;
std::string prefix;
@@ -212,6 +239,13 @@ std::string convert_vae_decoder_name(const std::string& name) {
return name;
}
std::string convert_pmid_v2_name(const std::string& name) {
if (pmid_v2_name_map.find(name) != pmid_v2_name_map.end()) {
return pmid_v2_name_map[name];
}
return name;
}
/* If not a SDXL LoRA the unet" prefix will have already been replaced by this
* point and "te2" and "te1" don't seem to appear in non-SDXL only "te_" */
std::string convert_sdxl_lora_name(std::string tensor_name) {
@@ -443,6 +477,8 @@ std::string convert_tensor_name(std::string name) {
new_name = convert_open_clip_to_hf_clip(name);
} else if (starts_with(name, "first_stage_model.decoder")) {
new_name = convert_vae_decoder_name(name);
} else if (starts_with(name, "pmid.qformer_perceiver")) {
new_name = convert_pmid_v2_name(name);
} else if (starts_with(name, "control_model.")) { // for controlnet pth models
size_t pos = name.find('.');
if (pos != std::string::npos) {
@@ -1015,7 +1051,7 @@ bool ModelLoader::init_from_safetensors_file(const std::string& file_path, const
}
TensorStorage tensor_storage(prefix + name, type, ne, n_dims, file_index, ST_HEADER_SIZE_LEN + header_size_ + begin);
tensor_storage.reverse_ne();
tensor_storage.reverse_ne();
size_t tensor_data_size = end - begin;
@@ -1362,7 +1398,7 @@ bool ModelLoader::parse_data_pkl(uint8_t* buffer,
reader.tensor_storage.reverse_ne();
reader.tensor_storage.file_index = file_index;
// if(strcmp(prefix.c_str(), "scarlett") == 0)
// printf(" got tensor %s \n ", reader.tensor_storage.name.c_str());
// printf(" ZIP got tensor %s \n ", reader.tensor_storage.name.c_str());
reader.tensor_storage.name = prefix + reader.tensor_storage.name;
tensor_storages.push_back(reader.tensor_storage);
// LOG_DEBUG("%s", reader.tensor_storage.name.c_str());
@@ -1398,7 +1434,9 @@ bool ModelLoader::init_from_ckpt_file(const std::string& file_path, const std::s
std::string name = zip_entry_name(zip);
size_t pos = name.find("data.pkl");
if (pos != std::string::npos) {
std::string dir = name.substr(0, pos);
printf("ZIP %d, name = %s, dir = %s \n", i, name.c_str(), dir.c_str());
void* pkl_data = NULL;
size_t pkl_size;
zip_entry_read(zip, &pkl_data, &pkl_size);