#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ggml/ggml-alloc.h" #include "ggml/ggml-backend.h" #include "ggml/ggml.h" #ifdef SD_USE_CUBLAS #include "ggml-cuda.h" #endif #ifdef SD_USE_METAL #include "ggml-metal.h" #endif #include "model.h" #include "rng.h" #include "rng_philox.h" #include "stable-diffusion.h" #include "util.h" #define EPS 1e-05f #define UNET_GRAPH_SIZE 10240 #define LORA_GRAPH_SIZE 10240 #define TIMESTEPS 1000 const char* model_version_to_str[] = { "1.x", "2.x", "XL", }; const char* sampling_methods_str[] = { "Euler A", "Euler", "Heun", "DPM2", "DPM++ (2s)", "DPM++ (2M)", "modified DPM++ (2M)", "LCM", }; /*================================================== Helper Functions ================================================*/ std::string sd_get_system_info() { std::stringstream ss; ss << "System Info: \n"; ss << " BLAS = " << ggml_cpu_has_blas() << std::endl; ss << " SSE3 = " << ggml_cpu_has_sse3() << std::endl; ss << " AVX = " << ggml_cpu_has_avx() << std::endl; ss << " AVX2 = " << ggml_cpu_has_avx2() << std::endl; ss << " AVX512 = " << ggml_cpu_has_avx512() << std::endl; ss << " AVX512_VBMI = " << ggml_cpu_has_avx512_vbmi() << std::endl; ss << " AVX512_VNNI = " << ggml_cpu_has_avx512_vnni() << std::endl; ss << " FMA = " << ggml_cpu_has_fma() << std::endl; ss << " NEON = " << ggml_cpu_has_neon() << std::endl; ss << " ARM_FMA = " << ggml_cpu_has_arm_fma() << std::endl; ss << " F16C = " << ggml_cpu_has_f16c() << std::endl; ss << " FP16_VA = " << ggml_cpu_has_fp16_va() << std::endl; ss << " WASM_SIMD = " << ggml_cpu_has_wasm_simd() << std::endl; ss << " VSX = " << ggml_cpu_has_vsx() << std::endl; return ss.str(); } static void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) { (void)level; (void)user_data; fputs(text, stderr); fflush(stderr); } void ggml_tensor_set_f32_randn(struct ggml_tensor* tensor, std::shared_ptr rng) { uint32_t n = (uint32_t)ggml_nelements(tensor); std::vector random_numbers = rng->randn(n); for (uint32_t i = 0; i < n; i++) { ggml_set_f32_1d(tensor, i, random_numbers[i]); } } void pretty_progress(int step, int steps, float time) { std::string progress = " |"; int max_progress = 50; int32_t current = (int32_t)(step * 1.f * max_progress / steps); for (int i = 0; i < 50; i++) { if (i > current) { progress += " "; } else if (i == current && i != max_progress - 1) { progress += ">"; } else { progress += "="; } } progress += "|"; printf(time > 1.0f ? "\r%s %i/%i - %.2fs/it" : "\r%s %i/%i - %.2fit/s", progress.c_str(), step, steps, time > 1.0f || time == 0 ? time : (1.0f / time)); fflush(stdout); // for linux if (step == steps) { printf("\n"); } } // set tensor[i, j, k, l] // set tensor[l] // set tensor[k, l] // set tensor[j, k, l] void ggml_tensor_set_f32(struct ggml_tensor* tensor, float value, int l, int k = 0, int j = 0, int i = 0) { GGML_ASSERT(tensor->nb[0] == sizeof(float)); *(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]) = value; } float ggml_tensor_get_f32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) { // float value; // ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(float)); // return value; GGML_ASSERT(tensor->nb[0] == sizeof(float)); return *(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]); } ggml_fp16_t ggml_tensor_get_f16(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); return *(ggml_fp16_t*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]); } void print_ggml_tensor(struct ggml_tensor* tensor, bool shape_only = false) { printf("shape(%zu, %zu, %zu, %zu)\n", tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); fflush(stdout); if (shape_only) { return; } int range = 3; for (int i = 0; i < tensor->ne[3]; i++) { if (i >= range && i + range < tensor->ne[3]) { continue; } for (int j = 0; j < tensor->ne[2]; j++) { if (j >= range && j + range < tensor->ne[2]) { continue; } for (int k = 0; k < tensor->ne[1]; k++) { if (k >= range && k + range < tensor->ne[1]) { continue; } for (int l = 0; l < tensor->ne[0]; l++) { if (l >= range && l + range < tensor->ne[0]) { continue; } if (tensor->type == GGML_TYPE_F32) { printf(" [%d, %d, %d, %d] = %f\n", i, j, k, l, ggml_tensor_get_f32(tensor, l, k, j, i)); } else if (tensor->type == GGML_TYPE_F16) { printf(" [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_f16(tensor, l, k, j, i)); } fflush(stdout); } } } } } ggml_tensor* load_tensor_from_file(ggml_context* ctx, const std::string& file_path) { std::ifstream file(file_path, std::ios::binary); if (!file.is_open()) { LOG_ERROR("failed to open '%s'", file_path.c_str()); return NULL; } int32_t n_dims; int32_t length; int32_t ttype; file.read(reinterpret_cast(&n_dims), sizeof(n_dims)); file.read(reinterpret_cast(&length), sizeof(length)); file.read(reinterpret_cast(&ttype), sizeof(ttype)); if (file.eof()) { LOG_ERROR("incomplete file '%s'", file_path.c_str()); return NULL; } int32_t nelements = 1; int32_t ne[4] = {1, 1, 1, 1}; for (int i = 0; i < n_dims; ++i) { file.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); file.read(&name[0], length); ggml_tensor* tensor = ggml_new_tensor_4d(ctx, (ggml_type)ttype, ne[0], ne[1], ne[2], ne[3]); const size_t bpe = ggml_type_size(ggml_type(ttype)); file.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); return tensor; } // void save_tensor_to_file(const std::string& file_name, ggml_tensor* tensor, const std::string & name) { // std::string file_name_ = file_name + ".tensor"; // std::string name_ = name; // std::ofstream file("./" + file_name_, std::ios::binary); // file.write(reinterpret_cast(&tensor->n_dims), sizeof(tensor->n_dims)); // int len = (int)name_.size(); // file.write(reinterpret_cast(&len), sizeof(len)); // int ttype = (int)tensor->type; // file.write(reinterpret_cast(&ttype), sizeof(ttype)); // for (int i = 0; i < tensor->n_dims; ++i) { // int ne_ = (int) tensor->ne[i]; // file.write(reinterpret_cast(&ne_), sizeof(ne_)); // } // file.write(&name_[0], len); // char* data = nullptr; // file.write((char*)tensor->data, ggml_nbytes(tensor)); // file.close(); // } void sd_fread(void* ptr, size_t size, size_t count, FILE* stream) { size_t ret = std::fread(ptr, size, count, stream); if (ret != count) { printf("Error: read from file failed"); exit(1); } } void copy_ggml_tensor(struct ggml_tensor* dst, struct ggml_tensor* src) { if (dst->type == src->type) { dst->nb[0] = src->nb[0]; dst->nb[1] = src->nb[1]; dst->nb[2] = src->nb[2]; dst->nb[3] = src->nb[3]; memcpy(((char*)dst->data), ((char*)src->data), ggml_nbytes(dst)); return; } struct ggml_init_params params; params.mem_size = 10 * 1024 * 1024; // for padding params.mem_buffer = NULL; params.no_alloc = false; struct ggml_context* ctx = ggml_init(params); if (!ctx) { LOG_ERROR("ggml_init() failed"); return; } ggml_tensor* final = ggml_cpy_inplace(ctx, src, dst); struct ggml_cgraph* graph = ggml_new_graph(ctx); ggml_build_forward_expand(graph, final); ggml_graph_compute_with_ctx(ctx, graph, 1); ggml_free(ctx); } void calculate_alphas_cumprod(float* alphas_cumprod, float linear_start = 0.00085f, float linear_end = 0.0120, int timesteps = TIMESTEPS) { float ls_sqrt = sqrtf(linear_start); float le_sqrt = sqrtf(linear_end); float amount = le_sqrt - ls_sqrt; float product = 1.0f; for (int i = 0; i < timesteps; i++) { float beta = ls_sqrt + amount * ((float)i / (timesteps - 1)); product *= 1.0f - powf(beta, 2.0f); alphas_cumprod[i] = product; } } // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151 void set_timestep_embedding(struct ggml_tensor* timesteps, struct ggml_tensor* embedding, int dim, int max_period = 10000) { // timesteps: [N,] // embedding: [dim, N] int half = dim / 2; std::vector freqs(half); for (int i = 0; i < half; ++i) { freqs[i] = (float)std::exp(-std::log(max_period) * i / half); } for (int i = 0; i < timesteps->ne[0]; ++i) { for (int j = 0; j < half; ++j) { float arg = ggml_get_f32_1d(timesteps, i) * freqs[j]; ggml_tensor_set_f32(embedding, std::cos(arg), j, i); ggml_tensor_set_f32(embedding, std::sin(arg), j + half, i); } if (dim % 2 != 0) { *(float*)((char*)embedding->data + i * embedding->nb[1] + dim * embedding->nb[0]) = 0; } } } struct ggml_tensor* new_timestep_embedding(struct ggml_context* ctx, struct ggml_allocr* allocr, struct ggml_tensor* timesteps, int dim, int max_period = 10000) { // timesteps: [N,] // embedding: [dim, N] int acutual_dim = dim; if (dim % 2 != 0) { acutual_dim = dim + 1; } struct ggml_tensor* embedding = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, acutual_dim, timesteps->ne[0]); if (allocr != NULL) { ggml_allocr_alloc(allocr, embedding); } if (allocr != NULL && !ggml_allocr_is_measure(allocr)) { set_timestep_embedding(timesteps, embedding, dim, max_period); } return embedding; } // SPECIAL OPERATIONS WITH TENSORS uint8_t* sd_tensor_to_image(struct ggml_tensor* input) { int64_t width = input->ne[0]; int64_t height = input->ne[1]; int64_t channels = input->ne[2]; GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32); uint8_t* image_data = (uint8_t*)malloc(width * height * channels); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { float value = ggml_tensor_get_f32(input, ix, iy, k); *(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f); } } } return image_data; } void sd_image_to_tensor(const uint8_t* image_data, struct ggml_tensor* output) { int64_t width = output->ne[0]; int64_t height = output->ne[1]; int64_t channels = output->ne[2]; GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { float value = *(image_data + iy * width * channels + ix * channels + k); ggml_tensor_set_f32(output, value / 255.0f, ix, iy, k); } } } } void ggml_split_tensor_2d(struct ggml_tensor* input, struct ggml_tensor* output, int x, int y) { int64_t width = output->ne[0]; int64_t height = output->ne[1]; int64_t channels = output->ne[2]; GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { float value = ggml_tensor_get_f32(input, ix + x, iy + y, k); ggml_tensor_set_f32(output, value, ix, iy, k); } } } } void ggml_merge_tensor_2d(struct ggml_tensor* input, struct ggml_tensor* output, int x, int y, int overlap) { int64_t width = input->ne[0]; int64_t height = input->ne[1]; int64_t channels = input->ne[2]; GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { float new_value = ggml_tensor_get_f32(input, ix, iy, k); if (overlap > 0) { // blend colors in overlapped area float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k); if (x > 0 && ix < overlap) { // in overlapped horizontal ggml_tensor_set_f32(output, old_value + (new_value - old_value) * (ix / (1.0f * overlap)), x + ix, y + iy, k); continue; } if (y > 0 && iy < overlap) { // in overlapped vertical ggml_tensor_set_f32(output, old_value + (new_value - old_value) * (iy / (1.0f * overlap)), x + ix, y + iy, k); continue; } } ggml_tensor_set_f32(output, new_value, x + ix, y + iy, k); } } } } float ggml_tensor_mean(struct ggml_tensor* src) { float mean = 0.0f; int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { mean += data[i] / nelements * 1.0f; } return mean; } // a = a+b void ggml_tensor_add(struct ggml_tensor* a, struct ggml_tensor* b) { GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); int64_t nelements = ggml_nelements(a); float* vec_a = (float*)a->data; float* vec_b = (float*)b->data; for (int i = 0; i < nelements; i++) { vec_a[i] = vec_a[i] + vec_b[i]; } } void ggml_tensor_scale(struct ggml_tensor* src, float scale) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { data[i] = data[i] * scale; } } void ggml_tensor_clamp(struct ggml_tensor* src, float min, float max) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { float val = data[i]; data[i] = val < min ? min : (val > max ? max : val); } } // convert values from [0, 1] to [-1, 1] void ggml_tensor_scale_input(struct ggml_tensor* src) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { float val = data[i]; data[i] = val * 2.0f - 1.0f; } } // convert values from [-1, 1] to [0, 1] void ggml_tensor_scale_output(struct ggml_tensor* src) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { float val = data[i]; data[i] = (val + 1.0f) * 0.5f; } } typedef std::function on_tile_process; // Tiling void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) { int input_width = input->ne[0]; int input_height = input->ne[1]; int output_width = output->ne[0]; int output_height = output->ne[1]; GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); // should be multiple of 2 int tile_overlap = (int32_t)(tile_size * tile_overlap_factor); int non_tile_overlap = tile_size - tile_overlap; struct ggml_init_params params = {}; params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); // input chunk params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); // output chunk params.mem_size += 3 * ggml_tensor_overhead(); params.mem_buffer = NULL; params.no_alloc = false; LOG_DEBUG("tile work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f); // draft context struct ggml_context* tiles_ctx = ggml_init(params); if (!tiles_ctx) { LOG_ERROR("ggml_init() failed"); return; } // tiling ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1); ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1); on_processing(input_tile, NULL, true); int num_tiles = (input_width * input_height) / (non_tile_overlap * non_tile_overlap); LOG_INFO("processing %i tiles", num_tiles); pretty_progress(1, num_tiles, 0.0f); int tile_count = 1; bool last_y = false, last_x = false; float last_time = 0.0f; for (int y = 0; y < input_height && !last_y; y += non_tile_overlap) { if (y + tile_size >= input_height) { y = input_height - tile_size; last_y = true; } for (int x = 0; x < input_width && !last_x; x += non_tile_overlap) { if (x + tile_size >= input_width) { x = input_width - tile_size; last_x = true; } int64_t t1 = ggml_time_ms(); ggml_split_tensor_2d(input, input_tile, x, y); on_processing(input_tile, output_tile, false); ggml_merge_tensor_2d(output_tile, output, x * scale, y * scale, tile_overlap * scale); int64_t t2 = ggml_time_ms(); last_time = (t2 - t1) / 1000.0f; pretty_progress(tile_count, num_tiles, last_time); tile_count++; } last_x = false; } if (tile_count < num_tiles) { pretty_progress(num_tiles, num_tiles, last_time); } } struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx, struct ggml_tensor* a) { return ggml_group_norm(ctx, a, 32); } struct ggml_tensor* ggml_nn_linear(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b) { x = ggml_mul_mat(ctx, w, x); x = ggml_add(ctx, x, b); return x; } // w: [OC,IC, KH, KW] // x: [N, IC, IH, IW] // b: [OC,] // result: [N, OC, OH, OW] struct ggml_tensor* ggml_nn_conv_2d(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, int s0 = 1, int s1 = 1, int p0 = 0, int p1 = 0, int d0 = 1, int d1 = 1) { x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1); if (b != NULL) { b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); x = ggml_add(ctx, x, b); } return x; } struct ggml_tensor* ggml_nn_layer_norm(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, float eps = EPS) { x = ggml_norm(ctx, x, eps); x = ggml_mul(ctx, x, w); x = ggml_add(ctx, x, b); return x; } struct ggml_tensor* ggml_nn_group_norm(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, int num_groups = 32) { if (x->n_dims == 4) { w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], 1); b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); } x = ggml_group_norm(ctx, x, num_groups); x = ggml_mul(ctx, x, w); x = ggml_add(ctx, x, b); return x; } std::pair, std::string> extract_and_remove_lora(std::string text) { std::regex re("]+)>"); std::smatch matches; std::unordered_map filename2multiplier; while (std::regex_search(text, matches, re)) { std::string filename = matches[1].str(); float multiplier = std::stof(matches[2].str()); text = std::regex_replace(text, re, "", std::regex_constants::format_first_only); if (multiplier == 0.f) { continue; } if (filename2multiplier.find(filename) == filename2multiplier.end()) { filename2multiplier[filename] = multiplier; } else { filename2multiplier[filename] += multiplier; } } return std::make_pair(filename2multiplier, text); } void ggml_backend_tensor_get_and_sync(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { #ifdef SD_USE_CUBLAS ggml_backend_tensor_get_async(backend, tensor, data, offset, size); ggml_backend_synchronize(backend); #else ggml_backend_tensor_get(tensor, data, offset, size); #endif } /*================================================== CLIPTokenizer ===================================================*/ const std::string UNK_TOKEN = "<|endoftext|>"; const std::string BOS_TOKEN = "<|startoftext|>"; const std::string EOS_TOKEN = "<|endoftext|>"; const std::string PAD_TOEKN = "<|endoftext|>"; const int UNK_TOKEN_ID = 49407; const int BOS_TOKEN_ID = 49406; const int EOS_TOKEN_ID = 49407; const int PAD_TOKEN_ID = 49407; std::vector> bytes_to_unicode() { std::vector> byte_unicode_pairs; std::set byte_set; for (int b = static_cast('!'); b <= static_cast('~'); ++b) { byte_set.insert(b); byte_unicode_pairs.push_back(std::pair(b, unicode_value_to_utf32(b))); } for (int b = 161; b <= 172; ++b) { byte_set.insert(b); byte_unicode_pairs.push_back(std::pair(b, unicode_value_to_utf32(b))); } for (int b = 174; b <= 255; ++b) { byte_set.insert(b); byte_unicode_pairs.push_back(std::pair(b, unicode_value_to_utf32(b))); } int n = 0; for (int b = 0; b < 256; ++b) { if (byte_set.find(b) == byte_set.end()) { byte_unicode_pairs.push_back(std::pair(b, unicode_value_to_utf32(n + 256))); ++n; } } // LOG_DEBUG("byte_unicode_pairs %d", byte_unicode_pairs.size()); return byte_unicode_pairs; } // Ref: https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py class CLIPTokenizer { private: SDVersion version = VERSION_1_x; std::map byte_encoder; std::map encoder; std::map, int> bpe_ranks; std::regex pat; static std::string strip(const std::string& str) { std::string::size_type start = str.find_first_not_of(" \t\n\r\v\f"); std::string::size_type end = str.find_last_not_of(" \t\n\r\v\f"); if (start == std::string::npos) { // String contains only whitespace characters return ""; } return str.substr(start, end - start + 1); } static std::string whitespace_clean(std::string text) { text = std::regex_replace(text, std::regex(R"(\s+)"), " "); text = strip(text); return text; } static std::set> get_pairs(const std::vector& subwords) { std::set> pairs; if (subwords.size() == 0) { return pairs; } std::u32string prev_subword = subwords[0]; for (int i = 1; i < subwords.size(); i++) { std::u32string subword = subwords[i]; std::pair pair(prev_subword, subword); pairs.insert(pair); prev_subword = subword; } return pairs; } public: CLIPTokenizer(SDVersion version = VERSION_1_x) : version(version) {} void load_from_merges(const std::string& merges_utf8_str) { auto byte_unicode_pairs = bytes_to_unicode(); byte_encoder = std::map(byte_unicode_pairs.begin(), byte_unicode_pairs.end()); // for (auto & pair: byte_unicode_pairs) { // std::cout << pair.first << ": " << pair.second << std::endl; // } std::vector merges; size_t start = 0; size_t pos; std::u32string merges_utf32_str = utf8_to_utf32(merges_utf8_str); while ((pos = merges_utf32_str.find('\n', start)) != std::string::npos) { merges.push_back(merges_utf32_str.substr(start, pos - start)); start = pos + 1; } // LOG_DEBUG("merges size %llu", merges.size()); GGML_ASSERT(merges.size() == 48895); merges = std::vector(merges.begin() + 1, merges.end()); std::vector> merge_pairs; for (const auto& merge : merges) { size_t space_pos = merge.find(' '); merge_pairs.emplace_back(merge.substr(0, space_pos), merge.substr(space_pos + 1)); // LOG_DEBUG("%s", utf32_to_utf8(merge.substr(space_pos + 1)).c_str()); } std::vector vocab; for (const auto& pair : byte_unicode_pairs) { vocab.push_back(pair.second); } for (const auto& pair : byte_unicode_pairs) { vocab.push_back(pair.second + utf8_to_utf32("")); } for (const auto& merge : merge_pairs) { vocab.push_back(merge.first + merge.second); } vocab.push_back(utf8_to_utf32("<|startoftext|>")); vocab.push_back(utf8_to_utf32("<|endoftext|>")); LOG_DEBUG("vocab size: %llu", vocab.size()); int i = 0; for (const auto& token : vocab) { encoder[token] = i++; } int rank = 0; for (const auto& merge : merge_pairs) { bpe_ranks[merge] = rank++; } }; std::u32string bpe(const std::u32string& token) { std::vector word; for (int i = 0; i < token.size() - 1; i++) { word.emplace_back(1, token[i]); } word.push_back(token.substr(token.size() - 1) + utf8_to_utf32("")); std::set> pairs = get_pairs(word); if (pairs.empty()) { return token + utf8_to_utf32(""); } while (true) { auto min_pair_iter = std::min_element(pairs.begin(), pairs.end(), [&](const std::pair& a, const std::pair& b) { if (bpe_ranks.find(a) == bpe_ranks.end()) { return false; } else if (bpe_ranks.find(b) == bpe_ranks.end()) { return true; } return bpe_ranks.at(a) < bpe_ranks.at(b); }); const std::pair& bigram = *min_pair_iter; if (bpe_ranks.find(bigram) == bpe_ranks.end()) { break; } std::u32string first = bigram.first; std::u32string second = bigram.second; std::vector new_word; int32_t i = 0; while (i < word.size()) { auto it = std::find(word.begin() + i, word.end(), first); if (it == word.end()) { new_word.insert(new_word.end(), word.begin() + i, word.end()); break; } new_word.insert(new_word.end(), word.begin() + i, it); i = static_cast(std::distance(word.begin(), it)); if (word[i] == first && i < static_cast(word.size()) - 1 && word[i + 1] == second) { new_word.push_back(first + second); i += 2; } else { new_word.push_back(word[i]); i += 1; } } word = new_word; if (word.size() == 1) { break; } pairs = get_pairs(word); } std::u32string result; for (int i = 0; i < word.size(); i++) { result += word[i]; if (i != word.size() - 1) { result += utf8_to_utf32(" "); } } return result; } std::vector tokenize(std::string text, size_t max_length = 0, bool padding = false) { std::vector tokens = encode(text); tokens.insert(tokens.begin(), BOS_TOKEN_ID); if (max_length > 0) { if (tokens.size() > max_length - 1) { tokens.resize(max_length - 1); tokens.push_back(EOS_TOKEN_ID); } else { tokens.push_back(EOS_TOKEN_ID); if (padding) { int pad_token_id = PAD_TOKEN_ID; if (version == VERSION_2_x) { pad_token_id = 0; } tokens.insert(tokens.end(), max_length - tokens.size(), pad_token_id); } } } return tokens; } std::vector encode(std::string text) { std::string original_text = text; std::vector bpe_tokens; text = whitespace_clean(text); std::transform(text.begin(), text.end(), text.begin(), [](unsigned char c) { return std::tolower(c); }); std::regex pat(R"(<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[[:alpha:]]+|[[:digit:]]|[^[:space:][:alpha:][:digit:]]+)", std::regex::icase); std::smatch matches; std::string str = text; std::vector token_strs; while (std::regex_search(str, matches, pat)) { for (auto& token : matches) { std::string token_str = token.str(); std::u32string utf32_token; for (int i = 0; i < token_str.length(); i++) { char b = token_str[i]; utf32_token += byte_encoder[b]; } auto bpe_strs = bpe(utf32_token); size_t start = 0; size_t pos; while ((pos = bpe_strs.find(' ', start)) != std::u32string::npos) { auto bpe_str = bpe_strs.substr(start, pos - start); bpe_tokens.push_back(encoder[bpe_str]); token_strs.push_back(utf32_to_utf8(bpe_str)); start = pos + 1; } auto bpe_str = bpe_strs.substr(start, bpe_strs.size() - start); bpe_tokens.push_back(encoder[bpe_str]); token_strs.push_back(utf32_to_utf8(bpe_str)); } str = matches.suffix(); } std::stringstream ss; ss << "["; for (auto token : token_strs) { ss << "\"" << token << "\", "; } ss << "]"; LOG_DEBUG("split prompt \"%s\" to tokens %s", original_text.c_str(), ss.str().c_str()); return bpe_tokens; } }; // Ref: https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/cad87bf4e3e0b0a759afa94e933527c3123d59bc/modules/prompt_parser.py#L345 // // Parses a string with attention tokens and returns a list of pairs: text and its associated weight. // Accepted tokens are: // (abc) - increases attention to abc by a multiplier of 1.1 // (abc:3.12) - increases attention to abc by a multiplier of 3.12 // [abc] - decreases attention to abc by a multiplier of 1.1 // \( - literal character '(' // \[ - literal character '[' // \) - literal character ')' // \] - literal character ']' // \\ - literal character '\' // anything else - just text // // >>> parse_prompt_attention('normal text') // [['normal text', 1.0]] // >>> parse_prompt_attention('an (important) word') // [['an ', 1.0], ['important', 1.1], [' word', 1.0]] // >>> parse_prompt_attention('(unbalanced') // [['unbalanced', 1.1]] // >>> parse_prompt_attention('\(literal\]') // [['(literal]', 1.0]] // >>> parse_prompt_attention('(unnecessary)(parens)') // [['unnecessaryparens', 1.1]] // >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') // [['a ', 1.0], // ['house', 1.5730000000000004], // [' ', 1.1], // ['on', 1.0], // [' a ', 1.1], // ['hill', 0.55], // [', sun, ', 1.1], // ['sky', 1.4641000000000006], // ['.', 1.1]] std::vector> parse_prompt_attention(const std::string& text) { std::vector> res; std::vector round_brackets; std::vector square_brackets; float round_bracket_multiplier = 1.1f; float square_bracket_multiplier = 1 / 1.1f; std::regex re_attention(R"(\\\(|\\\)|\\\[|\\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|\)|\]|[^\\()\[\]:]+|:)"); std::regex re_break(R"(\s*\bBREAK\b\s*)"); auto multiply_range = [&](int start_position, float multiplier) { for (int p = start_position; p < res.size(); ++p) { res[p].second *= multiplier; } }; std::smatch m; std::string remaining_text = text; while (std::regex_search(remaining_text, m, re_attention)) { std::string text = m[0]; std::string weight = m[1]; if (text == "(") { round_brackets.push_back((int)res.size()); } else if (text == "[") { square_brackets.push_back((int)res.size()); } else if (!weight.empty()) { if (!round_brackets.empty()) { multiply_range(round_brackets.back(), std::stof(weight)); round_brackets.pop_back(); } } else if (text == ")" && !round_brackets.empty()) { multiply_range(round_brackets.back(), round_bracket_multiplier); round_brackets.pop_back(); } else if (text == "]" && !square_brackets.empty()) { multiply_range(square_brackets.back(), square_bracket_multiplier); square_brackets.pop_back(); } else if (text == "\\(") { res.push_back({text.substr(1), 1.0f}); } else { res.push_back({text, 1.0f}); } remaining_text = m.suffix(); } for (int pos : round_brackets) { multiply_range(pos, round_bracket_multiplier); } for (int pos : square_brackets) { multiply_range(pos, square_bracket_multiplier); } if (res.empty()) { res.push_back({"", 1.0f}); } int i = 0; while (i + 1 < res.size()) { if (res[i].second == res[i + 1].second) { res[i].first += res[i + 1].first; res.erase(res.begin() + i + 1); } else { ++i; } } return res; } /*================================================ FrozenCLIPEmbedder ================================================*/ struct ResidualAttentionBlock { int32_t n_head; int32_t d_model; int32_t hidden_size; // n_head * d_model int32_t intermediate_size; // attention struct ggml_tensor* q_w; // [hidden_size, hidden_size] struct ggml_tensor* q_b; // [hidden_size, ] struct ggml_tensor* k_w; // [hidden_size, hidden_size] struct ggml_tensor* k_b; // [hidden_size, ] struct ggml_tensor* v_w; // [hidden_size, hidden_size] struct ggml_tensor* v_b; // [hidden_size, ] struct ggml_tensor* out_w; // [hidden_size, hidden_size] struct ggml_tensor* out_b; // [hidden_size, ] // layer norm 1 struct ggml_tensor* ln1_w; // [hidden_size, ] struct ggml_tensor* ln1_b; // [hidden_size, ] // mlp struct ggml_tensor* fc1_w; // [intermediate_size, hidden_size] struct ggml_tensor* fc1_b; // [intermediate_size, ] struct ggml_tensor* fc2_w; // [hidden_size, intermediate_size] struct ggml_tensor* fc2_b; // [hidden_size, ] // layer norm 2 struct ggml_tensor* ln2_w; // [hidden_size, ] struct ggml_tensor* ln2_b; // [hidden_size, ] struct ggml_tensor* attn_scale; // [hidden_size, ] size_t calculate_mem_size(ggml_type wtype) { double mem_size = 0; mem_size += 4 * hidden_size * hidden_size * ggml_type_sizef(wtype); // q_w/k_w/v_w/out_w mem_size += 8 * hidden_size * ggml_type_sizef(GGML_TYPE_F32); // q_b/k_b/v_b/out_b/ln1_w/ln1_b/ln2_w/ln2_b mem_size += 2 * hidden_size * intermediate_size * ggml_type_sizef(wtype); // fc1_w/fc2_w mem_size += intermediate_size * ggml_type_sizef(GGML_TYPE_F32); // fc1_b mem_size += hidden_size * ggml_type_sizef(GGML_TYPE_F32); // fc2_b mem_size += ggml_type_sizef(GGML_TYPE_F32); // attn_scale return static_cast(mem_size); } void init_params(struct ggml_context* ctx, ggml_allocr* alloc, ggml_type wtype) { ln1_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); ln1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); q_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size); q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); k_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size); k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); v_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size); v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); out_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size); out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); fc1_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, intermediate_size); fc1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, intermediate_size); fc2_w = ggml_new_tensor_2d(ctx, wtype, intermediate_size, hidden_size); fc2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); ln2_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); ln2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); attn_scale = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); ggml_allocr_alloc(alloc, attn_scale); float scale = 1.0f / sqrt((float)d_model); ggml_backend_tensor_set(attn_scale, &scale, 0, sizeof(scale)); } void map_by_name(std::map& tensors, const std::string prefix) { tensors[prefix + "self_attn.q_proj.weight"] = q_w; tensors[prefix + "self_attn.q_proj.bias"] = q_b; tensors[prefix + "self_attn.k_proj.weight"] = k_w; tensors[prefix + "self_attn.k_proj.bias"] = k_b; tensors[prefix + "self_attn.v_proj.weight"] = v_w; tensors[prefix + "self_attn.v_proj.bias"] = v_b; tensors[prefix + "self_attn.out_proj.weight"] = out_w; tensors[prefix + "self_attn.out_proj.bias"] = out_b; tensors[prefix + "layer_norm1.weight"] = ln1_w; tensors[prefix + "layer_norm1.bias"] = ln1_b; tensors[prefix + "layer_norm2.weight"] = ln2_w; tensors[prefix + "layer_norm2.bias"] = ln2_b; tensors[prefix + "mlp.fc1.weight"] = fc1_w; tensors[prefix + "mlp.fc1.bias"] = fc1_b; tensors[prefix + "mlp.fc2.weight"] = fc2_w; tensors[prefix + "mlp.fc2.bias"] = fc2_b; } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { // x: [N, n_token, hidden_size] int64_t N = x->ne[2]; int64_t n_token = x->ne[1]; int64_t hidden_size = n_head * d_model; struct ggml_tensor* r = x; // layer norm 1 x = ggml_nn_layer_norm(ctx, x, ln1_w, ln1_b); // self-attention { struct ggml_tensor* q = ggml_nn_linear(ctx, x, q_w, q_b); q = ggml_scale_inplace(ctx, q, attn_scale); q = ggml_reshape_4d(ctx, q, d_model, n_head, n_token, N); // [N, n_token, n_head, d_model] q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); // [N, n_head, n_token, d_model] q = ggml_reshape_3d(ctx, q, d_model, n_token, n_head * N); // [N * n_head, n_token, d_model] struct ggml_tensor* k = ggml_nn_linear(ctx, x, k_w, k_b); k = ggml_reshape_4d(ctx, k, d_model, n_head, n_token, N); // [N, n_token, n_head, d_model] k = ggml_cont(ctx, ggml_permute(ctx, k, 0, 2, 1, 3)); // [N, n_head, n_token, d_model] k = ggml_reshape_3d(ctx, k, d_model, n_token, n_head); // [N * n_head, n_token, d_model] struct ggml_tensor* v = ggml_nn_linear(ctx, x, v_w, v_b); v = ggml_reshape_4d(ctx, v, d_model, n_head, n_token, N); // [N, n_token, n_head, d_model] v = ggml_cont(ctx, ggml_permute(ctx, v, 1, 2, 0, 3)); // [N, n_head, d_model, n_token] v = ggml_reshape_3d(ctx, v, n_token, d_model, n_head * N); // [N * n_head, d_model, n_token] struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); // [N * n_head, n_token, n_token] kq = ggml_diag_mask_inf_inplace(ctx, kq, 0); kq = ggml_soft_max_inplace(ctx, kq); struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, n_token, d_model] kqv = ggml_reshape_4d(ctx, kqv, d_model, n_token, n_head, N); kqv = ggml_cont(ctx, ggml_permute(ctx, kqv, 0, 2, 1, 3)); // [N, n_token, n_head, d_model] x = ggml_reshape_2d(ctx, kqv, d_model * n_head, n_token * N); // // [N * n_token, d_model * n_head] } // attention output x = ggml_nn_linear(ctx, x, out_w, out_b); // residual x = ggml_add(ctx, x, r); r = x; // layer norm 2 x = ggml_nn_layer_norm(ctx, x, ln2_w, ln2_b); // mlp x = ggml_nn_linear(ctx, x, fc1_w, fc1_b); if (hidden_size == 1024 || hidden_size == 1280) { // SD 2.x x = ggml_gelu_inplace(ctx, x); } else { // SD 1.x x = ggml_gelu_quick_inplace(ctx, x); } x = ggml_nn_linear(ctx, x, fc2_w, fc2_b); // residual 2 x = ggml_add(ctx, x, r); return x; } }; // OPENAI_CLIP_VIT_L_14: https://huggingface.co/openai/clip-vit-large-patch14/blob/main/config.json // OPEN_CLIP_VIT_H_14: https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K/blob/main/config.json // OPEN_CLIP_VIT_BIGG_14: https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/blob/main/config.json (CLIPTextModelWithProjection) // SDXL CLIPModel // CLIPTextModelWithProjection seems optional enum CLIPVersion { OPENAI_CLIP_VIT_L_14, // SD 1.x and SDXL OPEN_CLIP_VIT_H_14, // SD 2.x OPEN_CLIP_VIT_BIGG_14, // SDXL }; struct CLIPTextModel { CLIPVersion version = OPENAI_CLIP_VIT_L_14; // network hparams int32_t vocab_size = 49408; int32_t max_position_embeddings = 77; int32_t hidden_size = 768; // 1024 for OPEN_CLIP_VIT_H_14 int32_t intermediate_size = 3072; // 4096 for OPEN_CLIP_VIT_H_14 int32_t n_head = 12; // num_attention_heads, 16 for OPEN_CLIP_VIT_H_14 int32_t num_hidden_layers = 12; // 24 for OPEN_CLIP_VIT_H_14 int32_t layer_idx = 11; int32_t projection_dim = 1280; // only for OPEN_CLIP_VIT_BIGG_14 bool with_final_ln = true; // embeddings struct ggml_tensor* position_ids; struct ggml_tensor* token_embed_weight; struct ggml_tensor* position_embed_weight; // transformer std::vector resblocks; struct ggml_tensor* final_ln_w; struct ggml_tensor* final_ln_b; struct ggml_tensor* text_projection; CLIPTextModel(CLIPVersion version = OPENAI_CLIP_VIT_L_14, int clip_skip = 1, bool with_final_ln = true) : version(version), with_final_ln(with_final_ln) { if (version == OPEN_CLIP_VIT_H_14) { hidden_size = 1024; intermediate_size = 4096; n_head = 16; num_hidden_layers = 24; } else if (version == OPEN_CLIP_VIT_BIGG_14) { // CLIPTextModelWithProjection hidden_size = 1280; intermediate_size = 5120; n_head = 20; num_hidden_layers = 32; } layer_idx = num_hidden_layers - clip_skip; resblocks.resize(num_hidden_layers); set_resblocks_hp_params(); } void set_resblocks_hp_params() { int d_model = hidden_size / n_head; // 64 / SDXL is 40 for CLIPTextModelWithProjection for (int i = 0; i < num_hidden_layers; i++) { resblocks[i].d_model = d_model; resblocks[i].n_head = n_head; resblocks[i].hidden_size = hidden_size; resblocks[i].intermediate_size = intermediate_size; } } size_t calculate_mem_size(ggml_type wtype) { double mem_size = 0; mem_size += hidden_size * max_position_embeddings * ggml_type_sizef(GGML_TYPE_I32); // position_ids mem_size += hidden_size * vocab_size * ggml_type_sizef(wtype); // token_embed_weight mem_size += hidden_size * max_position_embeddings * ggml_type_sizef(wtype); // position_embed_weight for (int i = 0; i < num_hidden_layers; i++) { mem_size += resblocks[i].calculate_mem_size(wtype); } mem_size += 2 * hidden_size * ggml_type_sizef(GGML_TYPE_F32); // final_ln_w/b if (version == OPEN_CLIP_VIT_BIGG_14) { mem_size += hidden_size * projection_dim * ggml_type_sizef(GGML_TYPE_F32); // text_projection } return static_cast(mem_size); } void map_by_name(std::map& tensors, const std::string prefix) { tensors[prefix + "embeddings.token_embedding.weight"] = token_embed_weight; tensors[prefix + "embeddings.position_embedding.weight"] = position_embed_weight; tensors[prefix + "final_layer_norm.weight"] = final_ln_w; tensors[prefix + "final_layer_norm.bias"] = final_ln_b; for (int i = 0; i < num_hidden_layers; i++) { std::string name = prefix + "encoder.layers." + std::to_string(i) + "."; resblocks[i].map_by_name(tensors, prefix + "encoder.layers." + std::to_string(i) + "."); } if (version == OPEN_CLIP_VIT_BIGG_14) { tensors[prefix + "text_projection"] = text_projection; } } struct ggml_tensor* forward(struct ggml_context* ctx0, struct ggml_tensor* input_ids, uint32_t max_token_idx = 0, bool return_pooled = false) { // input_ids: [N, n_token] GGML_ASSERT(input_ids->ne[0] <= position_ids->ne[0]); // token_embedding + position_embedding struct ggml_tensor* x; x = ggml_add(ctx0, ggml_get_rows(ctx0, token_embed_weight, input_ids), ggml_get_rows(ctx0, position_embed_weight, ggml_view_1d(ctx0, position_ids, input_ids->ne[0], 0))); // [N, n_token, hidden_size] // transformer for (int i = 0; i < num_hidden_layers; i++) { if (!return_pooled && i == layer_idx + 1) { // LOG_DEBUG("layer %d", i); break; } x = resblocks[i].forward(ctx0, x); // [N, n_token, hidden_size] } // final layer norm if (return_pooled || with_final_ln) { x = ggml_nn_layer_norm(ctx0, x, final_ln_w, final_ln_b); } if (return_pooled) { // ggml_tensor* idx = ggml_argmax(ctx0, input_ids); // ggml_tensor* pooled = ggml_get_rows(ctx0, x, idx); // LOG_DEBUG("max_token_idx: %u %u", max_token_idx, x->nb[1]); ggml_tensor* pooled = ggml_view_1d(ctx0, x, hidden_size, x->nb[1] * max_token_idx); pooled = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, text_projection)), pooled); return pooled; } return x; // [N, n_token, hidden_size] } void alloc_params(ggml_context* ctx, ggml_backend_t backend, ggml_type wtype, ggml_allocr* alloc) { position_ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, max_position_embeddings); token_embed_weight = ggml_new_tensor_2d(ctx, wtype, hidden_size, vocab_size); position_embed_weight = ggml_new_tensor_2d(ctx, wtype, hidden_size, max_position_embeddings); for (int i = 0; i < num_hidden_layers; i++) { resblocks[i].init_params(ctx, alloc, wtype); } final_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); final_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); if (version == OPEN_CLIP_VIT_BIGG_14) { text_projection = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, projection_dim, hidden_size); } // alloc all tensors linked to this context for (struct ggml_tensor* t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->data == NULL) { ggml_allocr_alloc(alloc, t); } } if (ggml_backend_is_cpu(backend)) { for (int i = 0; i < max_position_embeddings; i++) { ggml_set_i32_1d(position_ids, i, i); } } else { std::vector pos_temp; for (int i = 0; i < max_position_embeddings; i++) { pos_temp.push_back(i); } ggml_backend_tensor_set(position_ids, pos_temp.data(), 0, ggml_nbytes(position_ids)); } } }; // ldm.modules.encoders.modules.FrozenCLIPEmbedder struct FrozenCLIPEmbedder { CLIPTokenizer tokenizer; CLIPTextModel text_model; struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_allocr* allocr, const std::string& prompt) { std::vector tokens = tokenizer.tokenize(prompt, text_model.max_position_embeddings, true); struct ggml_tensor* input_ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, tokens.size()); memcpy(input_ids->data, tokens.data(), tokens.size() * ggml_element_size(input_ids)); struct ggml_tensor* hidden_states = text_model.forward(ctx, input_ids); return hidden_states; } }; // Ref: https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/cad87bf4e3e0b0a759afa94e933527c3123d59bc/modules/sd_hijack_clip.py#L283 struct FrozenCLIPEmbedderWithCustomWords { SDVersion version = VERSION_1_x; CLIPTokenizer tokenizer; CLIPTextModel text_model; CLIPTextModel text_model2; // context and memory buffers struct ggml_context* ctx = NULL; ggml_backend_buffer_t params_buffer = NULL; ggml_backend_buffer_t compute_buffer = NULL;; // for compute struct ggml_allocr* compute_alloc = NULL; size_t compute_memory_buffer_size = -1; size_t memory_buffer_size = 0; ggml_type wtype; ggml_backend_t backend = NULL; ggml_tensor* hidden_state_output = NULL; ggml_tensor* pooled_output = NULL; FrozenCLIPEmbedderWithCustomWords(SDVersion version = VERSION_1_x, int clip_skip = -1) : version(version), tokenizer(version) { if (clip_skip <= 0) { clip_skip = 1; if (version == VERSION_2_x || version == VERSION_XL) { clip_skip = 2; } } if (version == VERSION_1_x) { text_model = CLIPTextModel(OPENAI_CLIP_VIT_L_14, clip_skip); } else if (version == VERSION_2_x) { text_model = CLIPTextModel(OPEN_CLIP_VIT_H_14, clip_skip); } else if (version == VERSION_XL) { text_model = CLIPTextModel(OPENAI_CLIP_VIT_L_14, clip_skip, false); text_model2 = CLIPTextModel(OPEN_CLIP_VIT_BIGG_14, clip_skip, false); } } size_t calculate_mem_size() { size_t mem_size = text_model.calculate_mem_size(wtype); if (version == VERSION_XL) { mem_size += text_model2.calculate_mem_size(wtype); } return mem_size; } void map_by_name(std::map& tensors, const std::string prefix) { text_model.map_by_name(tensors, prefix + "transformer.text_model."); if (version == VERSION_XL) { text_model2.map_by_name(tensors, prefix + "1.transformer.text_model."); } } struct ggml_tensor* forward(struct ggml_context* ctx0, struct ggml_tensor* input_ids, struct ggml_tensor* input_ids2, uint32_t max_token_idx = 0, bool return_pooled = false) { if (return_pooled) { return text_model2.forward(ctx0, input_ids2, max_token_idx, return_pooled); } auto hidden_states = text_model.forward(ctx0, input_ids); // [N, n_token, hidden_size] // LOG_DEBUG("hidden_states: %d %d %d %d %d", hidden_states->n_dims, hidden_states->ne[0], hidden_states->ne[1], hidden_states->ne[2], hidden_states->ne[3]); if (version == VERSION_XL) { hidden_states = ggml_reshape_4d(ctx0, hidden_states, hidden_states->ne[0], hidden_states->ne[1], hidden_states->ne[2], hidden_states->ne[3]); hidden_states = ggml_cont(ctx0, ggml_permute(ctx0, hidden_states, 2, 0, 1, 3)); auto hidden_states2 = text_model2.forward(ctx0, input_ids2); // [N, n_token, hidden_size2] hidden_states2 = ggml_reshape_4d(ctx0, hidden_states2, hidden_states2->ne[0], hidden_states2->ne[1], hidden_states2->ne[2], hidden_states2->ne[3]); hidden_states2 = ggml_cont(ctx0, ggml_permute(ctx0, hidden_states2, 2, 0, 1, 3)); hidden_states = ggml_concat(ctx0, hidden_states, hidden_states2); // [N, n_token, hidden_size + hidden_size2] hidden_states = ggml_cont(ctx0, ggml_permute(ctx0, hidden_states, 1, 2, 0, 3)); } // LOG_DEBUG("hidden_states: %d %d %d %d", hidden_states->ne[0], hidden_states->ne[1], hidden_states->ne[2], hidden_states->ne[3]); return hidden_states; } std::pair, std::vector> tokenize(std::string text, bool padding = false) { return tokenize(text, text_model.max_position_embeddings, padding); } std::pair, std::vector> tokenize(std::string text, size_t max_length = 0, bool padding = false) { auto parsed_attention = parse_prompt_attention(text); { std::stringstream ss; ss << "["; for (const auto& item : parsed_attention) { ss << "['" << item.first << "', " << item.second << "], "; } ss << "]"; LOG_DEBUG("parse '%s' to %s", text.c_str(), ss.str().c_str()); } std::vector tokens; std::vector weights; for (const auto& item : parsed_attention) { const std::string& curr_text = item.first; float curr_weight = item.second; std::vector curr_tokens = tokenizer.encode(curr_text); tokens.insert(tokens.end(), curr_tokens.begin(), curr_tokens.end()); weights.insert(weights.end(), curr_tokens.size(), curr_weight); } tokens.insert(tokens.begin(), BOS_TOKEN_ID); weights.insert(weights.begin(), 1.0); if (max_length > 0) { if (tokens.size() > max_length - 1) { tokens.resize(max_length - 1); weights.resize(max_length - 1); tokens.push_back(EOS_TOKEN_ID); weights.push_back(1.0); } else { tokens.push_back(EOS_TOKEN_ID); weights.push_back(1.0); if (padding) { int pad_token_id = PAD_TOKEN_ID; if (version == VERSION_2_x) { pad_token_id = 0; } tokens.insert(tokens.end(), max_length - tokens.size(), pad_token_id); weights.insert(weights.end(), max_length - weights.size(), 1.0); } } } // for (int i = 0; i < tokens.size(); i++) { // std::cout << tokens[i] << ":" << weights[i] << ", "; // } // std::cout << std::endl; return {tokens, weights}; } bool initialize(ggml_backend_t backend_, ggml_type wtype_) { backend = backend_; wtype = wtype_; memory_buffer_size = 1 * 1024 * 1024; // 1 MB, for padding memory_buffer_size += calculate_mem_size(); int num_tensors = (3 + 2 + 37 * text_model.num_hidden_layers); if (version == VERSION_XL) { num_tensors += (3 + 2 + 37 * text_model2.num_hidden_layers); } LOG_DEBUG("clip params backend buffer size = % 6.2f MB (%i tensors)", memory_buffer_size / (1024.0 * 1024.0), num_tensors); struct ggml_init_params params; params.mem_size = static_cast(num_tensors * ggml_tensor_overhead()); params.mem_buffer = NULL; params.no_alloc = true; ctx = ggml_init(params); if (!ctx) { LOG_ERROR("ggml_init() failed"); return false; } params_buffer = ggml_backend_alloc_buffer(backend, memory_buffer_size); return true; } void destroy() { if (ctx != NULL) { ggml_free(ctx); ctx = NULL; } if (params_buffer != NULL) { ggml_backend_buffer_free(params_buffer); params_buffer = NULL; } } void alloc_params() { ggml_allocr* alloc = ggml_allocr_new_from_buffer(params_buffer); text_model.alloc_params(ctx, backend, wtype, alloc); if (version == VERSION_XL) { text_model2.alloc_params(ctx, backend, wtype, alloc); } ggml_allocr_free(alloc); } struct ggml_cgraph* build_graph(struct ggml_allocr* allocr, std::vector tokens, bool return_pooled = false) { // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data static size_t buf_size = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); static std::vector buf(buf_size); struct ggml_init_params params = { /*.mem_size =*/buf_size, /*.mem_buffer =*/buf.data(), /*.no_alloc =*/true, // the tensors will be allocated later by ggml_allocr_alloc_graph() }; struct ggml_context* ctx0 = ggml_init(params); struct ggml_cgraph* gf = ggml_new_graph(ctx0); struct ggml_tensor* input_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, tokens.size()); ggml_allocr_alloc(allocr, input_ids); if (!ggml_allocr_is_measure(allocr)) { ggml_backend_tensor_set(input_ids, tokens.data(), 0, tokens.size() * ggml_element_size(input_ids)); } struct ggml_tensor* input_ids2 = NULL; size_t max_token_idx = 0; if (version == VERSION_XL) { input_ids2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, tokens.size()); ggml_allocr_alloc(allocr, input_ids2); auto it = std::find(tokens.begin(), tokens.end(), EOS_TOKEN_ID); if (it != tokens.end()) { std::fill(std::next(it), tokens.end(), 0); } max_token_idx = std::min(std::distance(tokens.begin(), it), tokens.size() - 1); // for (int i = 0; i < tokens.size(); i++) { // printf("%d ", tokens[i]); // } // printf("\n"); if (!ggml_allocr_is_measure(allocr)) { ggml_backend_tensor_set(input_ids2, tokens.data(), 0, tokens.size() * ggml_element_size(input_ids2)); } } struct ggml_tensor* hidden_states = forward(ctx0, input_ids, input_ids2, max_token_idx, return_pooled); ggml_build_forward_expand(gf, hidden_states); ggml_free(ctx0); return gf; } void begin(ggml_context* work_ctx, int max_tokens) { if (hidden_state_output == NULL) { size_t total_hidden_size = text_model.hidden_size; if (version == VERSION_XL) { total_hidden_size += text_model2.hidden_size; } hidden_state_output = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, total_hidden_size, text_model.max_position_embeddings); pooled_output = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, text_model2.projection_dim); } // calculate the amount of memory required if (compute_memory_buffer_size == -1) { compute_alloc = ggml_allocr_new_measure_from_backend(backend); bool return_pooled = false; if (version == VERSION_XL) { return_pooled = true; } struct ggml_cgraph* gf = build_graph(compute_alloc, std::vector(max_tokens), return_pooled); // compute the required memory compute_memory_buffer_size = ggml_allocr_alloc_graph(compute_alloc, gf) + 1024 * 1024; // recreate the allocator with the required memory ggml_allocr_free(compute_alloc); LOG_DEBUG("learned condition compute buffer size: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0); } compute_buffer = ggml_backend_alloc_buffer(backend, compute_memory_buffer_size); compute_alloc = ggml_allocr_new_from_buffer(compute_buffer); } std::pair compute(const int n_threads, std::vector tokens) { struct ggml_cgraph* gf = build_graph(compute_alloc, tokens); ggml_allocr_alloc_graph(compute_alloc, gf); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } #ifdef SD_USE_METAL if (ggml_backend_is_metal(backend)) { ggml_backend_metal_set_n_cb(backend, n_threads); } #endif ggml_backend_graph_compute(backend, gf); #ifdef GGML_PERF ggml_graph_print(gf); #endif ggml_backend_tensor_get(gf->nodes[gf->n_nodes - 1], hidden_state_output->data, 0, ggml_nbytes(hidden_state_output)); if (version == VERSION_XL) { struct ggml_cgraph* gf = build_graph(compute_alloc, tokens, true); ggml_allocr_alloc_graph(compute_alloc, gf); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } ggml_backend_graph_compute(backend, gf); #ifdef GGML_PERF ggml_graph_print(gf); #endif ggml_backend_tensor_get(gf->nodes[gf->n_nodes - 1], pooled_output->data, 0, ggml_nbytes(pooled_output)); return {hidden_state_output, pooled_output}; } return {hidden_state_output, NULL}; } void end() { ggml_allocr_free(compute_alloc); ggml_backend_buffer_free(compute_buffer); compute_alloc = NULL; compute_memory_buffer_size = -1; hidden_state_output = NULL; pooled_output = NULL; } }; /*==================================================== UnetModel =====================================================*/ struct ResBlock { // network hparams int channels; // model_channels * (1, 1, 1, 2, 2, 4, 4, 4) int emb_channels; // time_embed_dim int out_channels; // mult * model_channels // network params // in_layers struct ggml_tensor* in_layer_0_w; // [channels, ] struct ggml_tensor* in_layer_0_b; // [channels, ] // in_layer_1 is nn.SILU() struct ggml_tensor* in_layer_2_w; // [out_channels, channels, 3, 3] struct ggml_tensor* in_layer_2_b; // [out_channels, ] // emb_layers // emb_layer_0 is nn.SILU() struct ggml_tensor* emb_layer_1_w; // [out_channels, emb_channels] struct ggml_tensor* emb_layer_1_b; // [out_channels, ] // out_layers struct ggml_tensor* out_layer_0_w; // [out_channels, ] struct ggml_tensor* out_layer_0_b; // [out_channels, ] // out_layer_1 is nn.SILU() // out_layer_2 is nn.Dropout(), p = 0 for inference struct ggml_tensor* out_layer_3_w; // [out_channels, out_channels, 3, 3] struct ggml_tensor* out_layer_3_b; // [out_channels, ] // skip connection, only if out_channels != channels struct ggml_tensor* skip_w; // [out_channels, channels, 1, 1] struct ggml_tensor* skip_b; // [out_channels, ] size_t calculate_mem_size(ggml_type wtype) { double mem_size = 0; mem_size += 2 * channels * ggml_type_sizef(GGML_TYPE_F32); // in_layer_0_w/b mem_size += out_channels * channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // in_layer_2_w mem_size += 5 * out_channels * ggml_type_sizef(GGML_TYPE_F32); // in_layer_2_b/emb_layer_1_b/out_layer_0_w/out_layer_0_b/out_layer_3_b mem_size += out_channels * emb_channels * ggml_type_sizef(wtype); // emb_layer_1_w mem_size += out_channels * out_channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // out_layer_3_w if (out_channels != channels) { mem_size += out_channels * channels * 1 * 1 * ggml_type_sizef(GGML_TYPE_F16); // skip_w mem_size += out_channels * ggml_type_sizef(GGML_TYPE_F32); // skip_b } return static_cast(mem_size); } void init_params(struct ggml_context* ctx, ggml_type wtype) { in_layer_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, channels); in_layer_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, channels); in_layer_2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, out_channels); in_layer_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); emb_layer_1_w = ggml_new_tensor_2d(ctx, wtype, emb_channels, out_channels); emb_layer_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); out_layer_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); out_layer_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); out_layer_3_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, out_channels, out_channels); out_layer_3_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); if (out_channels != channels) { skip_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, channels, out_channels); skip_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); } } void map_by_name(std::map& tensors, const std::string prefix) { tensors[prefix + "in_layers.0.weight"] = in_layer_0_w; tensors[prefix + "in_layers.0.bias"] = in_layer_0_b; tensors[prefix + "in_layers.2.weight"] = in_layer_2_w; tensors[prefix + "in_layers.2.bias"] = in_layer_2_b; tensors[prefix + "emb_layers.1.weight"] = emb_layer_1_w; tensors[prefix + "emb_layers.1.bias"] = emb_layer_1_b; tensors[prefix + "out_layers.0.weight"] = out_layer_0_w; tensors[prefix + "out_layers.0.bias"] = out_layer_0_b; tensors[prefix + "out_layers.3.weight"] = out_layer_3_w; tensors[prefix + "out_layers.3.bias"] = out_layer_3_b; if (out_channels != channels) { tensors[prefix + "skip_connection.weight"] = skip_w; tensors[prefix + "skip_connection.bias"] = skip_b; } } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* emb) { // x: [N, channels, h, w] // emb: [N, emb_channels] // in_layers auto h = ggml_nn_group_norm(ctx, x, in_layer_0_w, in_layer_0_b); h = ggml_silu_inplace(ctx, h); h = ggml_nn_conv_2d(ctx, h, in_layer_2_w, in_layer_2_b, 1, 1, 1, 1); // [N, out_channels, h, w] // emb_layers auto emb_out = ggml_silu(ctx, emb); emb_out = ggml_nn_linear(ctx, emb_out, emb_layer_1_w, emb_layer_1_b); // [N, out_channels] emb_out = ggml_reshape_4d(ctx, emb_out, 1, 1, emb_out->ne[0], emb_out->ne[1]); // [N, out_channels, 1, 1] // out_layers h = ggml_add(ctx, h, emb_out); h = ggml_nn_group_norm(ctx, h, out_layer_0_w, out_layer_0_b); h = ggml_silu_inplace(ctx, h); // dropout, skip for inference h = ggml_nn_conv_2d(ctx, h, out_layer_3_w, out_layer_3_b, 1, 1, 1, 1); // [N, out_channels, h, w] // skip connection if (out_channels != channels) { x = ggml_nn_conv_2d(ctx, x, skip_w, skip_b); // [N, out_channels, h, w] } h = ggml_add(ctx, h, x); return h; // [N, out_channels, h, w] } }; struct SpatialTransformer { int in_channels; // mult * model_channels int n_head; // num_heads int d_head; // in_channels // n_heads int depth = 1; // 1 int context_dim = 768; // hidden_size, 1024 for VERSION_2_x // group norm struct ggml_tensor* norm_w; // [in_channels,] struct ggml_tensor* norm_b; // [in_channels,] // proj_in struct ggml_tensor* proj_in_w; // [in_channels, in_channels, 1, 1] struct ggml_tensor* proj_in_b; // [in_channels,] // transformer struct Transformer { // layer norm 1 struct ggml_tensor* norm1_w; // [in_channels, ] struct ggml_tensor* norm1_b; // [in_channels, ] // attn1 struct ggml_tensor* attn1_q_w; // [in_channels, in_channels] struct ggml_tensor* attn1_k_w; // [in_channels, in_channels] struct ggml_tensor* attn1_v_w; // [in_channels, in_channels] struct ggml_tensor* attn1_out_w; // [in_channels, in_channels] struct ggml_tensor* attn1_out_b; // [in_channels, ] // layer norm 2 struct ggml_tensor* norm2_w; // [in_channels, ] struct ggml_tensor* norm2_b; // [in_channels, ] // attn2 struct ggml_tensor* attn2_q_w; // [in_channels, in_channels] struct ggml_tensor* attn2_k_w; // [in_channels, context_dim] struct ggml_tensor* attn2_v_w; // [in_channels, context_dim] struct ggml_tensor* attn2_out_w; // [in_channels, in_channels] struct ggml_tensor* attn2_out_b; // [in_channels, ] // layer norm 3 struct ggml_tensor* norm3_w; // [in_channels, ] struct ggml_tensor* norm3_b; // [in_channels, ] // ff struct ggml_tensor* ff_0_proj_w; // [in_channels * 4 * 2, in_channels] struct ggml_tensor* ff_0_proj_b; // [in_channels * 4 * 2] struct ggml_tensor* ff_2_w; // [in_channels, in_channels * 4] struct ggml_tensor* ff_2_b; // [in_channels,] }; std::vector transformers; struct ggml_tensor* attn_scale; // proj_out struct ggml_tensor* proj_out_w; // [in_channels, in_channels, 1, 1] struct ggml_tensor* proj_out_b; // [in_channels,] SpatialTransformer(int depth = 1) : depth(depth) { transformers.resize(depth); } size_t get_num_tensors() { return depth * 20 + 7; } size_t calculate_mem_size(ggml_type wtype) { double mem_size = 0; mem_size += 2 * in_channels * ggml_type_sizef(GGML_TYPE_F32); // norm_w/norm_b mem_size += 2 * in_channels * in_channels * 1 * 1 * ggml_type_sizef(GGML_TYPE_F16); // proj_in_w/proj_out_w mem_size += 2 * in_channels * ggml_type_sizef(GGML_TYPE_F32); // proj_in_b/proj_out_b mem_size += 1 * ggml_type_sizef(GGML_TYPE_F32); // attn_scale // transformer for (auto& transformer : transformers) { mem_size += 6 * in_channels * ggml_type_sizef(GGML_TYPE_F32); // norm1-3_w/b mem_size += 6 * in_channels * in_channels * ggml_type_sizef(wtype); // attn1_q/k/v/out_w attn2_q/out_w mem_size += 2 * in_channels * context_dim * ggml_type_sizef(wtype); // attn2_k/v_w mem_size += in_channels * 4 * 2 * in_channels * ggml_type_sizef(wtype); // ff_0_proj_w mem_size += in_channels * 4 * 2 * ggml_type_sizef(GGML_TYPE_F32); // ff_0_proj_b mem_size += in_channels * 4 * in_channels * ggml_type_sizef(wtype); // ff_2_w mem_size += in_channels * ggml_type_sizef(GGML_TYPE_F32); // ff_2_b } return static_cast(mem_size); } void init_params(struct ggml_context* ctx, ggml_allocr* alloc, ggml_type wtype) { norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); proj_in_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, in_channels, in_channels); proj_in_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); proj_out_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, in_channels, in_channels); proj_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); attn_scale = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); ggml_allocr_alloc(alloc, attn_scale); float scale = 1.0f / sqrt((float)d_head); ggml_backend_tensor_set(attn_scale, &scale, 0, sizeof(scale)); // transformer for (auto& transformer : transformers) { transformer.norm1_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); transformer.norm1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); transformer.attn1_q_w = ggml_new_tensor_2d(ctx, wtype, in_channels, in_channels); transformer.attn1_k_w = ggml_new_tensor_2d(ctx, wtype, in_channels, in_channels); transformer.attn1_v_w = ggml_new_tensor_2d(ctx, wtype, in_channels, in_channels); transformer.attn1_out_w = ggml_new_tensor_2d(ctx, wtype, in_channels, in_channels); transformer.attn1_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); transformer.norm2_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); transformer.norm2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); transformer.attn2_q_w = ggml_new_tensor_2d(ctx, wtype, in_channels, in_channels); transformer.attn2_k_w = ggml_new_tensor_2d(ctx, wtype, context_dim, in_channels); transformer.attn2_v_w = ggml_new_tensor_2d(ctx, wtype, context_dim, in_channels); transformer.attn2_out_w = ggml_new_tensor_2d(ctx, wtype, in_channels, in_channels); transformer.attn2_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); transformer.norm3_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); transformer.norm3_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); transformer.ff_0_proj_w = ggml_new_tensor_2d(ctx, wtype, in_channels, in_channels * 4 * 2); transformer.ff_0_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels * 4 * 2); transformer.ff_2_w = ggml_new_tensor_2d(ctx, wtype, in_channels * 4, in_channels); transformer.ff_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); } } void map_by_name(std::map& tensors, const std::string prefix) { tensors[prefix + "norm.weight"] = norm_w; tensors[prefix + "norm.bias"] = norm_b; tensors[prefix + "proj_in.weight"] = proj_in_w; tensors[prefix + "proj_in.bias"] = proj_in_b; // transformer for (int i = 0; i < transformers.size(); i++) { auto& transformer = transformers[i]; std::string transformer_prefix = prefix + "transformer_blocks." + std::to_string(i) + "."; tensors[transformer_prefix + "attn1.to_q.weight"] = transformer.attn1_q_w; tensors[transformer_prefix + "attn1.to_k.weight"] = transformer.attn1_k_w; tensors[transformer_prefix + "attn1.to_v.weight"] = transformer.attn1_v_w; tensors[transformer_prefix + "attn1.to_out.0.weight"] = transformer.attn1_out_w; tensors[transformer_prefix + "attn1.to_out.0.bias"] = transformer.attn1_out_b; tensors[transformer_prefix + "ff.net.0.proj.weight"] = transformer.ff_0_proj_w; tensors[transformer_prefix + "ff.net.0.proj.bias"] = transformer.ff_0_proj_b; tensors[transformer_prefix + "ff.net.2.weight"] = transformer.ff_2_w; tensors[transformer_prefix + "ff.net.2.bias"] = transformer.ff_2_b; tensors[transformer_prefix + "attn2.to_q.weight"] = transformer.attn2_q_w; tensors[transformer_prefix + "attn2.to_k.weight"] = transformer.attn2_k_w; tensors[transformer_prefix + "attn2.to_v.weight"] = transformer.attn2_v_w; tensors[transformer_prefix + "attn2.to_out.0.weight"] = transformer.attn2_out_w; tensors[transformer_prefix + "attn2.to_out.0.bias"] = transformer.attn2_out_b; tensors[transformer_prefix + "norm1.weight"] = transformer.norm1_w; tensors[transformer_prefix + "norm1.bias"] = transformer.norm1_b; tensors[transformer_prefix + "norm2.weight"] = transformer.norm2_w; tensors[transformer_prefix + "norm2.bias"] = transformer.norm2_b; tensors[transformer_prefix + "norm3.weight"] = transformer.norm3_w; tensors[transformer_prefix + "norm3.bias"] = transformer.norm3_b; } tensors[prefix + "proj_out.weight"] = proj_out_w; tensors[prefix + "proj_out.bias"] = proj_out_b; } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* context) { // x: [N, in_channels, h, w] // context: [N, max_position, hidden_size(aka context_dim)] auto x_in = x; x = ggml_nn_group_norm(ctx, x, norm_w, norm_b); // proj_in x = ggml_nn_conv_2d(ctx, x, proj_in_w, proj_in_b); // [N, in_channels, h, w] // transformer const int64_t n = x->ne[3]; const int64_t c = x->ne[2]; const int64_t h = x->ne[1]; const int64_t w = x->ne[0]; const int64_t max_position = context->ne[1]; x = ggml_cont(ctx, ggml_permute(ctx, x, 1, 2, 0, 3)); // [N, h, w, in_channels] for (auto& transformer : transformers) { auto r = x; // layer norm 1 x = ggml_reshape_2d(ctx, x, c, w * h * n); x = ggml_nn_layer_norm(ctx, x, transformer.norm1_w, transformer.norm1_b); // self-attention { x = ggml_reshape_2d(ctx, x, c, h * w * n); // [N * h * w, in_channels] struct ggml_tensor* q = ggml_mul_mat(ctx, transformer.attn1_q_w, x); // [N * h * w, in_channels] #if !defined(SD_USE_FLASH_ATTENTION) || defined(SD_USE_CUBLAS) || defined(SD_USE_METAL) q = ggml_scale_inplace(ctx, q, attn_scale); #endif q = ggml_reshape_4d(ctx, q, d_head, n_head, h * w, n); // [N, h * w, n_head, d_head] q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); // [N, n_head, h * w, d_head] q = ggml_reshape_3d(ctx, q, d_head, h * w, n_head * n); // [N * n_head, h * w, d_head] struct ggml_tensor* k = ggml_mul_mat(ctx, transformer.attn1_k_w, x); // [N * h * w, in_channels] k = ggml_reshape_4d(ctx, k, d_head, n_head, h * w, n); // [N, h * w, n_head, d_head] k = ggml_cont(ctx, ggml_permute(ctx, k, 0, 2, 1, 3)); // [N, n_head, h * w, d_head] k = ggml_reshape_3d(ctx, k, d_head, h * w, n_head * n); // [N * n_head, h * w, d_head] struct ggml_tensor* v = ggml_mul_mat(ctx, transformer.attn1_v_w, x); // [N * h * w, in_channels] v = ggml_reshape_4d(ctx, v, d_head, n_head, h * w, n); // [N, h * w, n_head, d_head] v = ggml_cont(ctx, ggml_permute(ctx, v, 1, 2, 0, 3)); // [N, n_head, d_head, h * w] v = ggml_reshape_3d(ctx, v, h * w, d_head, n_head * n); // [N * n_head, d_head, h * w] #if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUBLAS) && !defined(SD_USE_METAL) struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false); // [N * n_head, h * w, d_head] #else struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); // [N * n_head, h * w, h * w] // kq = ggml_diag_mask_inf_inplace(ctx, kq, 0); kq = ggml_soft_max_inplace(ctx, kq); struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, h * w, d_head] #endif kqv = ggml_reshape_4d(ctx, kqv, d_head, h * w, n_head, n); kqv = ggml_cont(ctx, ggml_permute(ctx, kqv, 0, 2, 1, 3)); // [N, h * w, n_head, d_head] // x = ggml_cpy(ctx, kqv, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, d_head * n_head, h * w * n)); x = ggml_reshape_2d(ctx, kqv, d_head * n_head, h * w * n); x = ggml_nn_linear(ctx, x, transformer.attn1_out_w, transformer.attn1_out_b); x = ggml_reshape_4d(ctx, x, c, w, h, n); } x = ggml_add(ctx, x, r); r = x; // layer norm 2 x = ggml_nn_layer_norm(ctx, x, transformer.norm2_w, transformer.norm2_b); // cross-attention { x = ggml_reshape_2d(ctx, x, c, h * w * n); // [N * h * w, in_channels] context = ggml_reshape_2d(ctx, context, context->ne[0], context->ne[1] * context->ne[2]); // [N * max_position, hidden_size] struct ggml_tensor* q = ggml_mul_mat(ctx, transformer.attn2_q_w, x); // [N * h * w, in_channels] #if !defined(SD_USE_FLASH_ATTENTION) || defined(SD_USE_CUBLAS) || defined(SD_USE_METAL) q = ggml_scale_inplace(ctx, q, attn_scale); #endif q = ggml_reshape_4d(ctx, q, d_head, n_head, h * w, n); // [N, h * w, n_head, d_head] q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); // [N, n_head, h * w, d_head] q = ggml_reshape_3d(ctx, q, d_head, h * w, n_head * n); // [N * n_head, h * w, d_head] struct ggml_tensor* k = ggml_mul_mat(ctx, transformer.attn2_k_w, context); // [N * max_position, in_channels] k = ggml_reshape_4d(ctx, k, d_head, n_head, max_position, n); // [N, max_position, n_head, d_head] k = ggml_cont(ctx, ggml_permute(ctx, k, 0, 2, 1, 3)); // [N, n_head, max_position, d_head] k = ggml_reshape_3d(ctx, k, d_head, max_position, n_head * n); // [N * n_head, max_position, d_head] struct ggml_tensor* v = ggml_mul_mat(ctx, transformer.attn2_v_w, context); // [N * max_position, in_channels] v = ggml_reshape_4d(ctx, v, d_head, n_head, max_position, n); // [N, max_position, n_head, d_head] v = ggml_cont(ctx, ggml_permute(ctx, v, 1, 2, 0, 3)); // [N, n_head, d_head, max_position] v = ggml_reshape_3d(ctx, v, max_position, d_head, n_head * n); // [N * n_head, d_head, max_position] #if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUBLAS) && !defined(SD_USE_METAL) struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false); // [N * n_head, h * w, d_head] #else struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); // [N * n_head, h * w, max_position] // kq = ggml_diag_mask_inf_inplace(ctx, kq, 0); kq = ggml_soft_max_inplace(ctx, kq); struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, h * w, d_head] #endif kqv = ggml_reshape_4d(ctx, kqv, d_head, h * w, n_head, n); kqv = ggml_cont(ctx, ggml_permute(ctx, kqv, 0, 2, 1, 3)); // x = ggml_cpy(ctx, kqv, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, d_head * n_head, h * w * n)); // [N * h * w, in_channels] x = ggml_reshape_2d(ctx, kqv, d_head * n_head, h * w * n); // [N * h * w, in_channels] x = ggml_nn_linear(ctx, x, transformer.attn2_out_w, transformer.attn2_out_b); x = ggml_reshape_4d(ctx, x, c, w, h, n); } x = ggml_add(ctx, x, r); r = x; // layer norm 3 x = ggml_reshape_2d(ctx, x, c, h * w * n); // [N * h * w, in_channels] x = ggml_nn_layer_norm(ctx, x, transformer.norm3_w, transformer.norm3_b); // ff { // GEGLU auto x_w = ggml_view_2d(ctx, transformer.ff_0_proj_w, transformer.ff_0_proj_w->ne[0], transformer.ff_0_proj_w->ne[1] / 2, transformer.ff_0_proj_w->nb[1], 0); // [in_channels * 4, in_channels] auto x_b = ggml_view_1d(ctx, transformer.ff_0_proj_b, transformer.ff_0_proj_b->ne[0] / 2, 0); // [in_channels * 4, in_channels] auto gate_w = ggml_view_2d(ctx, transformer.ff_0_proj_w, transformer.ff_0_proj_w->ne[0], transformer.ff_0_proj_w->ne[1] / 2, transformer.ff_0_proj_w->nb[1], transformer.ff_0_proj_w->nb[1] * transformer.ff_0_proj_w->ne[1] / 2); // [in_channels * 4, ] auto gate_b = ggml_view_1d(ctx, transformer.ff_0_proj_b, transformer.ff_0_proj_b->ne[0] / 2, transformer.ff_0_proj_b->nb[0] * transformer.ff_0_proj_b->ne[0] / 2); // [in_channels * 4, ] x = ggml_reshape_2d(ctx, x, c, w * h * n); auto x_in = x; x = ggml_nn_linear(ctx, x_in, x_w, x_b); // [N * h * w, in_channels * 4] auto gate = ggml_nn_linear(ctx, x_in, gate_w, gate_b); // [N * h * w, in_channels * 4] gate = ggml_gelu_inplace(ctx, gate); x = ggml_mul(ctx, x, gate); // [N * h * w, in_channels * 4] // fc x = ggml_nn_linear(ctx, x, transformer.ff_2_w, transformer.ff_2_b); // [N * h * w, in_channels] } x = ggml_reshape_4d(ctx, x, c, w, h, n); // [N, h, w, in_channels] // residual x = ggml_add(ctx, x, r); } x = ggml_cont(ctx, ggml_permute(ctx, x, 2, 0, 1, 3)); // [N, in_channels, h, w] // proj_out x = ggml_nn_conv_2d(ctx, x, proj_out_w, proj_out_b); // [N, in_channels, h, w] x = ggml_add(ctx, x, x_in); return x; } }; struct DownSample { // hparams int channels; int out_channels; // conv2d params struct ggml_tensor* op_w; // [out_channels, channels, 3, 3] struct ggml_tensor* op_b; // [out_channels,] bool vae_downsample = false; size_t calculate_mem_size(ggml_type wtype) { double mem_size = 0; mem_size += out_channels * channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // op_w mem_size += out_channels * ggml_type_sizef(GGML_TYPE_F32); // op_b return static_cast(mem_size); } void init_params(struct ggml_context* ctx, ggml_type wtype) { op_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, out_channels); op_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); } void map_by_name(std::map& tensors, const std::string prefix) { if (vae_downsample) { tensors[prefix + "conv.weight"] = op_w; tensors[prefix + "conv.bias"] = op_b; } else { tensors[prefix + "op.weight"] = op_w; tensors[prefix + "op.bias"] = op_b; } } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { // x: [N, channels, h, w] struct ggml_tensor* c = NULL; if (vae_downsample) { c = ggml_pad(ctx, x, 1, 1, 0, 0); c = ggml_nn_conv_2d(ctx, c, op_w, op_b, 2, 2, 0, 0); } else { c = ggml_nn_conv_2d(ctx, x, op_w, op_b, 2, 2, 1, 1); } return c; // [N, out_channels, h/2, w/2] } }; struct UpSample { // hparams int channels; int out_channels; // conv2d params struct ggml_tensor* conv_w; // [out_channels, channels, 3, 3] struct ggml_tensor* conv_b; // [out_channels,] size_t calculate_mem_size(ggml_type wtype) { double mem_size = 0; mem_size += out_channels * channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // op_w mem_size += out_channels * ggml_type_sizef(GGML_TYPE_F32); // op_b return static_cast(mem_size); } void init_params(struct ggml_context* ctx, ggml_type wtype) { conv_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, out_channels); conv_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); } void map_by_name(std::map& tensors, const std::string prefix) { tensors[prefix + "conv.weight"] = conv_w; tensors[prefix + "conv.bias"] = conv_b; } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { // x: [N, channels, h, w] x = ggml_upscale(ctx, x, 2); // [N, channels, h*2, w*2] x = ggml_nn_conv_2d(ctx, x, conv_w, conv_b, 1, 1, 1, 1); // [N, out_channels, h*2, w*2] return x; } }; // ldm.modules.diffusionmodules.openaimodel.UNetModel struct UNetModel { SDVersion version = VERSION_1_x; // network hparams int in_channels = 4; int model_channels = 320; int out_channels = 4; int num_res_blocks = 2; std::vector attention_resolutions = {4, 2, 1}; std::vector channel_mult = {1, 2, 4, 4}; std::vector transformer_depth = {1, 1, 1, 1}; int time_embed_dim = 1280; // model_channels*4 int num_heads = 8; int num_head_channels = -1; // channels // num_heads int context_dim = 768; // 1024 for VERSION_2_x, 2048 for VERSION_XL int adm_in_channels = 2816; // only for VERSION_XL // network params struct ggml_tensor* time_embed_0_w; // [time_embed_dim, model_channels] struct ggml_tensor* time_embed_0_b; // [time_embed_dim, ] // time_embed_1 is nn.SILU() struct ggml_tensor* time_embed_2_w; // [time_embed_dim, time_embed_dim] struct ggml_tensor* time_embed_2_b; // [time_embed_dim, ] struct ggml_tensor* label_embed_0_w; // [time_embed_dim, adm_in_channels] struct ggml_tensor* label_embed_0_b; // [time_embed_dim, ] // label_embed_1 is nn.SILU() struct ggml_tensor* label_embed_2_w; // [time_embed_dim, time_embed_dim] struct ggml_tensor* label_embed_2_b; // [time_embed_dim, ] struct ggml_tensor* input_block_0_w; // [model_channels, in_channels, 3, 3] struct ggml_tensor* input_block_0_b; // [model_channels, ] // input_blocks ResBlock input_res_blocks[4][2]; SpatialTransformer input_transformers[3][2]; DownSample input_down_samples[3]; // middle_block ResBlock middle_block_0; SpatialTransformer middle_block_1; ResBlock middle_block_2; // output_blocks ResBlock output_res_blocks[4][3]; SpatialTransformer output_transformers[3][3]; UpSample output_up_samples[3]; // out // group norm 32 struct ggml_tensor* out_0_w; // [model_channels, ] struct ggml_tensor* out_0_b; // [model_channels, ] // out 1 is nn.SILU() struct ggml_tensor* out_2_w; // [out_channels, model_channels, 3, 3] struct ggml_tensor* out_2_b; // [out_channels, ] struct ggml_context* ctx; ggml_backend_buffer_t params_buffer; ggml_backend_buffer_t compute_buffer; // for compute struct ggml_allocr* compute_alloc = NULL; size_t compute_memory_buffer_size = -1; size_t memory_buffer_size = 0; ggml_type wtype; ggml_backend_t backend = NULL; UNetModel(SDVersion version = VERSION_1_x) : version(version) { if (version == VERSION_2_x) { context_dim = 1024; num_head_channels = 64; num_heads = -1; } else if (version == VERSION_XL) { context_dim = 2048; attention_resolutions = {4, 2}; channel_mult = {1, 2, 4}; transformer_depth = {1, 2, 10}; num_head_channels = 64; num_heads = -1; } // set up hparams of blocks // input_blocks std::vector input_block_chans; input_block_chans.push_back(model_channels); int ch = model_channels; int ds = 1; int len_mults = channel_mult.size(); for (int i = 0; i < len_mults; i++) { int mult = channel_mult[i]; for (int j = 0; j < num_res_blocks; j++) { input_res_blocks[i][j].channels = ch; input_res_blocks[i][j].emb_channels = time_embed_dim; input_res_blocks[i][j].out_channels = mult * model_channels; ch = mult * model_channels; if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { int n_head = num_heads; int d_head = ch / num_heads; if (num_head_channels != -1) { d_head = num_head_channels; n_head = ch / d_head; } input_transformers[i][j] = SpatialTransformer(transformer_depth[i]); input_transformers[i][j].in_channels = ch; input_transformers[i][j].n_head = n_head; input_transformers[i][j].d_head = d_head; input_transformers[i][j].context_dim = context_dim; } input_block_chans.push_back(ch); } if (i != len_mults - 1) { input_down_samples[i].channels = ch; input_down_samples[i].out_channels = ch; input_block_chans.push_back(ch); ds *= 2; } } // middle blocks middle_block_0.channels = ch; middle_block_0.emb_channels = time_embed_dim; middle_block_0.out_channels = ch; int n_head = num_heads; int d_head = ch / num_heads; if (num_head_channels != -1) { d_head = num_head_channels; n_head = ch / d_head; } middle_block_1 = SpatialTransformer(transformer_depth[transformer_depth.size() - 1]); middle_block_1.in_channels = ch; middle_block_1.n_head = n_head; middle_block_1.d_head = d_head; middle_block_1.context_dim = context_dim; middle_block_2.channels = ch; middle_block_2.emb_channels = time_embed_dim; middle_block_2.out_channels = ch; // output blocks for (int i = len_mults - 1; i >= 0; i--) { int mult = channel_mult[i]; for (int j = 0; j < num_res_blocks + 1; j++) { int ich = input_block_chans.back(); input_block_chans.pop_back(); output_res_blocks[i][j].channels = ch + ich; output_res_blocks[i][j].emb_channels = time_embed_dim; output_res_blocks[i][j].out_channels = mult * model_channels; ch = mult * model_channels; if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { int n_head = num_heads; int d_head = ch / num_heads; if (num_head_channels != -1) { d_head = num_head_channels; n_head = ch / d_head; } output_transformers[i][j] = SpatialTransformer(transformer_depth[i]); output_transformers[i][j].in_channels = ch; output_transformers[i][j].n_head = n_head; output_transformers[i][j].d_head = d_head; output_transformers[i][j].context_dim = context_dim; } if (i > 0 && j == num_res_blocks) { output_up_samples[i - 1].channels = ch; output_up_samples[i - 1].out_channels = ch; ds /= 2; } } } } size_t calculate_mem_size() { double mem_size = 0; mem_size += time_embed_dim * model_channels * ggml_type_sizef(wtype); // time_embed_0_w mem_size += time_embed_dim * ggml_type_sizef(GGML_TYPE_F32); // time_embed_0_b mem_size += time_embed_dim * time_embed_dim * ggml_type_sizef(wtype); // time_embed_2_w mem_size += time_embed_dim * ggml_type_sizef(GGML_TYPE_F32); // time_embed_2_b if (version == VERSION_XL) { mem_size += time_embed_dim * adm_in_channels * ggml_type_sizef(wtype); // label_embed_0_w mem_size += time_embed_dim * ggml_type_sizef(GGML_TYPE_F32); // label_embed_0_b mem_size += time_embed_dim * time_embed_dim * ggml_type_sizef(wtype); // label_embed_2_w mem_size += time_embed_dim * ggml_type_sizef(GGML_TYPE_F32); // label_embed_2_b } mem_size += model_channels * in_channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // input_block_0_w mem_size += model_channels * ggml_type_sizef(GGML_TYPE_F32); // input_block_0_b // input_blocks int ds = 1; int len_mults = channel_mult.size(); for (int i = 0; i < len_mults; i++) { for (int j = 0; j < num_res_blocks; j++) { mem_size += input_res_blocks[i][j].calculate_mem_size(wtype); if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { mem_size += input_transformers[i][j].calculate_mem_size(wtype); } } if (i != len_mults - 1) { ds *= 2; mem_size += input_down_samples[i].calculate_mem_size(wtype); } } // middle_block mem_size += middle_block_0.calculate_mem_size(wtype); mem_size += middle_block_1.calculate_mem_size(wtype); mem_size += middle_block_2.calculate_mem_size(wtype); // output_blocks for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { mem_size += output_res_blocks[i][j].calculate_mem_size(wtype); if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { mem_size += output_transformers[i][j].calculate_mem_size(wtype); } if (i > 0 && j == num_res_blocks) { mem_size += output_up_samples[i - 1].calculate_mem_size(wtype); ds /= 2; } } } // out mem_size += 2 * model_channels * ggml_type_sizef(GGML_TYPE_F32); // out_0_w/b mem_size += out_channels * model_channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // out_2_w mem_size += out_channels * ggml_type_sizef(GGML_TYPE_F32); // out_2_b return static_cast(mem_size); } int get_num_tensors() { // in int num_tensors = 6; if (version == VERSION_XL) { num_tensors += 4; } // input blocks int ds = 1; int len_mults = channel_mult.size(); for (int i = 0; i < len_mults; i++) { for (int j = 0; j < num_res_blocks; j++) { num_tensors += 12; if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { num_tensors += input_transformers[i][j].get_num_tensors(); } } if (i != len_mults - 1) { ds *= 2; num_tensors += 2; } } // middle blocks num_tensors += 13 * 2; num_tensors += middle_block_1.get_num_tensors(); // output blocks for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { num_tensors += 12; if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { num_tensors += output_transformers[i][j].get_num_tensors(); } if (i > 0 && j == num_res_blocks) { num_tensors += 2; ds /= 2; } } } // out num_tensors += 4; return num_tensors; } bool initialize(ggml_backend_t backend_, ggml_type wtype_) { backend = backend_; wtype = wtype_; memory_buffer_size = 10 * 1024 * 1024; // 10 MB, for padding memory_buffer_size += calculate_mem_size(); int num_tensors = get_num_tensors(); LOG_DEBUG("unet params backend buffer size = % 6.2f MB (%i tensors)", memory_buffer_size / (1024.0 * 1024.0), num_tensors); struct ggml_init_params params; params.mem_size = static_cast(num_tensors * ggml_tensor_overhead()) + 1 * 1024 * 1024; params.mem_buffer = NULL; params.no_alloc = true; // LOG_DEBUG("mem_size %u ", params.mem_size); ctx = ggml_init(params); if (!ctx) { LOG_ERROR("ggml_init() failed"); return false; } params_buffer = ggml_backend_alloc_buffer(backend, memory_buffer_size); return true; } void destroy() { if (ctx != NULL) { ggml_free(ctx); ctx = NULL; } if (params_buffer != NULL) { ggml_backend_buffer_free(params_buffer); params_buffer = NULL; } } void alloc_params() { ggml_allocr* alloc = ggml_allocr_new_from_buffer(params_buffer); time_embed_0_w = ggml_new_tensor_2d(ctx, wtype, model_channels, time_embed_dim); time_embed_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, time_embed_dim); time_embed_2_w = ggml_new_tensor_2d(ctx, wtype, time_embed_dim, time_embed_dim); time_embed_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, time_embed_dim); // SDXL if (version == VERSION_XL) { label_embed_0_w = ggml_new_tensor_2d(ctx, wtype, adm_in_channels, time_embed_dim); label_embed_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, time_embed_dim); label_embed_2_w = ggml_new_tensor_2d(ctx, wtype, time_embed_dim, time_embed_dim); label_embed_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, time_embed_dim); } // input_blocks input_block_0_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, in_channels, model_channels); input_block_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model_channels); int ds = 1; int len_mults = channel_mult.size(); for (int i = 0; i < len_mults; i++) { for (int j = 0; j < num_res_blocks; j++) { input_res_blocks[i][j].init_params(ctx, wtype); if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { input_transformers[i][j].init_params(ctx, alloc, wtype); } } if (i != len_mults - 1) { input_down_samples[i].init_params(ctx, wtype); ds *= 2; } } // middle_blocks middle_block_0.init_params(ctx, wtype); middle_block_1.init_params(ctx, alloc, wtype); middle_block_2.init_params(ctx, wtype); // output_blocks for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { output_res_blocks[i][j].init_params(ctx, wtype); if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { output_transformers[i][j].init_params(ctx, alloc, wtype); } if (i > 0 && j == num_res_blocks) { output_up_samples[i - 1].init_params(ctx, wtype); ds /= 2; } } } // out out_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model_channels); out_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model_channels); out_2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, model_channels, out_channels); out_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); // alloc all tensors linked to this context for (struct ggml_tensor* t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->data == NULL) { ggml_allocr_alloc(alloc, t); } } ggml_allocr_free(alloc); } void map_by_name(std::map& tensors, const std::string prefix) { tensors[prefix + "time_embed.0.weight"] = time_embed_0_w; tensors[prefix + "time_embed.0.bias"] = time_embed_0_b; tensors[prefix + "time_embed.2.weight"] = time_embed_2_w; tensors[prefix + "time_embed.2.bias"] = time_embed_2_b; if (version == VERSION_XL) { tensors[prefix + "label_emb.0.0.weight"] = label_embed_0_w; tensors[prefix + "label_emb.0.0.bias"] = label_embed_0_b; tensors[prefix + "label_emb.0.2.weight"] = label_embed_2_w; tensors[prefix + "label_emb.0.2.bias"] = label_embed_2_b; } // input_blocks tensors[prefix + "input_blocks.0.0.weight"] = input_block_0_w; tensors[prefix + "input_blocks.0.0.bias"] = input_block_0_b; int len_mults = channel_mult.size(); int input_block_idx = 0; int ds = 1; for (int i = 0; i < len_mults; i++) { for (int j = 0; j < num_res_blocks; j++) { input_block_idx += 1; input_res_blocks[i][j].map_by_name(tensors, prefix + "input_blocks." + std::to_string(input_block_idx) + ".0."); if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { input_transformers[i][j].map_by_name(tensors, prefix + "input_blocks." + std::to_string(input_block_idx) + ".1."); } } if (i != len_mults - 1) { input_block_idx += 1; input_down_samples[i].map_by_name(tensors, prefix + "input_blocks." + std::to_string(input_block_idx) + ".0."); ds *= 2; } } // middle_blocks middle_block_0.map_by_name(tensors, prefix + "middle_block.0."); middle_block_1.map_by_name(tensors, prefix + "middle_block.1."); middle_block_2.map_by_name(tensors, prefix + "middle_block.2."); // output_blocks int output_block_idx = 0; for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { output_res_blocks[i][j].map_by_name(tensors, prefix + "output_blocks." + std::to_string(output_block_idx) + ".0."); int up_sample_idx = 1; if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { output_transformers[i][j].map_by_name(tensors, prefix + "output_blocks." + std::to_string(output_block_idx) + ".1."); up_sample_idx++; } if (i > 0 && j == num_res_blocks) { output_up_samples[i - 1].map_by_name(tensors, prefix + "output_blocks." + std::to_string(output_block_idx) + "." + std::to_string(up_sample_idx) + "."); ds /= 2; } output_block_idx += 1; } } // out tensors[prefix + "out.0.weight"] = out_0_w; tensors[prefix + "out.0.bias"] = out_0_b; tensors[prefix + "out.2.weight"] = out_2_w; tensors[prefix + "out.2.bias"] = out_2_b; } struct ggml_tensor* forward(struct ggml_context* ctx0, struct ggml_tensor* x, struct ggml_tensor* timesteps, struct ggml_tensor* context, struct ggml_tensor* t_emb = NULL, struct ggml_tensor* y = NULL) { // x: [N, in_channels, h, w] // timesteps: [N, ] // t_emb: [N, model_channels] // context: [N, max_position, hidden_size]([N, 77, 768]) // y: [adm_in_channels] if (t_emb == NULL && timesteps != NULL) { t_emb = new_timestep_embedding(ctx0, compute_alloc, timesteps, model_channels); // [N, model_channels] } // time_embed = nn.Sequential auto emb = ggml_nn_linear(ctx0, t_emb, time_embed_0_w, time_embed_0_b); emb = ggml_silu_inplace(ctx0, emb); emb = ggml_nn_linear(ctx0, emb, time_embed_2_w, time_embed_2_b); // [N, time_embed_dim] // SDXL if (y != NULL) { auto label_emb = ggml_nn_linear(ctx0, y, label_embed_0_w, label_embed_0_b); label_emb = ggml_silu_inplace(ctx0, label_emb); label_emb = ggml_nn_linear(ctx0, label_emb, label_embed_2_w, label_embed_2_b); emb = ggml_add(ctx, emb, label_emb); // [N, time_embed_dim] } // input_blocks std::vector hs; // input block 0 struct ggml_tensor* h = ggml_nn_conv_2d(ctx0, x, input_block_0_w, input_block_0_b, 1, 1, 1, 1); // [N, model_channels, h, w] ggml_set_name(h, "bench-start"); hs.push_back(h); // input block 1-11 int len_mults = channel_mult.size(); int ds = 1; for (int i = 0; i < len_mults; i++) { int mult = channel_mult[i]; for (int j = 0; j < num_res_blocks; j++) { h = input_res_blocks[i][j].forward(ctx0, h, emb); // [N, mult*model_channels, h, w] if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { h = input_transformers[i][j].forward(ctx0, h, context); // [N, mult*model_channels, h, w] } hs.push_back(h); } if (i != len_mults - 1) { ds *= 2; h = input_down_samples[i].forward(ctx0, h); // [N, mult*model_channels, h/(2^(i+1)), w/(2^(i+1))] hs.push_back(h); } } // [N, 4*model_channels, h/8, w/8] // middle_block h = middle_block_0.forward(ctx0, h, emb); // [N, 4*model_channels, h/8, w/8] h = middle_block_1.forward(ctx0, h, context); // [N, 4*model_channels, h/8, w/8] h = middle_block_2.forward(ctx0, h, emb); // [N, 4*model_channels, h/8, w/8] // output_blocks for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { auto h_skip = hs.back(); hs.pop_back(); h = ggml_concat(ctx0, h, h_skip); h = output_res_blocks[i][j].forward(ctx0, h, emb); if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) { h = output_transformers[i][j].forward(ctx0, h, context); } if (i > 0 && j == num_res_blocks) { h = output_up_samples[i - 1].forward(ctx0, h); ds /= 2; } } } // out h = ggml_nn_group_norm(ctx0, h, out_0_w, out_0_b); h = ggml_silu_inplace(ctx0, h); // conv2d h = ggml_nn_conv_2d(ctx0, h, out_2_w, out_2_b, 1, 1, 1, 1); // [N, out_channels, h, w] ggml_set_name(h, "bench-end"); return h; } struct ggml_cgraph* build_graph(struct ggml_tensor* x, struct ggml_tensor* timesteps, struct ggml_tensor* context, struct ggml_tensor* t_emb = NULL, struct ggml_tensor* y = NULL) { // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data static size_t buf_size = ggml_tensor_overhead() * UNET_GRAPH_SIZE + ggml_graph_overhead(); static std::vector buf(buf_size); struct ggml_init_params params = { /*.mem_size =*/buf_size, /*.mem_buffer =*/buf.data(), /*.no_alloc =*/true, // the tensors will be allocated later by ggml_allocr_alloc_graph() }; // LOG_DEBUG("mem_size %u ", params.mem_size); struct ggml_context* ctx0 = ggml_init(params); struct ggml_cgraph* gf = ggml_new_graph_custom(ctx0, UNET_GRAPH_SIZE, false); // temporal tensors for transfer tensors from cpu to gpu if needed struct ggml_tensor* x_t = NULL; struct ggml_tensor* timesteps_t = NULL; struct ggml_tensor* context_t = NULL; struct ggml_tensor* t_emb_t = NULL; struct ggml_tensor* y_t = NULL; // it's performing a compute, check if backend isn't cpu if (!ggml_backend_is_cpu(backend)) { // pass input tensors to gpu memory x_t = ggml_dup_tensor(ctx0, x); context_t = ggml_dup_tensor(ctx0, context); ggml_allocr_alloc(compute_alloc, x_t); if (timesteps != NULL) { timesteps_t = ggml_dup_tensor(ctx0, timesteps); ggml_allocr_alloc(compute_alloc, timesteps_t); } ggml_allocr_alloc(compute_alloc, context_t); if (t_emb != NULL) { t_emb_t = ggml_dup_tensor(ctx0, t_emb); ggml_allocr_alloc(compute_alloc, t_emb_t); } if (y != NULL) { y_t = ggml_dup_tensor(ctx0, y); ggml_allocr_alloc(compute_alloc, y_t); } // pass data to device backend if (!ggml_allocr_is_measure(compute_alloc)) { ggml_backend_tensor_set(x_t, x->data, 0, ggml_nbytes(x)); ggml_backend_tensor_set(context_t, context->data, 0, ggml_nbytes(context)); if (timesteps_t != NULL) { ggml_backend_tensor_set(timesteps_t, timesteps->data, 0, ggml_nbytes(timesteps)); } if (t_emb_t != NULL) { ggml_backend_tensor_set(t_emb_t, t_emb->data, 0, ggml_nbytes(t_emb)); } if (y != NULL) { ggml_backend_tensor_set(y_t, y->data, 0, ggml_nbytes(y)); } } } else { // if it's cpu backend just pass the same tensors x_t = x; timesteps_t = timesteps; context_t = context; t_emb_t = t_emb; y_t = y; } struct ggml_tensor* out = forward(ctx0, x_t, timesteps_t, context_t, t_emb_t, y_t); ggml_build_forward_expand(gf, out); ggml_free(ctx0); return gf; } void begin(struct ggml_tensor* x, struct ggml_tensor* context, struct ggml_tensor* t_emb = NULL, struct ggml_tensor* y = NULL) { if (compute_memory_buffer_size == -1) { // alignment required by the backend compute_alloc = ggml_allocr_new_measure_from_backend(backend); struct ggml_cgraph* gf = build_graph(x, NULL, context, t_emb, y); // compute the required memory compute_memory_buffer_size = ggml_allocr_alloc_graph(compute_alloc, gf); // recreate the allocator with the required memory ggml_allocr_free(compute_alloc); LOG_DEBUG("diffusion compute buffer size: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0); } compute_buffer = ggml_backend_alloc_buffer(backend, compute_memory_buffer_size); compute_alloc = ggml_allocr_new_from_buffer(compute_buffer); } void compute(struct ggml_tensor* work_latent, int n_threads, struct ggml_tensor* x, struct ggml_tensor* timesteps, struct ggml_tensor* context, struct ggml_tensor* t_emb = NULL, struct ggml_tensor* y = NULL) { ggml_allocr_reset(compute_alloc); // compute struct ggml_cgraph* gf = build_graph(x, timesteps, context, t_emb, y); ggml_allocr_alloc_graph(compute_alloc, gf); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } #ifdef SD_USE_METAL if (ggml_backend_is_metal(backend)) { ggml_backend_metal_set_n_cb(backend, n_threads); } #endif ggml_backend_graph_compute(backend, gf); #ifdef GGML_PERF ggml_graph_print(gf); #endif ggml_backend_tensor_get_and_sync(backend, gf->nodes[gf->n_nodes - 1], work_latent->data, 0, ggml_nbytes(work_latent)); } void end() { ggml_allocr_free(compute_alloc); ggml_backend_buffer_free(compute_buffer); compute_alloc = NULL; compute_memory_buffer_size = -1; } }; /*================================================== AutoEncoderKL ===================================================*/ struct ResnetBlock { // network hparams int in_channels; int out_channels; // network params struct ggml_tensor* norm1_w; // [in_channels, ] struct ggml_tensor* norm1_b; // [in_channels, ] struct ggml_tensor* conv1_w; // [out_channels, in_channels, 3, 3] struct ggml_tensor* conv1_b; // [out_channels, ] struct ggml_tensor* norm2_w; // [out_channels, ] struct ggml_tensor* norm2_b; // [out_channels, ] struct ggml_tensor* conv2_w; // [out_channels, out_channels, 3, 3] struct ggml_tensor* conv2_b; // [out_channels, ] // nin_shortcut, only if out_channels != in_channels struct ggml_tensor* nin_shortcut_w; // [out_channels, in_channels, 1, 1] struct ggml_tensor* nin_shortcut_b; // [out_channels, ] size_t calculate_mem_size(ggml_type wtype) { double mem_size = 0; mem_size += 2 * in_channels * ggml_type_sizef(GGML_TYPE_F32); // norm1_w/b mem_size += out_channels * in_channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // conv1_w mem_size += 4 * out_channels * ggml_type_sizef(GGML_TYPE_F32); // conv1_b/norm2_w/norm2_b/conv2_b mem_size += out_channels * out_channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // conv2_w if (out_channels != in_channels) { mem_size += out_channels * in_channels * 1 * 1 * ggml_type_sizef(GGML_TYPE_F16); // nin_shortcut_w mem_size += out_channels * ggml_type_sizef(GGML_TYPE_F32); // nin_shortcut_b } return static_cast(mem_size); } void init_params(struct ggml_context* ctx, ggml_type wtype) { norm1_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); norm1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); conv1_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, in_channels, out_channels); conv1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); norm2_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); norm2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); conv2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, out_channels, out_channels); conv2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); if (out_channels != in_channels) { nin_shortcut_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, in_channels, out_channels); nin_shortcut_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); } } void map_by_name(std::map& tensors, const std::string prefix) { tensors[prefix + "norm1.weight"] = norm1_w; tensors[prefix + "norm1.bias"] = norm1_b; tensors[prefix + "conv1.weight"] = conv1_w; tensors[prefix + "conv1.bias"] = conv1_b; tensors[prefix + "norm2.weight"] = norm2_w; tensors[prefix + "norm2.bias"] = norm2_b; tensors[prefix + "conv2.weight"] = conv2_w; tensors[prefix + "conv2.bias"] = conv2_b; if (out_channels != in_channels) { tensors[prefix + "nin_shortcut.weight"] = nin_shortcut_w; tensors[prefix + "nin_shortcut.bias"] = nin_shortcut_b; } } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* z) { // z: [N, in_channels, h, w] auto h = ggml_nn_group_norm(ctx, z, norm1_w, norm1_b); h = ggml_silu_inplace(ctx, h); h = ggml_nn_conv_2d(ctx, h, conv1_w, conv1_b, 1, 1, 1, 1); // [N, out_channels, h, w] h = ggml_nn_group_norm(ctx, h, norm2_w, norm2_b); h = ggml_silu_inplace(ctx, h); // dropout, skip for inference h = ggml_nn_conv_2d(ctx, h, conv2_w, conv2_b, 1, 1, 1, 1); // [N, out_channels, h, w] // skip connection if (out_channels != in_channels) { z = ggml_nn_conv_2d(ctx, z, nin_shortcut_w, nin_shortcut_b); // [N, out_channels, h, w] } h = ggml_add(ctx, h, z); return h; // [N, out_channels, h, w] } }; struct AttnBlock { int in_channels; // mult * model_channels // group norm struct ggml_tensor* norm_w; // [in_channels,] struct ggml_tensor* norm_b; // [in_channels,] // q/k/v struct ggml_tensor* q_w; // [in_channels, in_channels, 1, 1] struct ggml_tensor* q_b; // [in_channels,] struct ggml_tensor* k_w; // [in_channels, in_channels, 1, 1] struct ggml_tensor* k_b; // [in_channels,] struct ggml_tensor* v_w; // [in_channels, in_channels, 1, 1] struct ggml_tensor* v_b; // [in_channels,] // proj_out struct ggml_tensor* proj_out_w; // [in_channels, in_channels, 1, 1] struct ggml_tensor* proj_out_b; // [in_channels,] struct ggml_tensor* attn_scale; size_t calculate_mem_size(ggml_type wtype) { double mem_size = 0; mem_size += 6 * in_channels * ggml_type_sizef(GGML_TYPE_F32); // norm_w/norm_b/q_b/k_v/v_b/proj_out_b mem_size += 4 * in_channels * in_channels * 1 * 1 * ggml_type_sizef(GGML_TYPE_F16); // q_w/k_w/v_w/proj_out_w // object overhead return static_cast(mem_size); } void init_params(struct ggml_context* ctx, ggml_allocr* alloc, ggml_type wtype) { norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); q_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, in_channels, in_channels); q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); k_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, in_channels, in_channels); k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); v_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, in_channels, in_channels); v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); proj_out_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, in_channels, in_channels); proj_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); attn_scale = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); ggml_allocr_alloc(alloc, attn_scale); float scale = 1.0f / sqrt((float)in_channels); ggml_backend_tensor_set(attn_scale, &scale, 0, sizeof(scale)); } void map_by_name(std::map& tensors, const std::string prefix) { tensors[prefix + "norm.weight"] = norm_w; tensors[prefix + "norm.bias"] = norm_b; tensors[prefix + "q.weight"] = q_w; tensors[prefix + "q.bias"] = q_b; tensors[prefix + "k.weight"] = k_w; tensors[prefix + "k.bias"] = k_b; tensors[prefix + "v.weight"] = v_w; tensors[prefix + "v.bias"] = v_b; tensors[prefix + "proj_out.weight"] = proj_out_w; tensors[prefix + "proj_out.bias"] = proj_out_b; } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { // x: [N, in_channels, h, w] auto h_ = ggml_nn_group_norm(ctx, x, norm_w, norm_b); const int64_t n = h_->ne[3]; const int64_t c = h_->ne[2]; const int64_t h = h_->ne[1]; const int64_t w = h_->ne[0]; auto q = ggml_nn_conv_2d(ctx, h_, q_w, q_b); // [N, in_channels, h, w] auto k = ggml_nn_conv_2d(ctx, h_, k_w, k_b); // [N, in_channels, h, w] auto v = ggml_nn_conv_2d(ctx, h_, v_w, v_b); // [N, in_channels, h, w] q = ggml_cont(ctx, ggml_permute(ctx, q, 1, 2, 0, 3)); // [N, h, w, in_channels] q = ggml_reshape_3d(ctx, q, c, h * w, n); // [N, h * w, in_channels] k = ggml_cont(ctx, ggml_permute(ctx, k, 1, 2, 0, 3)); // [N, h, w, in_channels] k = ggml_reshape_3d(ctx, k, c, h * w, n); // [N, h * w, in_channels] auto w_ = ggml_mul_mat(ctx, k, q); // [N, h * w, h * w] w_ = ggml_scale_inplace(ctx, w_, attn_scale); w_ = ggml_soft_max_inplace(ctx, w_); v = ggml_reshape_3d(ctx, v, h * w, c, n); // [N, in_channels, h * w] h_ = ggml_mul_mat(ctx, v, w_); // [N, h * w, in_channels] h_ = ggml_cont(ctx, ggml_permute(ctx, h_, 1, 0, 2, 3)); // [N, in_channels, h * w] h_ = ggml_reshape_4d(ctx, h_, w, h, c, n); // [N, in_channels, h, w] // proj_out h_ = ggml_nn_conv_2d(ctx, h_, proj_out_w, proj_out_b); // [N, in_channels, h, w] h_ = ggml_add(ctx, h_, x); return h_; } }; // ldm.modules.diffusionmodules.model.Encoder struct Encoder { int embed_dim = 4; int ch = 128; int z_channels = 4; int in_channels = 3; int num_res_blocks = 2; int ch_mult[4] = {1, 2, 4, 4}; struct ggml_tensor* conv_in_w; // [ch, in_channels, 3, 3] struct ggml_tensor* conv_in_b; // [ch, ] ResnetBlock down_blocks[4][2]; DownSample down_samples[3]; struct { ResnetBlock block_1; AttnBlock attn_1; ResnetBlock block_2; } mid; // block_in = ch * ch_mult[len_mults - 1] struct ggml_tensor* norm_out_w; // [block_in, ] struct ggml_tensor* norm_out_b; // [block_in, ] struct ggml_tensor* conv_out_w; // [embed_dim*2, block_in, 3, 3] struct ggml_tensor* conv_out_b; // [embed_dim*2, ] Encoder() { int len_mults = sizeof(ch_mult) / sizeof(int); int block_in = 1; for (int i = 0; i < len_mults; i++) { if (i == 0) { block_in = ch; } else { block_in = ch * ch_mult[i - 1]; } int block_out = ch * ch_mult[i]; for (int j = 0; j < num_res_blocks; j++) { down_blocks[i][j].in_channels = block_in; down_blocks[i][j].out_channels = block_out; block_in = block_out; } if (i != len_mults - 1) { down_samples[i].channels = block_in; down_samples[i].out_channels = block_in; down_samples[i].vae_downsample = true; } } mid.block_1.in_channels = block_in; mid.block_1.out_channels = block_in; mid.attn_1.in_channels = block_in; mid.block_2.in_channels = block_in; mid.block_2.out_channels = block_in; } size_t get_num_tensors() { int num_tensors = 6; // mid num_tensors += 10 * 3; int len_mults = sizeof(ch_mult) / sizeof(int); for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { num_tensors += 10; } if (i != 0) { num_tensors += 2; } } return num_tensors; } size_t calculate_mem_size(ggml_type wtype) { double mem_size = 0; int len_mults = sizeof(ch_mult) / sizeof(int); int block_in = ch * ch_mult[len_mults - 1]; mem_size += ch * in_channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // conv_in_w mem_size += ch * ggml_type_sizef(GGML_TYPE_F32); // conv_in_b mem_size += 2 * block_in * ggml_type_sizef(GGML_TYPE_F32); // norm_out_w/b mem_size += z_channels * 2 * block_in * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // conv_out_w mem_size += z_channels * 2 * ggml_type_sizef(GGML_TYPE_F32); // conv_out_b mem_size += mid.block_1.calculate_mem_size(wtype); mem_size += mid.attn_1.calculate_mem_size(wtype); mem_size += mid.block_2.calculate_mem_size(wtype); for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { mem_size += down_blocks[i][j].calculate_mem_size(wtype); } if (i != 0) { mem_size += down_samples[i - 1].calculate_mem_size(wtype); } } return static_cast(mem_size); } void init_params(struct ggml_context* ctx, ggml_allocr* alloc, ggml_type wtype) { int len_mults = sizeof(ch_mult) / sizeof(int); int block_in = ch * ch_mult[len_mults - 1]; conv_in_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, in_channels, ch); conv_in_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ch); norm_out_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, block_in); norm_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, block_in); conv_out_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, block_in, z_channels * 2); conv_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, z_channels * 2); mid.block_1.init_params(ctx, wtype); mid.attn_1.init_params(ctx, alloc, wtype); mid.block_2.init_params(ctx, wtype); for (int i = 0; i < len_mults; i++) { for (int j = 0; j < num_res_blocks; j++) { down_blocks[i][j].init_params(ctx, wtype); } if (i != len_mults - 1) { down_samples[i].init_params(ctx, wtype); } } } void map_by_name(std::map& tensors, const std::string prefix) { tensors[prefix + "norm_out.weight"] = norm_out_w; tensors[prefix + "norm_out.bias"] = norm_out_b; tensors[prefix + "conv_in.weight"] = conv_in_w; tensors[prefix + "conv_in.bias"] = conv_in_b; tensors[prefix + "conv_out.weight"] = conv_out_w; tensors[prefix + "conv_out.bias"] = conv_out_b; mid.block_1.map_by_name(tensors, prefix + "mid.block_1."); mid.attn_1.map_by_name(tensors, prefix + "mid.attn_1."); mid.block_2.map_by_name(tensors, prefix + "mid.block_2."); int len_mults = sizeof(ch_mult) / sizeof(int); for (int i = 0; i < len_mults; i++) { for (int j = 0; j < num_res_blocks; j++) { down_blocks[i][j].map_by_name(tensors, prefix + "down." + std::to_string(i) + ".block." + std::to_string(j) + "."); } if (i != len_mults - 1) { down_samples[i].map_by_name(tensors, prefix + "down." + std::to_string(i) + ".downsample."); } } } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { // x: [N, in_channels, h, w] // conv_in auto h = ggml_nn_conv_2d(ctx, x, conv_in_w, conv_in_b, 1, 1, 1, 1); // [N, ch, h, w] ggml_set_name(h, "b-start"); int len_mults = sizeof(ch_mult) / sizeof(int); for (int i = 0; i < len_mults; i++) { for (int j = 0; j < num_res_blocks; j++) { h = down_blocks[i][j].forward(ctx, h); } if (i != len_mults - 1) { h = down_samples[i].forward(ctx, h); } } h = mid.block_1.forward(ctx, h); h = mid.attn_1.forward(ctx, h); h = mid.block_2.forward(ctx, h); // [N, block_in, h, w] h = ggml_nn_group_norm(ctx, h, norm_out_w, norm_out_b); h = ggml_silu_inplace(ctx, h); // conv_out h = ggml_nn_conv_2d(ctx, h, conv_out_w, conv_out_b, 1, 1, 1, 1); // [N, z_channels*2, h, w] return h; } }; // ldm.modules.diffusionmodules.model.Decoder struct Decoder { int embed_dim = 4; int ch = 128; int z_channels = 4; int out_ch = 3; int num_res_blocks = 2; int ch_mult[4] = {1, 2, 4, 4}; // block_in = ch * ch_mult[-1], 512 struct ggml_tensor* conv_in_w; // [block_in, z_channels, 3, 3] struct ggml_tensor* conv_in_b; // [block_in, ] struct { ResnetBlock block_1; AttnBlock attn_1; ResnetBlock block_2; } mid; ResnetBlock up_blocks[4][3]; UpSample up_samples[3]; struct ggml_tensor* norm_out_w; // [ch * ch_mult[0], ] struct ggml_tensor* norm_out_b; // [ch * ch_mult[0], ] struct ggml_tensor* conv_out_w; // [out_ch, ch * ch_mult[0], 3, 3] struct ggml_tensor* conv_out_b; // [out_ch, ] Decoder() { int len_mults = sizeof(ch_mult) / sizeof(int); int block_in = ch * ch_mult[len_mults - 1]; mid.block_1.in_channels = block_in; mid.block_1.out_channels = block_in; mid.attn_1.in_channels = block_in; mid.block_2.in_channels = block_in; mid.block_2.out_channels = block_in; for (int i = len_mults - 1; i >= 0; i--) { int mult = ch_mult[i]; int block_out = ch * mult; for (int j = 0; j < num_res_blocks + 1; j++) { up_blocks[i][j].in_channels = block_in; up_blocks[i][j].out_channels = block_out; block_in = block_out; } if (i != 0) { up_samples[i - 1].channels = block_in; up_samples[i - 1].out_channels = block_in; } } } size_t calculate_mem_size(ggml_type wtype) { double mem_size = 0; int len_mults = sizeof(ch_mult) / sizeof(int); int block_in = ch * ch_mult[len_mults - 1]; mem_size += block_in * z_channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // conv_in_w mem_size += block_in * ggml_type_sizef(GGML_TYPE_F32); // conv_in_b mem_size += 2 * (ch * ch_mult[0]) * ggml_type_sizef(GGML_TYPE_F32); // norm_out_w/b mem_size += (ch * ch_mult[0]) * out_ch * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // conv_out_w mem_size += out_ch * ggml_type_sizef(GGML_TYPE_F32); // conv_out_b mem_size += mid.block_1.calculate_mem_size(wtype); mem_size += mid.attn_1.calculate_mem_size(wtype); mem_size += mid.block_2.calculate_mem_size(wtype); for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { mem_size += up_blocks[i][j].calculate_mem_size(wtype); } if (i != 0) { mem_size += up_samples[i - 1].calculate_mem_size(wtype); } } return static_cast(mem_size); } size_t get_num_tensors() { int num_tensors = 8; // mid num_tensors += 10 * 3; int len_mults = sizeof(ch_mult) / sizeof(int); for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { num_tensors += 10; } if (i != 0) { num_tensors += 2; } } return num_tensors; } void init_params(struct ggml_context* ctx, ggml_allocr* alloc, ggml_type wtype) { int len_mults = sizeof(ch_mult) / sizeof(int); int block_in = ch * ch_mult[len_mults - 1]; norm_out_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ch * ch_mult[0]); norm_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ch * ch_mult[0]); conv_in_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, z_channels, block_in); conv_in_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, block_in); conv_out_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, ch * ch_mult[0], out_ch); conv_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_ch); mid.block_1.init_params(ctx, wtype); mid.attn_1.init_params(ctx, alloc, wtype); mid.block_2.init_params(ctx, wtype); for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { up_blocks[i][j].init_params(ctx, wtype); } if (i != 0) { up_samples[i - 1].init_params(ctx, wtype); } } } void map_by_name(std::map& tensors, const std::string prefix) { tensors[prefix + "norm_out.weight"] = norm_out_w; tensors[prefix + "norm_out.bias"] = norm_out_b; tensors[prefix + "conv_in.weight"] = conv_in_w; tensors[prefix + "conv_in.bias"] = conv_in_b; tensors[prefix + "conv_out.weight"] = conv_out_w; tensors[prefix + "conv_out.bias"] = conv_out_b; mid.block_1.map_by_name(tensors, prefix + "mid.block_1."); mid.attn_1.map_by_name(tensors, prefix + "mid.attn_1."); mid.block_2.map_by_name(tensors, prefix + "mid.block_2."); int len_mults = sizeof(ch_mult) / sizeof(int); for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { up_blocks[i][j].map_by_name(tensors, prefix + "up." + std::to_string(i) + ".block." + std::to_string(j) + "."); } if (i != 0) { up_samples[i - 1].map_by_name(tensors, prefix + "up." + std::to_string(i) + ".upsample."); } } } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* z) { // z: [N, z_channels, h, w] // conv_in auto h = ggml_nn_conv_2d(ctx, z, conv_in_w, conv_in_b, 1, 1, 1, 1); // [N, block_in, h, w] h = mid.block_1.forward(ctx, h); h = mid.attn_1.forward(ctx, h); h = mid.block_2.forward(ctx, h); // [N, block_in, h, w] int len_mults = sizeof(ch_mult) / sizeof(int); for (int i = len_mults - 1; i >= 0; i--) { for (int j = 0; j < num_res_blocks + 1; j++) { h = up_blocks[i][j].forward(ctx, h); } if (i != 0) { h = up_samples[i - 1].forward(ctx, h); } } // group norm 32 h = ggml_nn_group_norm(ctx, h, norm_out_w, norm_out_b); h = ggml_silu_inplace(ctx, h); // conv_out h = ggml_nn_conv_2d(ctx, h, conv_out_w, conv_out_b, 1, 1, 1, 1); // [N, out_ch, h, w] return h; } }; // ldm.models.autoencoder.AutoencoderKL struct AutoEncoderKL { bool decode_only = true; int embed_dim = 4; struct { int z_channels = 4; int resolution = 256; int in_channels = 3; int out_ch = 3; int ch = 128; int ch_mult[4] = {1, 2, 4, 4}; int num_res_blocks = 2; } dd_config; struct ggml_tensor* quant_conv_w; // [2*embed_dim, 2*z_channels, 1, 1] struct ggml_tensor* quant_conv_b; // [2*embed_dim, ] struct ggml_tensor* post_quant_conv_w; // [z_channels, embed_dim, 1, 1] struct ggml_tensor* post_quant_conv_b; // [z_channels, ] Encoder encoder; Decoder decoder; struct ggml_context* ctx = NULL; ggml_backend_buffer_t params_buffer = NULL; ggml_backend_buffer_t compute_buffer = NULL; // for compute struct ggml_allocr* compute_alloc = NULL; int memory_buffer_size = 0; ggml_type wtype; ggml_backend_t backend = NULL; AutoEncoderKL(bool decode_only = false) : decode_only(decode_only) { assert(sizeof(dd_config.ch_mult) == sizeof(encoder.ch_mult)); assert(sizeof(dd_config.ch_mult) == sizeof(decoder.ch_mult)); encoder.embed_dim = embed_dim; decoder.embed_dim = embed_dim; encoder.ch = dd_config.ch; decoder.ch = dd_config.ch; encoder.z_channels = dd_config.z_channels; decoder.z_channels = dd_config.z_channels; encoder.in_channels = dd_config.in_channels; decoder.out_ch = dd_config.out_ch; encoder.num_res_blocks = dd_config.num_res_blocks; int len_mults = sizeof(dd_config.ch_mult) / sizeof(int); for (int i = 0; i < len_mults; i++) { encoder.ch_mult[i] = dd_config.ch_mult[i]; decoder.ch_mult[i] = dd_config.ch_mult[i]; } } size_t calculate_mem_size() { double mem_size = 0; if (!decode_only) { mem_size += 2 * embed_dim * 2 * dd_config.z_channels * 1 * 1 * ggml_type_sizef(GGML_TYPE_F16); // quant_conv_w mem_size += 2 * embed_dim * ggml_type_sizef(GGML_TYPE_F32); // quant_conv_b mem_size += encoder.calculate_mem_size(wtype); } mem_size += dd_config.z_channels * embed_dim * 1 * 1 * ggml_type_sizef(GGML_TYPE_F16); // post_quant_conv_w mem_size += dd_config.z_channels * ggml_type_sizef(GGML_TYPE_F32); // post_quant_conv_b mem_size += decoder.calculate_mem_size(wtype); return static_cast(mem_size); } bool initialize(ggml_backend_t backend_, ggml_type wtype_) { backend = backend_; wtype = wtype_; memory_buffer_size = 1 * 1024 * 1024; // 1 MB, for padding memory_buffer_size += (int)calculate_mem_size(); int num_tensors = 0; if (!decode_only) { num_tensors += 2; num_tensors += (int)encoder.get_num_tensors(); } num_tensors += (int)decoder.get_num_tensors(); LOG_DEBUG("vae params backend buffer size = % 6.2f MB (%i tensors)", memory_buffer_size / (1024.0 * 1024.0), num_tensors); struct ggml_init_params params; params.mem_size = static_cast(num_tensors * ggml_tensor_overhead()); params.mem_buffer = NULL; params.no_alloc = true; // LOG_DEBUG("mem_size %u ", params.mem_size); params_buffer = ggml_backend_alloc_buffer(backend, memory_buffer_size); ctx = ggml_init(params); if (!ctx) { LOG_ERROR("ggml_init() failed"); return false; } return true; } void destroy() { if (ctx != NULL) { ggml_free(ctx); ctx = NULL; } } void alloc_params() { ggml_allocr* alloc = ggml_allocr_new_from_buffer(params_buffer); if (!decode_only) { quant_conv_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, 2 * dd_config.z_channels, 2 * embed_dim); quant_conv_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2 * embed_dim); encoder.init_params(ctx, alloc, wtype); } post_quant_conv_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, embed_dim, dd_config.z_channels); post_quant_conv_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dd_config.z_channels); decoder.init_params(ctx, alloc, wtype); // alloc all tensors linked to this context for (struct ggml_tensor* t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->data == NULL) { ggml_allocr_alloc(alloc, t); } } ggml_allocr_free(alloc); } void map_by_name(std::map& tensors, const std::string prefix) { if (!decode_only) { tensors[prefix + "quant_conv.weight"] = quant_conv_w; tensors[prefix + "quant_conv.bias"] = quant_conv_b; encoder.map_by_name(tensors, prefix + "encoder."); } tensors[prefix + "post_quant_conv.weight"] = post_quant_conv_w; tensors[prefix + "post_quant_conv.bias"] = post_quant_conv_b; decoder.map_by_name(tensors, prefix + "decoder."); } struct ggml_tensor* decode(struct ggml_context* ctx0, struct ggml_tensor* z) { // z: [N, z_channels, h, w] // post_quant_conv auto h = ggml_nn_conv_2d(ctx0, z, post_quant_conv_w, post_quant_conv_b); // [N, z_channels, h, w] ggml_set_name(h, "bench-start"); h = decoder.forward(ctx0, h); ggml_set_name(h, "bench-end"); return h; } struct ggml_tensor* encode(struct ggml_context* ctx0, struct ggml_tensor* x) { // x: [N, in_channels, h, w] auto h = encoder.forward(ctx0, x); // [N, 2*z_channels, h/8, w/8] // quant_conv h = ggml_nn_conv_2d(ctx0, h, quant_conv_w, quant_conv_b); // [N, 2*embed_dim, h/8, w/8] ggml_set_name(h, "b-end"); return h; } struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) { // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data static size_t buf_size = ggml_tensor_overhead() * UNET_GRAPH_SIZE + ggml_graph_overhead(); static std::vector buf(buf_size); struct ggml_init_params params = { /*.mem_size =*/buf_size, /*.mem_buffer =*/buf.data(), /*.no_alloc =*/true, // the tensors will be allocated later by ggml_allocr_alloc_graph() }; // LOG_DEBUG("mem_size %u ", params.mem_size); struct ggml_context* ctx0 = ggml_init(params); struct ggml_cgraph* gf = ggml_new_graph(ctx0); struct ggml_tensor* z_ = NULL; // it's performing a compute, check if backend isn't cpu if (!ggml_backend_is_cpu(backend)) { // pass input tensors to gpu memory z_ = ggml_dup_tensor(ctx0, z); ggml_allocr_alloc(compute_alloc, z_); // pass data to device backend if (!ggml_allocr_is_measure(compute_alloc)) { ggml_backend_tensor_set(z_, z->data, 0, ggml_nbytes(z)); } } else { z_ = z; } struct ggml_tensor* out = decode_graph ? decode(ctx0, z_) : encode(ctx0, z_); ggml_build_forward_expand(gf, out); ggml_free(ctx0); return gf; } void begin(struct ggml_tensor* x, bool decode) { // calculate the amount of memory required // alignment required by the backend compute_alloc = ggml_allocr_new_measure_from_backend(backend); struct ggml_cgraph* gf = build_graph(x, decode); // compute the required memory size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(compute_alloc, gf); // recreate the allocator with the required memory ggml_allocr_free(compute_alloc); LOG_DEBUG("vae compute buffer size: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0); compute_buffer = ggml_backend_alloc_buffer(backend, compute_memory_buffer_size); compute_alloc = ggml_allocr_new_from_buffer(compute_buffer); } void compute(struct ggml_tensor* work_result, const int n_threads, struct ggml_tensor* z, bool decode_graph) { ggml_allocr_reset(compute_alloc); struct ggml_cgraph* gf = build_graph(z, decode_graph); ggml_allocr_alloc_graph(compute_alloc, gf); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } #ifdef SD_USE_METAL if (ggml_backend_is_metal(backend)) { ggml_backend_metal_set_n_cb(backend, n_threads); } #endif ggml_backend_graph_compute(backend, gf); #ifdef GGML_PERF ggml_graph_print(gf); #endif ggml_backend_tensor_get_and_sync(backend, gf->nodes[gf->n_nodes - 1], work_result->data, 0, ggml_nbytes(work_result)); } void end() { ggml_allocr_free(compute_alloc); ggml_backend_buffer_free(compute_buffer); compute_alloc = NULL; } }; /* =================================== TinyAutoEncoder =================================== References: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/autoencoder_tiny.py https://github.com/madebyollin/taesd/blob/main/taesd.py */ struct TAEBlock { int in_channels; int out_channels; // conv ggml_tensor* conv_0_w; // [in_channels, out_channels, 3, 3] ggml_tensor* conv_0_b; // [in_channels] ggml_tensor* conv_1_w; // [out_channels, out_channels, 3, 3] ggml_tensor* conv_1_b; // [out_channels] ggml_tensor* conv_2_w; // [out_channels, out_channels, 3, 3] ggml_tensor* conv_2_b; // [out_channels] // skip ggml_tensor* conv_skip_w; // [in_channels, out_channels, 1, 1] size_t calculate_mem_size() { size_t mem_size = in_channels * out_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_0_w mem_size += in_channels * ggml_type_size(GGML_TYPE_F32); // conv_0_b mem_size += out_channels * out_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_1_w mem_size += out_channels * ggml_type_size(GGML_TYPE_F32); // conv_1_b mem_size += out_channels * out_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_1_w mem_size += out_channels * ggml_type_size(GGML_TYPE_F32); // conv_1_b mem_size += out_channels * out_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_2_w mem_size += out_channels * ggml_type_size(GGML_TYPE_F32); // conv_2_b if (in_channels != out_channels) { mem_size += in_channels * out_channels * ggml_type_size(GGML_TYPE_F16); // conv_skip_w } return mem_size; } int get_num_tensors() { return 6 + (in_channels != out_channels ? 1 : 0); } void init_params(ggml_context* ctx) { conv_0_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, out_channels, in_channels); conv_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels); conv_1_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, out_channels, out_channels); conv_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); conv_2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, out_channels, out_channels); conv_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); if (in_channels != out_channels) { conv_skip_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, out_channels, in_channels); } } void map_by_name(std::map& tensors, std::string prefix) { tensors[prefix + "conv.0.weight"] = conv_0_w; tensors[prefix + "conv.0.bias"] = conv_0_b; tensors[prefix + "conv.2.weight"] = conv_1_w; tensors[prefix + "conv.2.bias"] = conv_1_b; tensors[prefix + "conv.4.weight"] = conv_2_w; tensors[prefix + "conv.4.bias"] = conv_2_b; if (in_channels != out_channels) { tensors[prefix + "skip.weight"] = conv_skip_w; } } ggml_tensor* forward(ggml_context* ctx, ggml_tensor* x) { // conv(n_in, n_out) ggml_tensor* h; h = ggml_nn_conv_2d(ctx, x, conv_0_w, conv_0_b, 1, 1, 1, 1); h = ggml_relu_inplace(ctx, h); h = ggml_nn_conv_2d(ctx, h, conv_1_w, conv_1_b, 1, 1, 1, 1); h = ggml_relu_inplace(ctx, h); h = ggml_nn_conv_2d(ctx, h, conv_2_w, conv_2_b, 1, 1, 1, 1); // skip connection if (in_channels != out_channels) { // skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() x = ggml_nn_conv_2d(ctx, x, conv_skip_w, NULL, 1, 1, 1, 1); } h = ggml_add(ctx, h, x); h = ggml_relu_inplace(ctx, h); return h; } }; struct TinyEncoder { int in_channels = 3; int z_channels = 4; int channels = 64; int num_blocks = 3; // input ggml_tensor* conv_input_w; // [channels, in_channels, 3, 3] ggml_tensor* conv_input_b; // [channels] TAEBlock initial_block; ggml_tensor* conv_1_w; // [channels, channels, 3, 3] TAEBlock input_blocks[3]; // middle ggml_tensor* conv_2_w; // [channels, channels, 3, 3] TAEBlock middle_blocks[3]; // output ggml_tensor* conv_3_w; // [channels, channels, 3, 3] TAEBlock output_blocks[3]; // final ggml_tensor* conv_final_w; // [z_channels, channels, 3, 3] ggml_tensor* conv_final_b; // [z_channels] TinyEncoder() { for (int i = 0; i < num_blocks; i++) { input_blocks[i].in_channels = channels; input_blocks[i].out_channels = channels; middle_blocks[i].in_channels = channels; middle_blocks[i].out_channels = channels; output_blocks[i].in_channels = channels; output_blocks[i].out_channels = channels; } initial_block.in_channels = channels; initial_block.out_channels = channels; } size_t calculate_mem_size() { size_t mem_size = channels * in_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_input_w mem_size += channels * ggml_type_size(GGML_TYPE_F32); // conv_input_b mem_size += initial_block.calculate_mem_size(); mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_1_w mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_2_w mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_3_w for (int i = 0; i < num_blocks; i++) { mem_size += input_blocks[i].calculate_mem_size(); mem_size += middle_blocks[i].calculate_mem_size(); mem_size += output_blocks[i].calculate_mem_size(); } mem_size += z_channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_input_w mem_size += z_channels * ggml_type_size(GGML_TYPE_F32); // conv_input_b return mem_size; } int get_num_tensors() { int num_tensors = 7; for (int i = 0; i < num_blocks; i++) { num_tensors += input_blocks[i].get_num_tensors(); num_tensors += middle_blocks[i].get_num_tensors(); num_tensors += output_blocks[i].get_num_tensors(); } num_tensors += initial_block.get_num_tensors(); return num_tensors; } void init_params(ggml_context* ctx) { conv_input_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, in_channels, channels); conv_input_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, channels); initial_block.init_params(ctx); conv_1_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels); conv_2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels); conv_3_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels); conv_final_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, z_channels); conv_final_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, z_channels); for (int i = 0; i < num_blocks; i++) { input_blocks[i].init_params(ctx); middle_blocks[i].init_params(ctx); output_blocks[i].init_params(ctx); } } void map_by_name(std::map& tensors, std::string prefix) { tensors[prefix + "0.weight"] = conv_input_w; tensors[prefix + "0.bias"] = conv_input_b; initial_block.map_by_name(tensors, prefix + "1."); tensors[prefix + "2.weight"] = conv_1_w; for (int i = 0; i < num_blocks; i++) { input_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 3) + "."); } tensors[prefix + "6.weight"] = conv_2_w; for (int i = 0; i < num_blocks; i++) { middle_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 7) + "."); } tensors[prefix + "10.weight"] = conv_3_w; for (int i = 0; i < num_blocks; i++) { output_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 11) + "."); } tensors[prefix + "14.weight"] = conv_final_w; tensors[prefix + "14.bias"] = conv_final_b; } ggml_tensor* forward(ggml_context* ctx, ggml_tensor* x) { // conv(3, 64) auto z = ggml_nn_conv_2d(ctx, x, conv_input_w, conv_input_b, 1, 1, 1, 1); // Block(64, 64) z = initial_block.forward(ctx, z); // conv(64, 64, stride=2, bias=False) z = ggml_nn_conv_2d(ctx, z, conv_1_w, NULL, 2, 2, 1, 1); // Block(64, 64), Block(64, 64), Block(64, 64) for (int i = 0; i < num_blocks; i++) { z = input_blocks[i].forward(ctx, z); } // conv(64, 64, stride=2, bias=False) z = ggml_nn_conv_2d(ctx, z, conv_2_w, NULL, 2, 2, 1, 1); // Block(64, 64), Block(64, 64), Block(64, 64) for (int i = 0; i < num_blocks; i++) { z = middle_blocks[i].forward(ctx, z); } // conv(64, 64, stride=2, bias=False) z = ggml_nn_conv_2d(ctx, z, conv_3_w, NULL, 2, 2, 1, 1); // Block(64, 64), Block(64, 64), Block(64, 64) for (int i = 0; i < num_blocks; i++) { z = output_blocks[i].forward(ctx, z); } // conv(64, 4) z = ggml_nn_conv_2d(ctx, z, conv_final_w, conv_final_b, 1, 1, 1, 1); return z; } }; struct TinyDecoder { int z_channels = 4; int channels = 64; int output_channels = 3; int num_blocks = 3; // input ggml_tensor* conv_input_w; // [channels, z_channels, 3, 3] ggml_tensor* conv_input_b; // [channels] TAEBlock input_blocks[3]; ggml_tensor* conv_1_w; // [channels, channels, 3, 3] // middle TAEBlock middle_blocks[3]; ggml_tensor* conv_2_w; // [channels, channels, 3, 3] // output TAEBlock output_blocks[3]; ggml_tensor* conv_3_w; // [channels, channels, 3, 3] // final TAEBlock final_block; ggml_tensor* conv_final_w; // [output_channels, channels, 3, 3] ggml_tensor* conv_final_b; // [output_channels] ggml_tensor* in_scale_1d3; // [1] ggml_tensor* in_scale_3; // [1] TinyDecoder() { for (int i = 0; i < num_blocks; i++) { input_blocks[i].in_channels = channels; input_blocks[i].out_channels = channels; middle_blocks[i].in_channels = channels; middle_blocks[i].out_channels = channels; output_blocks[i].in_channels = channels; output_blocks[i].out_channels = channels; } final_block.in_channels = channels; final_block.out_channels = channels; } size_t calculate_mem_size() { size_t mem_size = channels * z_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_input_w mem_size += channels * ggml_type_size(GGML_TYPE_F32); // conv_input_b for (int i = 0; i < num_blocks; i++) { mem_size += input_blocks[i].calculate_mem_size(); } mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_1_w for (int i = 0; i < num_blocks; i++) { mem_size += middle_blocks[i].calculate_mem_size(); } mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_2_w for (int i = 0; i < num_blocks; i++) { mem_size += output_blocks[i].calculate_mem_size(); } mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_3_w mem_size += final_block.calculate_mem_size(); mem_size += output_channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_input_w mem_size += output_channels * ggml_type_size(GGML_TYPE_F32); // conv_input_b return mem_size; } int get_num_tensors() { int num_tensors = 9; for (int i = 0; i < num_blocks; i++) { num_tensors += input_blocks[i].get_num_tensors(); num_tensors += middle_blocks[i].get_num_tensors(); num_tensors += output_blocks[i].get_num_tensors(); } num_tensors += final_block.get_num_tensors(); return num_tensors; } void init_params(ggml_allocr* alloc, ggml_context* ctx) { conv_input_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, z_channels, channels); conv_input_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, channels); conv_1_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels); conv_2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels); conv_3_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels); conv_final_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, output_channels); conv_final_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, output_channels); for (int i = 0; i < num_blocks; i++) { input_blocks[i].init_params(ctx); middle_blocks[i].init_params(ctx); output_blocks[i].init_params(ctx); } final_block.init_params(ctx); // initialize constants scales in_scale_1d3 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); in_scale_3 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); ggml_allocr_alloc(alloc, in_scale_1d3); float scale_1d3 = 1.0f / 3.0f; ggml_backend_tensor_set(in_scale_1d3, &scale_1d3, 0, sizeof(scale_1d3)); ggml_allocr_alloc(alloc, in_scale_3); float scale_3 = 3.0f; ggml_backend_tensor_set(in_scale_3, &scale_3, 0, sizeof(scale_3)); } void map_by_name(std::map& tensors, std::string prefix) { tensors[prefix + "0.weight"] = conv_input_w; tensors[prefix + "0.bias"] = conv_input_b; for (int i = 0; i < num_blocks; i++) { input_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 2) + "."); } tensors[prefix + "6.weight"] = conv_1_w; for (int i = 0; i < num_blocks; i++) { middle_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 7) + "."); } tensors[prefix + "11.weight"] = conv_2_w; for (int i = 0; i < num_blocks; i++) { output_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 12) + "."); } tensors[prefix + "16.weight"] = conv_3_w; final_block.map_by_name(tensors, prefix + "17."); tensors[prefix + "18.weight"] = conv_final_w; tensors[prefix + "18.bias"] = conv_final_b; } ggml_tensor* forward(ggml_context* ctx, ggml_tensor* z) { // torch.tanh(x / 3) * 3 auto h = ggml_scale(ctx, z, in_scale_1d3); h = ggml_tanh_inplace(ctx, h); h = ggml_scale(ctx, h, in_scale_3); // conv(4, 64) h = ggml_nn_conv_2d(ctx, h, conv_input_w, conv_input_b, 1, 1, 1, 1); // nn.ReLU() h = ggml_relu_inplace(ctx, h); // Block(64, 64), Block(64, 64), Block(64, 64) for (int i = 0; i < num_blocks; i++) { h = input_blocks[i].forward(ctx, h); } // nn.Upsample(scale_factor=2) h = ggml_upscale(ctx, h, 2); // conv(64, 64, bias=False) h = ggml_nn_conv_2d(ctx, h, conv_1_w, NULL, 1, 1, 1, 1); // Block(64, 64), Block(64, 64), Block(64, 64) for (int i = 0; i < num_blocks; i++) { h = middle_blocks[i].forward(ctx, h); } // nn.Upsample(scale_factor=2) h = ggml_upscale(ctx, h, 2); // conv(64, 64, bias=False) h = ggml_nn_conv_2d(ctx, h, conv_2_w, NULL, 1, 1, 1, 1); // Block(64, 64), Block(64, 64), Block(64, 64) for (int i = 0; i < num_blocks; i++) { h = output_blocks[i].forward(ctx, h); } // nn.Upsample(scale_factor=2) h = ggml_upscale(ctx, h, 2); // conv(64, 64, bias=False) h = ggml_nn_conv_2d(ctx, h, conv_3_w, NULL, 1, 1, 1, 1); // Block(64, 64) h = final_block.forward(ctx, h); // conv(64, 3) h = ggml_nn_conv_2d(ctx, h, conv_final_w, conv_final_b, 1, 1, 1, 1); return h; } }; struct TinyAutoEncoder { TinyEncoder encoder; TinyDecoder decoder; ggml_context* ctx = NULL; bool decode_only = false; ggml_backend_buffer_t params_buffer = NULL; ggml_backend_buffer_t compute_buffer = NULL; // for compute struct ggml_allocr* compute_alloc = NULL; int memory_buffer_size = 0; ggml_type wtype; ggml_backend_t backend = NULL; TinyAutoEncoder(bool decoder_only_ = true) : decode_only(decoder_only_) { decoder = TinyDecoder(); if (!decoder_only_) { encoder = TinyEncoder(); } } size_t calculate_mem_size() { size_t mem_size = decoder.calculate_mem_size(); if (!decode_only) { mem_size += encoder.calculate_mem_size(); } mem_size += 1024; // padding return mem_size; } bool init(ggml_backend_t backend_) { backend = backend_; memory_buffer_size = calculate_mem_size(); int num_tensors = decoder.get_num_tensors(); if (!decode_only) { num_tensors += encoder.get_num_tensors(); } LOG_DEBUG("TAE params backend buffer size = % 6.2f MB (%i tensors)", memory_buffer_size / (1024.0 * 1024.0), num_tensors); struct ggml_init_params params; params.mem_size = static_cast(num_tensors * ggml_tensor_overhead()); params.mem_buffer = NULL; params.no_alloc = true; // LOG_DEBUG("mem_size %u ", params.mem_size); params_buffer = ggml_backend_alloc_buffer(backend, memory_buffer_size); ctx = ggml_init(params); if (!ctx) { LOG_ERROR("ggml_init() failed"); return false; } return true; } void alloc_params() { ggml_allocr* alloc = ggml_allocr_new_from_buffer(params_buffer); decoder.init_params(alloc, ctx); if (!decode_only) { encoder.init_params(ctx); } // alloc all tensors linked to this context for (struct ggml_tensor* t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->data == NULL) { ggml_allocr_alloc(alloc, t); } } ggml_allocr_free(alloc); } void map_by_name(std::map& tensors) { decoder.map_by_name(tensors, "decoder.layers."); if (!decode_only) { encoder.map_by_name(tensors, "encoder.layers."); } } bool load_from_file(const std::string& file_path, ggml_backend_t backend) { LOG_INFO("loading taesd from '%s'", file_path.c_str()); if (!init(backend)) { return false; } std::map taesd_tensors; ModelLoader model_loader; if (!model_loader.init_from_file(file_path)) { LOG_ERROR("init taesd model loader from file failed: '%s'", file_path.c_str()); return false; } // prepare memory for the weights { alloc_params(); map_by_name(taesd_tensors); } std::set tensor_names_in_file; auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool { const std::string& name = tensor_storage.name; tensor_names_in_file.insert(name); struct ggml_tensor* real; if (taesd_tensors.find(name) != taesd_tensors.end()) { real = taesd_tensors[name]; } else { if (name.find("encoder.") != std::string::npos && decode_only) { return true; } LOG_ERROR("unknown tensor '%s' in model file", name.data()); return true; } if ( real->ne[0] != tensor_storage.ne[0] || real->ne[1] != tensor_storage.ne[1] || real->ne[2] != tensor_storage.ne[2] || real->ne[3] != tensor_storage.ne[3]) { LOG_ERROR( "tensor '%s' has wrong shape in model file: " "got [%d, %d, %d, %d], expected [%d, %d, %d, %d]", name.c_str(), (int)tensor_storage.ne[0], (int)tensor_storage.ne[1], (int)tensor_storage.ne[2], (int)tensor_storage.ne[3], (int)real->ne[0], (int)real->ne[1], (int)real->ne[2], (int)real->ne[3]); return false; } *dst_tensor = real; return true; }; bool success = model_loader.load_tensors(on_new_tensor_cb, backend); bool some_tensor_not_init = false; for (auto pair : taesd_tensors) { if (tensor_names_in_file.find(pair.first) == tensor_names_in_file.end()) { LOG_ERROR("tensor '%s' not in model file", pair.first.c_str()); some_tensor_not_init = true; } } if (some_tensor_not_init) { return false; } LOG_INFO("taesd model loaded"); return success; } struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) { // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data static size_t buf_size = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); static std::vector buf(buf_size); struct ggml_init_params params = { /*.mem_size =*/buf_size, /*.mem_buffer =*/buf.data(), /*.no_alloc =*/true, // the tensors will be allocated later by ggml_allocr_alloc_graph() }; // LOG_DEBUG("mem_size %u ", params.mem_size); struct ggml_context* ctx0 = ggml_init(params); struct ggml_cgraph* gf = ggml_new_graph(ctx0); struct ggml_tensor* z_ = NULL; // it's performing a compute, check if backend isn't cpu if (!ggml_backend_is_cpu(backend)) { // pass input tensors to gpu memory z_ = ggml_dup_tensor(ctx0, z); ggml_allocr_alloc(compute_alloc, z_); // pass data to device backend if (!ggml_allocr_is_measure(compute_alloc)) { ggml_backend_tensor_set(z_, z->data, 0, ggml_nbytes(z)); } } else { z_ = z; } struct ggml_tensor* out = decode_graph ? decoder.forward(ctx0, z_) : encoder.forward(ctx0, z_); ggml_build_forward_expand(gf, out); ggml_free(ctx0); return gf; } void begin(struct ggml_tensor* x, bool decode) { // calculate the amount of memory required // alignment required by the backend compute_alloc = ggml_allocr_new_measure_from_backend(backend); struct ggml_cgraph* gf = build_graph(x, decode); // compute the required memory size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(compute_alloc, gf); // recreate the allocator with the required memory ggml_allocr_free(compute_alloc); LOG_DEBUG("TAE compute buffer size: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0); compute_buffer = ggml_backend_alloc_buffer(backend, compute_memory_buffer_size); compute_alloc = ggml_allocr_new_from_buffer(compute_buffer); } void compute(struct ggml_tensor* work_result, const int n_threads, struct ggml_tensor* z, bool decode_graph) { ggml_allocr_reset(compute_alloc); struct ggml_cgraph* gf = build_graph(z, decode_graph); ggml_allocr_alloc_graph(compute_alloc, gf); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } #ifdef SD_USE_METAL if (ggml_backend_is_metal(backend)) { ggml_backend_metal_set_n_cb(backend, n_threads); } #endif ggml_backend_graph_compute(backend, gf); #ifdef GGML_PERF ggml_graph_print(gf); #endif ggml_backend_tensor_get_and_sync(backend, gf->nodes[gf->n_nodes - 1], work_result->data, 0, ggml_nbytes(work_result)); } void end() { ggml_allocr_free(compute_alloc); ggml_backend_buffer_free(compute_buffer); compute_alloc = NULL; } }; /* =================================== ESRGAN =================================== References: https://github.com/xinntao/Real-ESRGAN/blob/master/inference_realesrgan.py https://github.com/XPixelGroup/BasicSR/blob/v1.4.2/basicsr/archs/rrdbnet_arch.py */ struct ResidualDenseBlock { int num_features; int num_grow_ch; ggml_tensor* conv1_w; // [num_grow_ch, num_features, 3, 3] ggml_tensor* conv1_b; // [num_grow_ch] ggml_tensor* conv2_w; // [num_grow_ch, num_features + num_grow_ch, 3, 3] ggml_tensor* conv2_b; // [num_grow_ch] ggml_tensor* conv3_w; // [num_grow_ch, num_features + 2 * num_grow_ch, 3, 3] ggml_tensor* conv3_b; // [num_grow_ch] ggml_tensor* conv4_w; // [num_grow_ch, num_features + 3 * num_grow_ch, 3, 3] ggml_tensor* conv4_b; // [num_grow_ch] ggml_tensor* conv5_w; // [num_features, num_features + 4 * num_grow_ch, 3, 3] ggml_tensor* conv5_b; // [num_features] ResidualDenseBlock() {} ResidualDenseBlock(int num_feat, int n_grow_ch) { num_features = num_feat; num_grow_ch = n_grow_ch; } size_t calculate_mem_size() { size_t mem_size = num_features * num_grow_ch * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv1_w mem_size += num_grow_ch * ggml_type_size(GGML_TYPE_F32); // conv1_b mem_size += (num_features + num_grow_ch) * num_grow_ch * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv2_w mem_size += num_grow_ch * ggml_type_size(GGML_TYPE_F32); // conv2_b mem_size += (num_features + 2 * num_grow_ch) * num_grow_ch * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv3_w mem_size += num_grow_ch * ggml_type_size(GGML_TYPE_F32); // conv3_w mem_size += (num_features + 3 * num_grow_ch) * num_grow_ch * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv4_w mem_size += num_grow_ch * ggml_type_size(GGML_TYPE_F32); // conv4_w mem_size += (num_features + 4 * num_grow_ch) * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv5_w mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv5_w return mem_size; } int get_num_tensors() { int num_tensors = 10; return num_tensors; } void init_params(ggml_context* ctx) { conv1_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features, num_grow_ch); conv1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_grow_ch); conv2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features + num_grow_ch, num_grow_ch); conv2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_grow_ch); conv3_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features + 2 * num_grow_ch, num_grow_ch); conv3_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_grow_ch); conv4_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features + 3 * num_grow_ch, num_grow_ch); conv4_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_grow_ch); conv5_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features + 4 * num_grow_ch, num_features); conv5_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_features); } void map_by_name(std::map& tensors, std::string prefix) { tensors[prefix + "conv1.weight"] = conv1_w; tensors[prefix + "conv1.bias"] = conv1_b; tensors[prefix + "conv2.weight"] = conv2_w; tensors[prefix + "conv2.bias"] = conv2_b; tensors[prefix + "conv3.weight"] = conv3_w; tensors[prefix + "conv3.bias"] = conv3_b; tensors[prefix + "conv4.weight"] = conv4_w; tensors[prefix + "conv4.bias"] = conv4_b; tensors[prefix + "conv5.weight"] = conv5_w; tensors[prefix + "conv5.bias"] = conv5_b; } ggml_tensor* forward(ggml_context* ctx, ggml_tensor* out_scale, ggml_tensor* x /* feat */) { // x1 = self.lrelu(self.conv1(x)) ggml_tensor* x1 = ggml_nn_conv_2d(ctx, x, conv1_w, conv1_b, 1, 1, 1, 1); x1 = ggml_leaky_relu(ctx, x1, 0.2f, true); // x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) ggml_tensor* x_cat = ggml_concat(ctx, x, x1); ggml_tensor* x2 = ggml_nn_conv_2d(ctx, x_cat, conv2_w, conv2_b, 1, 1, 1, 1); x2 = ggml_leaky_relu(ctx, x2, 0.2f, true); // x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) x_cat = ggml_concat(ctx, x_cat, x2); ggml_tensor* x3 = ggml_nn_conv_2d(ctx, x_cat, conv3_w, conv3_b, 1, 1, 1, 1); x3 = ggml_leaky_relu(ctx, x3, 0.2f, true); // x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) x_cat = ggml_concat(ctx, x_cat, x3); ggml_tensor* x4 = ggml_nn_conv_2d(ctx, x_cat, conv4_w, conv4_b, 1, 1, 1, 1); x4 = ggml_leaky_relu(ctx, x4, 0.2f, true); // self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) x_cat = ggml_concat(ctx, x_cat, x4); ggml_tensor* x5 = ggml_nn_conv_2d(ctx, x_cat, conv5_w, conv5_b, 1, 1, 1, 1); // return x5 * 0.2 + x x5 = ggml_add(ctx, ggml_scale(ctx, x5, out_scale), x); return x5; } }; struct EsrganBlock { ResidualDenseBlock rd_blocks[3]; int num_residual_blocks = 3; EsrganBlock() {} EsrganBlock(int num_feat, int num_grow_ch) { for (int i = 0; i < num_residual_blocks; i++) { rd_blocks[i] = ResidualDenseBlock(num_feat, num_grow_ch); } } int get_num_tensors() { int num_tensors = 0; for (int i = 0; i < num_residual_blocks; i++) { num_tensors += rd_blocks[i].get_num_tensors(); } return num_tensors; } size_t calculate_mem_size() { size_t mem_size = 0; for (int i = 0; i < num_residual_blocks; i++) { mem_size += rd_blocks[i].calculate_mem_size(); } return mem_size; } void init_params(ggml_context* ctx) { for (int i = 0; i < num_residual_blocks; i++) { rd_blocks[i].init_params(ctx); } } void map_by_name(std::map& tensors, std::string prefix) { for (int i = 0; i < num_residual_blocks; i++) { rd_blocks[i].map_by_name(tensors, prefix + "rdb" + std::to_string(i + 1) + "."); } } ggml_tensor* forward(ggml_context* ctx, ggml_tensor* out_scale, ggml_tensor* x) { ggml_tensor* out = x; for (int i = 0; i < num_residual_blocks; i++) { // out = self.rdb...(x) out = rd_blocks[i].forward(ctx, out_scale, out); } // return out * 0.2 + x out = ggml_add(ctx, ggml_scale(ctx, out, out_scale), x); return out; } }; struct ESRGAN { int scale = 4; // default RealESRGAN_x4plus_anime_6B int num_blocks = 6; // default RealESRGAN_x4plus_anime_6B int in_channels = 3; int out_channels = 3; int num_features = 64; // default RealESRGAN_x4plus_anime_6B int num_grow_ch = 32; // default RealESRGAN_x4plus_anime_6B int tile_size = 128; // avoid cuda OOM for 4gb VRAM ggml_tensor* conv_first_w; // [num_features, in_channels, 3, 3] ggml_tensor* conv_first_b; // [num_features] EsrganBlock body_blocks[6]; ggml_tensor* conv_body_w; // [num_features, num_features, 3, 3] ggml_tensor* conv_body_b; // [num_features] // upsample ggml_tensor* conv_up1_w; // [num_features, num_features, 3, 3] ggml_tensor* conv_up1_b; // [num_features] ggml_tensor* conv_up2_w; // [num_features, num_features, 3, 3] ggml_tensor* conv_up2_b; // [num_features] ggml_tensor* conv_hr_w; // [num_features, num_features, 3, 3] ggml_tensor* conv_hr_b; // [num_features] ggml_tensor* conv_last_w; // [out_channels, num_features, 3, 3] ggml_tensor* conv_last_b; // [out_channels] ggml_context* ctx = NULL; bool decode_only = false; ggml_backend_buffer_t params_buffer = NULL; ggml_backend_buffer_t compute_buffer = NULL; // for compute struct ggml_allocr* compute_alloc = NULL; int memory_buffer_size = 0; ggml_type wtype; ggml_backend_t backend = NULL; ESRGAN() { for (int i = 0; i < num_blocks; i++) { body_blocks[i] = EsrganBlock(num_features, num_grow_ch); } } size_t calculate_mem_size() { size_t mem_size = num_features * in_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_first_w mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv_first_b for (int i = 0; i < num_blocks; i++) { mem_size += body_blocks[i].calculate_mem_size(); } mem_size += num_features * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_body_w mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv_body_w // upsample mem_size += num_features * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_up1_w mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv_up1_b mem_size += num_features * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_up2_w mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv_up2_b mem_size += num_features * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_hr_w mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv_hr_b mem_size += out_channels * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_last_w mem_size += out_channels * ggml_type_size(GGML_TYPE_F32); // conv_last_b return mem_size; } int get_num_tensors() { int num_tensors = 12; for (int i = 0; i < num_blocks; i++) { num_tensors += body_blocks[i].get_num_tensors(); } return num_tensors; } bool init(ggml_backend_t backend_) { this->backend = backend_; memory_buffer_size = calculate_mem_size(); memory_buffer_size += 1024; // overhead int num_tensors = get_num_tensors(); LOG_DEBUG("ESRGAN params backend buffer size = % 6.2f MB (%i tensors)", memory_buffer_size / (1024.0 * 1024.0), num_tensors); struct ggml_init_params params; params.mem_size = static_cast(num_tensors * ggml_tensor_overhead()); params.mem_buffer = NULL; params.no_alloc = true; params_buffer = ggml_backend_alloc_buffer(backend, memory_buffer_size); ctx = ggml_init(params); if (!ctx) { LOG_ERROR("ggml_init() failed"); return false; } return true; } void alloc_params() { ggml_allocr* alloc = ggml_allocr_new_from_buffer(params_buffer); conv_first_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, in_channels, num_features); conv_first_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_features); conv_body_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features, num_features); conv_body_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_features); conv_up1_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features, num_features); conv_up1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_features); conv_up2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features, num_features); conv_up2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_features); conv_hr_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features, num_features); conv_hr_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_features); conv_last_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features, out_channels); conv_last_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); for (int i = 0; i < num_blocks; i++) { body_blocks[i].init_params(ctx); } // alloc all tensors linked to this context for (struct ggml_tensor* t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->data == NULL) { ggml_allocr_alloc(alloc, t); } } ggml_allocr_free(alloc); } bool load_from_file(const std::string& file_path, ggml_backend_t backend) { LOG_INFO("loading esrgan from '%s'", file_path.c_str()); if (!init(backend)) { return false; } std::map esrgan_tensors; ModelLoader model_loader; if (!model_loader.init_from_file(file_path)) { LOG_ERROR("init esrgan model loader from file failed: '%s'", file_path.c_str()); return false; } // prepare memory for the weights { alloc_params(); map_by_name(esrgan_tensors); } std::set tensor_names_in_file; auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool { const std::string& name = tensor_storage.name; tensor_names_in_file.insert(name); struct ggml_tensor* real; if (esrgan_tensors.find(name) != esrgan_tensors.end()) { real = esrgan_tensors[name]; } else { LOG_ERROR("unknown tensor '%s' in model file", name.data()); return true; } if ( real->ne[0] != tensor_storage.ne[0] || real->ne[1] != tensor_storage.ne[1] || real->ne[2] != tensor_storage.ne[2] || real->ne[3] != tensor_storage.ne[3]) { LOG_ERROR( "tensor '%s' has wrong shape in model file: " "got [%d, %d, %d, %d], expected [%d, %d, %d, %d]", name.c_str(), (int)tensor_storage.ne[0], (int)tensor_storage.ne[1], (int)tensor_storage.ne[2], (int)tensor_storage.ne[3], (int)real->ne[0], (int)real->ne[1], (int)real->ne[2], (int)real->ne[3]); return false; } *dst_tensor = real; return true; }; bool success = model_loader.load_tensors(on_new_tensor_cb, backend); bool some_tensor_not_init = false; for (auto pair : esrgan_tensors) { if (tensor_names_in_file.find(pair.first) == tensor_names_in_file.end()) { LOG_ERROR("tensor '%s' not in model file", pair.first.c_str()); some_tensor_not_init = true; } } if (some_tensor_not_init) { return false; } LOG_INFO("esrgan model loaded"); return success; } void map_by_name(std::map& tensors) { tensors["conv_first.weight"] = conv_first_w; tensors["conv_first.bias"] = conv_first_b; for (int i = 0; i < num_blocks; i++) { body_blocks[i].map_by_name(tensors, "body." + std::to_string(i) + "."); } tensors["conv_body.weight"] = conv_body_w; tensors["conv_body.bias"] = conv_body_b; tensors["conv_up1.weight"] = conv_up1_w; tensors["conv_up1.bias"] = conv_up1_b; tensors["conv_up2.weight"] = conv_up2_w; tensors["conv_up2.bias"] = conv_up2_b; tensors["conv_hr.weight"] = conv_hr_w; tensors["conv_hr.bias"] = conv_hr_b; tensors["conv_last.weight"] = conv_last_w; tensors["conv_last.bias"] = conv_last_b; } ggml_tensor* forward(ggml_context* ctx0, ggml_tensor* out_scale, ggml_tensor* x /* feat */) { // feat = self.conv_first(feat) auto h = ggml_nn_conv_2d(ctx0, x, conv_first_w, conv_first_b, 1, 1, 1, 1); auto body_h = h; // self.body(feat) for (int i = 0; i < num_blocks; i++) { body_h = body_blocks[i].forward(ctx0, out_scale, body_h); } // body_feat = self.conv_body(self.body(feat)) body_h = ggml_nn_conv_2d(ctx0, body_h, conv_body_w, conv_body_b, 1, 1, 1, 1); // feat = feat + body_feat h = ggml_add(ctx0, h, body_h); // upsample // feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))) h = ggml_upscale(ctx0, h, 2); h = ggml_nn_conv_2d(ctx0, h, conv_up1_w, conv_up1_b, 1, 1, 1, 1); h = ggml_leaky_relu(ctx0, h, 0.2f, true); // feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest'))) h = ggml_upscale(ctx0, h, 2); h = ggml_nn_conv_2d(ctx0, h, conv_up2_w, conv_up2_b, 1, 1, 1, 1); h = ggml_leaky_relu(ctx0, h, 0.2f, true); // out = self.conv_last(self.lrelu(self.conv_hr(feat))) h = ggml_nn_conv_2d(ctx0, h, conv_hr_w, conv_hr_b, 1, 1, 1, 1); h = ggml_leaky_relu(ctx0, h, 0.2f, true); h = ggml_nn_conv_2d(ctx0, h, conv_last_w, conv_last_b, 1, 1, 1, 1); return h; } struct ggml_cgraph* build_graph(struct ggml_tensor* x) { // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data static size_t buf_size = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); static std::vector buf(buf_size); struct ggml_init_params params = { /*.mem_size =*/buf_size, /*.mem_buffer =*/buf.data(), /*.no_alloc =*/true, // the tensors will be allocated later by ggml_allocr_alloc_graph() }; struct ggml_context* ctx0 = ggml_init(params); struct ggml_cgraph* gf = ggml_new_graph(ctx0); struct ggml_tensor* x_ = NULL; struct ggml_tensor* os = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_allocr_alloc(compute_alloc, os); if (!ggml_allocr_is_measure(compute_alloc)) { float scale = 0.2f; ggml_backend_tensor_set(os, &scale, 0, sizeof(scale)); } // it's performing a compute, check if backend isn't cpu if (!ggml_backend_is_cpu(backend)) { // pass input tensors to gpu memory x_ = ggml_dup_tensor(ctx0, x); ggml_allocr_alloc(compute_alloc, x_); // pass data to device backend if (!ggml_allocr_is_measure(compute_alloc)) { ggml_backend_tensor_set(x_, x->data, 0, ggml_nbytes(x)); } } else { x_ = x; } struct ggml_tensor* out = forward(ctx0, os, x); ggml_build_forward_expand(gf, out); ggml_free(ctx0); return gf; } void begin(struct ggml_tensor* x) { // calculate the amount of memory required // alignment required by the backend compute_alloc = ggml_allocr_new_measure_from_backend(backend); struct ggml_cgraph* gf = build_graph(x); // compute the required memory size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(compute_alloc, gf); // recreate the allocator with the required memory ggml_allocr_free(compute_alloc); LOG_DEBUG("ESRGAN compute buffer size: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0); compute_buffer = ggml_backend_alloc_buffer(backend, compute_memory_buffer_size); compute_alloc = ggml_allocr_new_from_buffer(compute_buffer); } void compute(struct ggml_tensor* work_result, const int n_threads, struct ggml_tensor* x) { ggml_allocr_reset(compute_alloc); struct ggml_cgraph* gf = build_graph(x); ggml_allocr_alloc_graph(compute_alloc, gf); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } #ifdef SD_USE_METAL if (ggml_backend_is_metal(backend)) { ggml_backend_metal_set_n_cb(backend, n_threads); } #endif ggml_backend_graph_compute(backend, gf); #ifdef GGML_PERF ggml_graph_print(gf); #endif ggml_tensor* out = gf->nodes[gf->n_nodes - 1]; ggml_backend_tensor_get_and_sync(backend, out, work_result->data, 0, ggml_nbytes(out)); } void end() { ggml_allocr_free(compute_alloc); ggml_backend_buffer_free(compute_buffer); compute_alloc = NULL; } }; float ggml_backend_tensor_get_f32(ggml_tensor* tensor) { GGML_ASSERT(tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_F16); float value; if (tensor->type == GGML_TYPE_F32) { ggml_backend_tensor_get(tensor, &value, 0, sizeof(value)); } else { // GGML_TYPE_F16 ggml_fp16_t f16_value; ggml_backend_tensor_get(tensor, &f16_value, 0, sizeof(f16_value)); value = ggml_fp16_to_fp32(f16_value); } return value; } struct LoraModel { float multiplier = 1.0f; std::map lora_tensors; struct ggml_context* ctx = NULL; ggml_backend_buffer_t params_buffer_lora = NULL; ggml_backend_t backend = NULL; bool load(ggml_backend_t backend_, std::string file_path) { backend = backend_; LOG_INFO("loading LoRA from '%s'", file_path.c_str()); ModelLoader model_loader; if (!model_loader.init_from_file(file_path)) { LOG_ERROR("init lora model loader from file failed: '%s'", file_path.c_str()); return false; } struct ggml_init_params params; params.mem_size = static_cast(LORA_GRAPH_SIZE * ggml_tensor_overhead()); params.mem_buffer = NULL; params.no_alloc = true; // LOG_DEBUG("mem_size %u ", params.mem_size); ctx = ggml_init(params); if (!ctx) { LOG_ERROR("ggml_init() failed"); return false; } ggml_type wtype = model_loader.get_sd_wtype(); LOG_DEBUG("calculating buffer size"); int64_t memory_buffer_size = model_loader.cal_mem_size(backend); LOG_DEBUG("lora params backend buffer size = % 6.2f MB", memory_buffer_size / (1024.0 * 1024.0)); params_buffer_lora = ggml_backend_alloc_buffer(backend, memory_buffer_size); ggml_allocr* alloc = ggml_allocr_new_from_buffer(params_buffer_lora); auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool { const std::string& name = tensor_storage.name; struct ggml_tensor* real = ggml_new_tensor(ctx, tensor_storage.type, tensor_storage.n_dims, tensor_storage.ne); ggml_allocr_alloc(alloc, real); *dst_tensor = real; lora_tensors[name] = real; return true; }; model_loader.load_tensors(on_new_tensor_cb, backend); LOG_DEBUG("finished loaded lora"); ggml_allocr_free(alloc); return true; } struct ggml_cgraph* build_graph(struct ggml_allocr* compute_alloc, std::map model_tensors) { // make a graph to compute all lora, expected lora and models tensors are in the same backend // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data static size_t buf_size = ggml_tensor_overhead() * LORA_GRAPH_SIZE + ggml_graph_overhead(); static std::vector buf(buf_size); struct ggml_init_params params = { /*.mem_size =*/buf_size, /*.mem_buffer =*/buf.data(), /*.no_alloc =*/true, // the tensors will be allocated later by ggml_allocr_alloc_graph() }; // LOG_DEBUG("mem_size %u ", params.mem_size); struct ggml_context* ctx0 = ggml_init(params); struct ggml_cgraph* gf = ggml_new_graph_custom(ctx0, LORA_GRAPH_SIZE, false); std::set applied_lora_tensors; for (auto it : model_tensors) { std::string k_tensor = it.first; struct ggml_tensor* weight = model_tensors[it.first]; size_t k_pos = k_tensor.find(".weight"); if (k_pos == std::string::npos) { continue; } k_tensor = k_tensor.substr(0, k_pos); replace_all_chars(k_tensor, '.', '_'); std::string lora_up_name = "lora." + k_tensor + ".lora_up.weight"; std::string lora_down_name = "lora." + k_tensor + ".lora_down.weight"; std::string alpha_name = "lora." + k_tensor + ".alpha"; std::string scale_name = "lora." + k_tensor + ".scale"; ggml_tensor* lora_up = NULL; ggml_tensor* lora_down = NULL; if (lora_tensors.find(lora_up_name) != lora_tensors.end()) { lora_up = lora_tensors[lora_up_name]; } if (lora_tensors.find(lora_down_name) != lora_tensors.end()) { lora_down = lora_tensors[lora_down_name]; } if (lora_up == NULL || lora_down == NULL) { continue; } applied_lora_tensors.insert(lora_up_name); applied_lora_tensors.insert(lora_down_name); applied_lora_tensors.insert(alpha_name); applied_lora_tensors.insert(scale_name); // calc_cale int64_t dim = lora_down->ne[lora_down->n_dims - 1]; float scale_value = 1.0f; if (lora_tensors.find(scale_name) != lora_tensors.end()) { scale_value = ggml_backend_tensor_get_f32(lora_tensors[scale_name]); } else if (lora_tensors.find(alpha_name) != lora_tensors.end()) { float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]); scale_value = alpha / dim; } scale_value *= multiplier; ggml_tensor* lora_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_allocr_alloc(compute_alloc, lora_scale); if (!ggml_allocr_is_measure(compute_alloc)) { ggml_backend_tensor_set(lora_scale, &scale_value, 0, ggml_nbytes(lora_scale)); } // flat lora tensors to multiply it int64_t lora_up_rows = lora_up->ne[lora_up->n_dims - 1]; lora_up = ggml_reshape_2d(ctx0, lora_up, ggml_nelements(lora_up) / lora_up_rows, lora_up_rows); int64_t lora_down_rows = lora_down->ne[lora_down->n_dims - 1]; lora_down = ggml_reshape_2d(ctx0, lora_down, ggml_nelements(lora_down) / lora_down_rows, lora_down_rows); // ggml_mul_mat requires tensor b transposed lora_down = ggml_cont(ctx0, ggml_transpose(ctx0, lora_down)); struct ggml_tensor* updown = ggml_mul_mat(ctx0, lora_up, lora_down); updown = ggml_cont(ctx0, ggml_transpose(ctx0, updown)); updown = ggml_reshape(ctx0, updown, weight); GGML_ASSERT(ggml_nelements(updown) == ggml_nelements(weight)); updown = ggml_scale_inplace(ctx0, updown, lora_scale); ggml_tensor* final_weight; // if (weight->type != GGML_TYPE_F32 && weight->type != GGML_TYPE_F16) { // final_weight = ggml_new_tensor(ctx0, GGML_TYPE_F32, weight->n_dims, weight->ne); // final_weight = ggml_cpy_inplace(ctx0, weight, final_weight); // final_weight = ggml_add_inplace(ctx0, final_weight, updown); // final_weight = ggml_cpy_inplace(ctx0, final_weight, weight); // } else { // final_weight = ggml_add_inplace(ctx0, weight, updown); // } final_weight = ggml_add_inplace(ctx0, weight, updown); // apply directly ggml_build_forward_expand(gf, final_weight); } for (auto& kv : lora_tensors) { if (applied_lora_tensors.find(kv.first) == applied_lora_tensors.end()) { LOG_WARN("unused lora tensor %s", kv.first.c_str()); } } return gf; } void apply(std::map model_tensors, int n_threads) { struct ggml_allocr* compute_alloc = NULL; ggml_backend_buffer_t buffer_compute_lora = NULL; // compute the required memory { compute_alloc = ggml_allocr_new_measure_from_backend(backend); struct ggml_cgraph* gf = build_graph(compute_alloc, model_tensors); size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(compute_alloc, gf); // recreate the allocator with the required memory ggml_allocr_free(compute_alloc); LOG_DEBUG("apply lora buffer size: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0); buffer_compute_lora = ggml_backend_alloc_buffer(backend, compute_memory_buffer_size); compute_alloc = ggml_allocr_new_from_buffer(buffer_compute_lora); } ggml_allocr_reset(compute_alloc); struct ggml_cgraph* gf = build_graph(compute_alloc, model_tensors); ggml_allocr_alloc_graph(compute_alloc, gf); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } #ifdef SD_USE_METAL if (ggml_backend_is_metal(backend)) { ggml_backend_metal_set_n_cb(backend, n_threads); } #endif ggml_backend_graph_compute(backend, gf); ggml_allocr_free(compute_alloc); ggml_backend_buffer_free(buffer_compute_lora); compute_alloc = NULL; } void release() { if (ctx != NULL) { ggml_free(ctx); ctx = NULL; } if (params_buffer_lora != NULL) { ggml_backend_buffer_free(params_buffer_lora); params_buffer_lora = NULL; } } }; /*================================================= CompVisDenoiser ==================================================*/ // Ref: https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/external.py struct SigmaSchedule { float alphas_cumprod[TIMESTEPS]; float sigmas[TIMESTEPS]; float log_sigmas[TIMESTEPS]; virtual std::vector get_sigmas(uint32_t n) = 0; float sigma_to_t(float sigma) { float log_sigma = std::log(sigma); std::vector dists; dists.reserve(TIMESTEPS); for (float log_sigma_val : log_sigmas) { dists.push_back(log_sigma - log_sigma_val); } int low_idx = 0; for (size_t i = 0; i < TIMESTEPS; i++) { if (dists[i] >= 0) { low_idx++; } } low_idx = std::min(std::max(low_idx - 1, 0), TIMESTEPS - 2); int high_idx = low_idx + 1; float low = log_sigmas[low_idx]; float high = log_sigmas[high_idx]; float w = (low - log_sigma) / (low - high); w = std::max(0.f, std::min(1.f, w)); float t = (1.0f - w) * low_idx + w * high_idx; return t; } float t_to_sigma(float t) { int low_idx = static_cast(std::floor(t)); int high_idx = static_cast(std::ceil(t)); float w = t - static_cast(low_idx); float log_sigma = (1.0f - w) * log_sigmas[low_idx] + w * log_sigmas[high_idx]; return std::exp(log_sigma); } }; struct DiscreteSchedule : SigmaSchedule { std::vector get_sigmas(uint32_t n) { std::vector result; int t_max = TIMESTEPS - 1; if (n == 0) { return result; } else if (n == 1) { result.push_back(t_to_sigma((float)t_max)); result.push_back(0); return result; } float step = static_cast(t_max) / static_cast(n - 1); for (uint32_t i = 0; i < n; ++i) { float t = t_max - step * i; result.push_back(t_to_sigma(t)); } result.push_back(0); return result; } }; struct KarrasSchedule : SigmaSchedule { std::vector get_sigmas(uint32_t n) { // These *COULD* be function arguments here, // but does anybody ever bother to touch them? float sigma_min = 0.1f; float sigma_max = 10.f; float rho = 7.f; std::vector result(n + 1); float min_inv_rho = pow(sigma_min, (1.f / rho)); float max_inv_rho = pow(sigma_max, (1.f / rho)); for (uint32_t i = 0; i < n; i++) { // Eq. (5) from Karras et al 2022 result[i] = pow(max_inv_rho + (float)i / ((float)n - 1.f) * (min_inv_rho - max_inv_rho), rho); } result[n] = 0.; return result; } }; struct Denoiser { std::shared_ptr schedule = std::make_shared(); virtual std::vector get_scalings(float sigma) = 0; }; struct CompVisDenoiser : public Denoiser { float sigma_data = 1.0f; std::vector get_scalings(float sigma) { float c_out = -sigma; float c_in = 1.0f / std::sqrt(sigma * sigma + sigma_data * sigma_data); return {c_out, c_in}; } }; struct CompVisVDenoiser : public Denoiser { float sigma_data = 1.0f; std::vector get_scalings(float sigma) { float c_skip = sigma_data * sigma_data / (sigma * sigma + sigma_data * sigma_data); float c_out = -sigma * sigma_data / std::sqrt(sigma * sigma + sigma_data * sigma_data); float c_in = 1.0f / std::sqrt(sigma * sigma + sigma_data * sigma_data); return {c_skip, c_out, c_in}; } }; /*=============================================== StableDiffusionGGML ================================================*/ class StableDiffusionGGML { public: SDVersion version; bool vae_decode_only = false; bool free_params_immediately = false; std::shared_ptr rng = std::make_shared(); int n_threads = -1; float scale_factor = 0.18215f; FrozenCLIPEmbedderWithCustomWords cond_stage_model; UNetModel diffusion_model; AutoEncoderKL first_stage_model; bool use_tiny_autoencoder = false; bool vae_tiling = false; std::map tensors; std::string lora_model_dir; // lora_name => multiplier std::unordered_map curr_lora_state; std::map loras; std::shared_ptr denoiser = std::make_shared(); ggml_backend_t backend = NULL; // general backend ggml_type model_data_type = GGML_TYPE_COUNT; TinyAutoEncoder tae_first_stage; std::string taesd_path; ESRGAN esrgan_upscaler; std::string esrgan_path; bool upscale_output = false; StableDiffusionGGML() = default; StableDiffusionGGML(int n_threads, bool vae_decode_only, bool free_params_immediately, std::string lora_model_dir, RNGType rng_type) : n_threads(n_threads), vae_decode_only(vae_decode_only), free_params_immediately(free_params_immediately), lora_model_dir(lora_model_dir) { first_stage_model.decode_only = vae_decode_only; tae_first_stage.decode_only = vae_decode_only; if (rng_type == STD_DEFAULT_RNG) { rng = std::make_shared(); } else if (rng_type == CUDA_RNG) { rng = std::make_shared(); } this->lora_model_dir = lora_model_dir; } ~StableDiffusionGGML() { cond_stage_model.destroy(); diffusion_model.destroy(); if (!use_tiny_autoencoder) { first_stage_model.destroy(); } } bool load_from_file(const std::string& model_path, const std::string& vae_path, ggml_type wtype, Schedule schedule, int clip_skip) { #ifdef SD_USE_CUBLAS LOG_DEBUG("Using CUDA backend"); backend = ggml_backend_cuda_init(0); #endif #ifdef SD_USE_METAL LOG_DEBUG("Using Metal backend"); ggml_metal_log_set_callback(ggml_log_callback_default, nullptr); backend = ggml_backend_metal_init(); #endif if (!backend) { LOG_DEBUG("Using CPU backend"); backend = ggml_backend_cpu_init(); } #ifdef SD_USE_FLASH_ATTENTION #if defined(SD_USE_CUBLAS) || defined(SD_USE_METAL) LOG_WARN("Flash Attention not supported with GPU Backend"); #else LOG_INFO("Flash Attention enabled"); #endif #endif LOG_INFO("loading model from '%s'", model_path.c_str()); ModelLoader model_loader; if (!model_loader.init_from_file(model_path)) { LOG_ERROR("init model loader from file failed: '%s'", model_path.c_str()); return false; } if (vae_path.size() > 0) { LOG_INFO("loading vae from '%s'", vae_path.c_str()); if (!model_loader.init_from_file(vae_path, "vae.")) { LOG_WARN("loading vae from '%s' failed", vae_path.c_str()); } } version = model_loader.get_sd_version(); if (version == VERSION_COUNT) { LOG_ERROR("get sd version from file failed: '%s'", model_path.c_str()); return false; } if (version == VERSION_XL) { scale_factor = 0.13025f; } cond_stage_model = FrozenCLIPEmbedderWithCustomWords(version, clip_skip); diffusion_model = UNetModel(version); LOG_INFO("Stable Diffusion %s ", model_version_to_str[version]); if (wtype == GGML_TYPE_COUNT) { model_data_type = model_loader.get_sd_wtype(); } else { model_data_type = wtype; } LOG_INFO("Stable Diffusion weight type: %s", ggml_type_name(model_data_type)); LOG_DEBUG("loading vocab"); std::string merges_utf8_str = model_loader.load_merges(); if (merges_utf8_str.size() == 0) { LOG_ERROR("get merges failed: '%s'", model_path.c_str()); return false; } cond_stage_model.tokenizer.load_from_merges(merges_utf8_str); // create the ggml context for network params LOG_DEBUG("ggml tensor size = %d bytes", (int)sizeof(ggml_tensor)); if ( !cond_stage_model.initialize(backend, model_data_type) || !diffusion_model.initialize(backend, model_data_type)) { return false; } ggml_type vae_type = model_data_type; if (version == VERSION_XL) { vae_type = GGML_TYPE_F32; // avoid nan, not work... } if (!use_tiny_autoencoder && !first_stage_model.initialize(backend, vae_type)) { return false; } LOG_DEBUG("preparing memory for the weights"); // prepare memory for the weights { // cond_stage_model(FrozenCLIPEmbedder) cond_stage_model.alloc_params(); cond_stage_model.map_by_name(tensors, "cond_stage_model."); // diffusion_model(UNetModel) diffusion_model.alloc_params(); diffusion_model.map_by_name(tensors, "model.diffusion_model."); if (!use_tiny_autoencoder) { // firest_stage_model(AutoEncoderKL) first_stage_model.alloc_params(); first_stage_model.map_by_name(tensors, "first_stage_model."); } } struct ggml_init_params params; params.mem_size = static_cast(10 * 1024) * 1024; // 10M params.mem_buffer = NULL; params.no_alloc = false; // LOG_DEBUG("mem_size %u ", params.mem_size); struct ggml_context* ctx = ggml_init(params); // for alphas_cumprod and is_using_v_parameterization check if (!ctx) { LOG_ERROR("ggml_init() failed"); return false; } ggml_tensor* alphas_cumprod_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, TIMESTEPS); calculate_alphas_cumprod((float*)alphas_cumprod_tensor->data); // load weights LOG_DEBUG("loading weights"); std::set tensor_names_in_file; int64_t t0 = ggml_time_ms(); size_t total_size = 0; std::vector read_buf; auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool { const std::string& name = tensor_storage.name; tensor_names_in_file.insert(name); if (name == "alphas_cumprod") { *dst_tensor = alphas_cumprod_tensor; return true; } struct ggml_tensor* real; if (tensors.find(name) != tensors.end()) { real = tensors[name]; } else { if (use_tiny_autoencoder && starts_with(name, "first_stage_model.")) { return true; } if (name.find("quant") == std::string::npos && name.find("first_stage_model.encoder.") == std::string::npos) { LOG_WARN("unknown tensor '%s' in model file", name.data()); } else { if (!vae_decode_only) { LOG_WARN("unknown tensor '%s' in model file", name.data()); } } return true; } if ( real->ne[0] != tensor_storage.ne[0] || real->ne[1] != tensor_storage.ne[1] || real->ne[2] != tensor_storage.ne[2] || real->ne[3] != tensor_storage.ne[3]) { LOG_ERROR( "tensor '%s' has wrong shape in model file: " "got [%d, %d, %d, %d], expected [%d, %d, %d, %d]", name.c_str(), (int)tensor_storage.ne[0], (int)tensor_storage.ne[1], (int)tensor_storage.ne[2], (int)tensor_storage.ne[3], (int)real->ne[0], (int)real->ne[1], (int)real->ne[2], (int)real->ne[3]); return false; } *dst_tensor = real; total_size += ggml_nbytes(real); return true; }; // print_ggml_tensor(alphas_cumprod_tensor); bool success = model_loader.load_tensors(on_new_tensor_cb, backend); if (!success) { LOG_ERROR("load tensors from file failed"); ggml_free(ctx); return false; } // print_ggml_tensor(alphas_cumprod_tensor); // calculate_alphas_cumprod((float*)alphas_cumprod_tensor->data); bool some_tensor_not_init = false; for (auto pair : tensors) { if (pair.first.find("cond_stage_model.transformer.text_model.encoder.layers.23") != std::string::npos) { continue; } if (use_tiny_autoencoder && starts_with(pair.first, "first_stage_model.")) { continue; } if (tensor_names_in_file.find(pair.first) == tensor_names_in_file.end()) { LOG_ERROR("tensor '%s' not in model file", pair.first.c_str()); some_tensor_not_init = true; } } if (some_tensor_not_init) { ggml_free(ctx); return false; } LOG_DEBUG("model size = %.2fMB", total_size / 1024.0 / 1024.0); size_t total_params_size = cond_stage_model.memory_buffer_size + diffusion_model.memory_buffer_size + first_stage_model.memory_buffer_size; LOG_INFO("total memory buffer size = %.2fMB (clip %.2fMB, unet %.2fMB, vae %.2fMB)", total_params_size / 1024.0 / 1024.0, cond_stage_model.memory_buffer_size / 1024.0 / 1024.0, diffusion_model.memory_buffer_size / 1024.0 / 1024.0, first_stage_model.memory_buffer_size / 1024.0 / 1024.0); int64_t t1 = ggml_time_ms(); LOG_INFO("loading model from '%s' completed, taking %.2fs", model_path.c_str(), (t1 - t0) * 1.0f / 1000); // check is_using_v_parameterization_for_sd2 bool is_using_v_parameterization = false; if (version == VERSION_2_x) { if (is_using_v_parameterization_for_sd2(ctx)) { is_using_v_parameterization = true; } } if (is_using_v_parameterization) { denoiser = std::make_shared(); LOG_INFO("running in v-prediction mode"); } else { LOG_INFO("running in eps-prediction mode"); } if (schedule != DEFAULT) { switch (schedule) { case DISCRETE: LOG_INFO("running with discrete schedule"); denoiser->schedule = std::make_shared(); break; case KARRAS: LOG_INFO("running with Karras schedule"); denoiser->schedule = std::make_shared(); break; case DEFAULT: // Don't touch anything. break; default: LOG_ERROR("Unknown schedule %i", schedule); abort(); } } for (int i = 0; i < TIMESTEPS; i++) { denoiser->schedule->alphas_cumprod[i] = ((float*)alphas_cumprod_tensor->data)[i]; denoiser->schedule->sigmas[i] = std::sqrt((1 - denoiser->schedule->alphas_cumprod[i]) / denoiser->schedule->alphas_cumprod[i]); denoiser->schedule->log_sigmas[i] = std::log(denoiser->schedule->sigmas[i]); } LOG_DEBUG("finished loaded file"); ggml_free(ctx); if (upscale_output) { if (!esrgan_upscaler.load_from_file(esrgan_path, backend)) { return false; } } if (use_tiny_autoencoder) { return tae_first_stage.load_from_file(taesd_path, backend); } return true; } bool is_using_v_parameterization_for_sd2(ggml_context* work_ctx) { struct ggml_tensor* x_t = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 8, 8, 4, 1); ggml_set_f32(x_t, 0.5); struct ggml_tensor* c = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 1024, 2, 1, 1); ggml_set_f32(c, 0.5); struct ggml_tensor* timesteps = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 1); // [N, ] struct ggml_tensor* t_emb = new_timestep_embedding(work_ctx, NULL, timesteps, diffusion_model.model_channels); // [N, model_channels] diffusion_model.begin(x_t, c, t_emb); int64_t t0 = ggml_time_ms(); ggml_set_f32(timesteps, 999); set_timestep_embedding(timesteps, t_emb, diffusion_model.model_channels); struct ggml_tensor* out = ggml_dup_tensor(work_ctx, x_t); diffusion_model.compute(out, n_threads, x_t, NULL, c, t_emb); diffusion_model.end(); double result = 0.f; { float* vec_x = (float*)x_t->data; float* vec_out = (float*)out->data; int64_t n = ggml_nelements(out); for (int i = 0; i < n; i++) { result += ((double)vec_out[i] - (double)vec_x[i]); } result /= n; } int64_t t1 = ggml_time_ms(); LOG_DEBUG("check is_using_v_parameterization_for_sd2, taking %.2fs", (t1 - t0) * 1.0f / 1000); return result < -1; } void apply_lora(const std::string& lora_name, float multiplier) { int64_t t0 = ggml_time_ms(); LoraModel lora; std::string st_file_path = path_join(lora_model_dir, lora_name + ".safetensors"); std::string ckpt_file_path = path_join(lora_model_dir, lora_name + ".ckpt"); std::string file_path; if (file_exists(st_file_path)) { file_path = st_file_path; } else if (file_exists(ckpt_file_path)) { file_path = ckpt_file_path; } else { LOG_WARN("can not find %s or %s for lora %s", st_file_path.c_str(), ckpt_file_path.c_str(), lora_name.c_str()); return; } if (!lora.load(backend, file_path)) { LOG_WARN("load lora tensors from %s failed", file_path.c_str()); return; } lora.multiplier = multiplier; lora.apply(tensors, n_threads); loras[lora_name] = lora; lora.release(); int64_t t1 = ggml_time_ms(); LOG_INFO("lora '%s' applied, taking %.2fs", lora_name.c_str(), (t1 - t0) * 1.0f / 1000); } void apply_loras(const std::unordered_map& lora_state) { if (lora_state.size() > 0 && model_data_type != GGML_TYPE_F16 && model_data_type != GGML_TYPE_F32) { LOG_WARN("In quantized models when applying LoRA, the images have poor quality."); } std::unordered_map lora_state_diff; for (auto& kv : lora_state) { const std::string& lora_name = kv.first; float multiplier = kv.second; if (curr_lora_state.find(lora_name) != curr_lora_state.end()) { float curr_multiplier = curr_lora_state[lora_name]; float multiplier_diff = multiplier - curr_multiplier; if (multiplier_diff != 0.f) { lora_state_diff[lora_name] = multiplier_diff; } } else { lora_state_diff[lora_name] = multiplier; } } for (auto& kv : lora_state_diff) { apply_lora(kv.first, kv.second); } curr_lora_state = lora_state; } std::pair get_learned_condition(ggml_context* work_ctx, const std::string& text, int width, int height, bool force_zero_embeddings = false) { auto tokens_and_weights = cond_stage_model.tokenize(text, true); std::vector& tokens = tokens_and_weights.first; std::vector& weights = tokens_and_weights.second; int64_t t0 = ggml_time_ms(); cond_stage_model.begin(work_ctx, (int)tokens.size()); auto result_pair = cond_stage_model.compute(n_threads, tokens); // [N, n_token, hidden_size] struct ggml_tensor* hidden_states = result_pair.first; struct ggml_tensor* pooled = result_pair.second; // if (pooled != NULL) { // print_ggml_tensor(hidden_states); // print_ggml_tensor(pooled); // } cond_stage_model.end(); int64_t t1 = ggml_time_ms(); LOG_DEBUG("computing condition graph completed, taking %" PRId64 " ms", t1 - t0); ggml_tensor* result = ggml_dup_tensor(work_ctx, hidden_states); { float original_mean = ggml_tensor_mean(hidden_states); for (int i2 = 0; i2 < hidden_states->ne[2]; i2++) { for (int i1 = 0; i1 < hidden_states->ne[1]; i1++) { for (int i0 = 0; i0 < hidden_states->ne[0]; i0++) { float value = ggml_tensor_get_f32(hidden_states, i0, i1, i2); value *= weights[i1]; ggml_tensor_set_f32(result, value, i0, i1, i2); } } } float new_mean = ggml_tensor_mean(result); ggml_tensor_scale(result, (original_mean / new_mean)); } if (force_zero_embeddings) { float* vec = (float*)result->data; for (int i = 0; i < ggml_nelements(result); i++) { vec[i] = 0; } } ggml_tensor* vec = NULL; if (version == VERSION_XL) { size_t out_dim = 256; vec = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, diffusion_model.adm_in_channels); // [0:1280] size_t offset = 0; memcpy(vec->data, pooled->data, ggml_nbytes(pooled)); offset += ggml_nbytes(pooled); struct ggml_tensor* timesteps = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 2); // original_size_as_tuple float orig_width = (float)width; float orig_height = (float)height; ggml_tensor_set_f32(timesteps, orig_height, 0); ggml_tensor_set_f32(timesteps, orig_width, 1); ggml_tensor* embed_view = ggml_view_2d(work_ctx, vec, out_dim, 2, ggml_type_size(GGML_TYPE_F32) * out_dim, offset); offset += ggml_nbytes(embed_view); set_timestep_embedding(timesteps, embed_view, out_dim); // print_ggml_tensor(ggml_reshape_1d(work_ctx, embed_view, out_dim * 2)); // crop_coords_top_left float crop_coord_top = 0.f; float crop_coord_left = 0.f; ggml_tensor_set_f32(timesteps, crop_coord_top, 0); ggml_tensor_set_f32(timesteps, crop_coord_left, 1); embed_view = ggml_view_2d(work_ctx, vec, out_dim, 2, ggml_type_size(GGML_TYPE_F32) * out_dim, offset); offset += ggml_nbytes(embed_view); set_timestep_embedding(timesteps, embed_view, out_dim); // print_ggml_tensor(ggml_reshape_1d(work_ctx, embed_view, out_dim * 2)); // target_size_as_tuple float target_width = (float)width; float target_height = (float)height; ggml_tensor_set_f32(timesteps, target_height, 0); ggml_tensor_set_f32(timesteps, target_width, 1); embed_view = ggml_view_2d(work_ctx, vec, out_dim, 2, ggml_type_size(GGML_TYPE_F32) * out_dim, offset); offset += ggml_nbytes(embed_view); set_timestep_embedding(timesteps, embed_view, out_dim); // print_ggml_tensor(ggml_reshape_1d(work_ctx, embed_view, out_dim * 2)); GGML_ASSERT(offset == ggml_nbytes(vec)); } // print_ggml_tensor(result); return {result, vec}; } ggml_tensor* sample(ggml_context* work_ctx, ggml_tensor* x_t, ggml_tensor* noise, ggml_tensor* c, ggml_tensor* c_vector, ggml_tensor* uc, ggml_tensor* uc_vector, float cfg_scale, SampleMethod method, const std::vector& sigmas) { size_t steps = sigmas.size() - 1; // x_t = load_tensor_from_file(work_ctx, "./rand0.bin"); // print_ggml_tensor(x_t); struct ggml_tensor* x = ggml_dup_tensor(work_ctx, x_t); copy_ggml_tensor(x, x_t); struct ggml_tensor* noised_input = ggml_dup_tensor(work_ctx, x_t); struct ggml_tensor* timesteps = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 1); // [N, ] struct ggml_tensor* t_emb = new_timestep_embedding(work_ctx, NULL, timesteps, diffusion_model.model_channels); // [N, model_channels] diffusion_model.begin(noised_input, c, t_emb, c_vector); bool has_unconditioned = cfg_scale != 1.0 && uc != NULL; if (noise == NULL) { // x = x * sigmas[0] ggml_tensor_scale(x, sigmas[0]); } else { // xi = x + noise * sigma_sched[0] ggml_tensor_scale(noise, sigmas[0]); ggml_tensor_add(x, noise); } // denoise wrapper struct ggml_tensor* out_cond = ggml_dup_tensor(work_ctx, x); struct ggml_tensor* out_uncond = NULL; if (has_unconditioned) { out_uncond = ggml_dup_tensor(work_ctx, x); } struct ggml_tensor* denoised = ggml_dup_tensor(work_ctx, x); auto denoise = [&](ggml_tensor* input, float sigma, int step) { if (step == 1) { pretty_progress(0, (int)steps, 0); } int64_t t0 = ggml_time_us(); float c_skip = 1.0f; float c_out = 1.0f; float c_in = 1.0f; std::vector scaling = denoiser->get_scalings(sigma); if (scaling.size() == 3) { // CompVisVDenoiser c_skip = scaling[0]; c_out = scaling[1]; c_in = scaling[2]; } else { // CompVisDenoiser c_out = scaling[0]; c_in = scaling[1]; } float t = denoiser->schedule->sigma_to_t(sigma); ggml_set_f32(timesteps, t); set_timestep_embedding(timesteps, t_emb, diffusion_model.model_channels); copy_ggml_tensor(noised_input, input); // noised_input = noised_input * c_in ggml_tensor_scale(noised_input, c_in); // cond diffusion_model.compute(out_cond, n_threads, noised_input, NULL, c, t_emb, c_vector); float* negative_data = NULL; if (has_unconditioned) { // uncond diffusion_model.compute(out_uncond, n_threads, noised_input, NULL, uc, t_emb, uc_vector); negative_data = (float*)out_uncond->data; } float* vec_denoised = (float*)denoised->data; float* vec_input = (float*)input->data; float* positive_data = (float*)out_cond->data; int ne_elements = (int)ggml_nelements(denoised); for (int i = 0; i < ne_elements; i++) { float latent_result = positive_data[i]; if (has_unconditioned) { // out_uncond + cfg_scale * (out_cond - out_uncond) latent_result = negative_data[i] + cfg_scale * (positive_data[i] - negative_data[i]); } // v = latent_result, eps = latent_result // denoised = (v * c_out + input * c_skip) or (input + eps * c_out) vec_denoised[i] = latent_result * c_out + vec_input[i] * c_skip; } int64_t t1 = ggml_time_us(); if (step > 0) { pretty_progress(step, (int)steps, (t1 - t0) / 1000000.f); // LOG_INFO("step %d sampling completed taking %.2fs", step, (t1 - t0) * 1.0f / 1000000); } }; // sample_euler_ancestral switch (method) { case EULER_A: { struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x); struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x); for (int i = 0; i < steps; i++) { float sigma = sigmas[i]; // denoise denoise(x, sigma, i + 1); // d = (x - denoised) / sigma { float* vec_d = (float*)d->data; float* vec_x = (float*)x->data; float* vec_denoised = (float*)denoised->data; for (int i = 0; i < ggml_nelements(d); i++) { vec_d[i] = (vec_x[i] - vec_denoised[i]) / sigma; } } // get_ancestral_step float sigma_up = std::min(sigmas[i + 1], std::sqrt(sigmas[i + 1] * sigmas[i + 1] * (sigmas[i] * sigmas[i] - sigmas[i + 1] * sigmas[i + 1]) / (sigmas[i] * sigmas[i]))); float sigma_down = std::sqrt(sigmas[i + 1] * sigmas[i + 1] - sigma_up * sigma_up); // Euler method float dt = sigma_down - sigmas[i]; // x = x + d * dt { float* vec_d = (float*)d->data; float* vec_x = (float*)x->data; for (int i = 0; i < ggml_nelements(x); i++) { vec_x[i] = vec_x[i] + vec_d[i] * dt; } } if (sigmas[i + 1] > 0) { // x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up ggml_tensor_set_f32_randn(noise, rng); // noise = load_tensor_from_file(work_ctx, "./rand" + std::to_string(i+1) + ".bin"); { float* vec_x = (float*)x->data; float* vec_noise = (float*)noise->data; for (int i = 0; i < ggml_nelements(x); i++) { vec_x[i] = vec_x[i] + vec_noise[i] * sigma_up; } } } } } break; case EULER: // Implemented without any sigma churn { struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x); for (int i = 0; i < steps; i++) { float sigma = sigmas[i]; // denoise denoise(x, sigma, i + 1); // d = (x - denoised) / sigma { float* vec_d = (float*)d->data; float* vec_x = (float*)x->data; float* vec_denoised = (float*)denoised->data; for (int j = 0; j < ggml_nelements(d); j++) { vec_d[j] = (vec_x[j] - vec_denoised[j]) / sigma; } } float dt = sigmas[i + 1] - sigma; // x = x + d * dt { float* vec_d = (float*)d->data; float* vec_x = (float*)x->data; for (int j = 0; j < ggml_nelements(x); j++) { vec_x[j] = vec_x[j] + vec_d[j] * dt; } } } } break; case HEUN: { struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x); struct ggml_tensor* x2 = ggml_dup_tensor(work_ctx, x); for (int i = 0; i < steps; i++) { // denoise denoise(x, sigmas[i], -(i + 1)); // d = (x - denoised) / sigma { float* vec_d = (float*)d->data; float* vec_x = (float*)x->data; float* vec_denoised = (float*)denoised->data; for (int j = 0; j < ggml_nelements(x); j++) { vec_d[j] = (vec_x[j] - vec_denoised[j]) / sigmas[i]; } } float dt = sigmas[i + 1] - sigmas[i]; if (sigmas[i + 1] == 0) { // Euler step // x = x + d * dt float* vec_d = (float*)d->data; float* vec_x = (float*)x->data; for (int j = 0; j < ggml_nelements(x); j++) { vec_x[j] = vec_x[j] + vec_d[j] * dt; } } else { // Heun step float* vec_d = (float*)d->data; float* vec_d2 = (float*)d->data; float* vec_x = (float*)x->data; float* vec_x2 = (float*)x2->data; for (int j = 0; j < ggml_nelements(x); j++) { vec_x2[j] = vec_x[j] + vec_d[j] * dt; } denoise(x2, sigmas[i + 1], i + 1); float* vec_denoised = (float*)denoised->data; for (int j = 0; j < ggml_nelements(x); j++) { float d2 = (vec_x2[j] - vec_denoised[j]) / sigmas[i + 1]; vec_d[j] = (vec_d[j] + d2) / 2; vec_x[j] = vec_x[j] + vec_d[j] * dt; } } } } break; case DPM2: { struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x); struct ggml_tensor* x2 = ggml_dup_tensor(work_ctx, x); for (int i = 0; i < steps; i++) { // denoise denoise(x, sigmas[i], i + 1); // d = (x - denoised) / sigma { float* vec_d = (float*)d->data; float* vec_x = (float*)x->data; float* vec_denoised = (float*)denoised->data; for (int j = 0; j < ggml_nelements(x); j++) { vec_d[j] = (vec_x[j] - vec_denoised[j]) / sigmas[i]; } } if (sigmas[i + 1] == 0) { // Euler step // x = x + d * dt float dt = sigmas[i + 1] - sigmas[i]; float* vec_d = (float*)d->data; float* vec_x = (float*)x->data; for (int j = 0; j < ggml_nelements(x); j++) { vec_x[j] = vec_x[j] + vec_d[j] * dt; } } else { // DPM-Solver-2 float sigma_mid = exp(0.5f * (log(sigmas[i]) + log(sigmas[i + 1]))); float dt_1 = sigma_mid - sigmas[i]; float dt_2 = sigmas[i + 1] - sigmas[i]; float* vec_d = (float*)d->data; float* vec_x = (float*)x->data; float* vec_x2 = (float*)x2->data; for (int j = 0; j < ggml_nelements(x); j++) { vec_x2[j] = vec_x[j] + vec_d[j] * dt_1; } denoise(x2, sigma_mid, i + 1); float* vec_denoised = (float*)denoised->data; for (int j = 0; j < ggml_nelements(x); j++) { float d2 = (vec_x2[j] - vec_denoised[j]) / sigma_mid; vec_x[j] = vec_x[j] + d2 * dt_2; } } } } break; case DPMPP2S_A: { struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x); struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x); struct ggml_tensor* x2 = ggml_dup_tensor(work_ctx, x); for (int i = 0; i < steps; i++) { // denoise denoise(x, sigmas[i], i + 1); // get_ancestral_step float sigma_up = std::min(sigmas[i + 1], std::sqrt(sigmas[i + 1] * sigmas[i + 1] * (sigmas[i] * sigmas[i] - sigmas[i + 1] * sigmas[i + 1]) / (sigmas[i] * sigmas[i]))); float sigma_down = std::sqrt(sigmas[i + 1] * sigmas[i + 1] - sigma_up * sigma_up); auto t_fn = [](float sigma) -> float { return -log(sigma); }; auto sigma_fn = [](float t) -> float { return exp(-t); }; if (sigma_down == 0) { // Euler step float* vec_d = (float*)d->data; float* vec_x = (float*)x->data; float* vec_denoised = (float*)denoised->data; for (int j = 0; j < ggml_nelements(d); j++) { vec_d[j] = (vec_x[j] - vec_denoised[j]) / sigmas[i]; } // TODO: If sigma_down == 0, isn't this wrong? // But // https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py#L525 // has this exactly the same way. float dt = sigma_down - sigmas[i]; for (int j = 0; j < ggml_nelements(d); j++) { vec_x[j] = vec_x[j] + vec_d[j] * dt; } } else { // DPM-Solver++(2S) float t = t_fn(sigmas[i]); float t_next = t_fn(sigma_down); float h = t_next - t; float s = t + 0.5f * h; float* vec_d = (float*)d->data; float* vec_x = (float*)x->data; float* vec_x2 = (float*)x2->data; float* vec_denoised = (float*)denoised->data; // First half-step for (int j = 0; j < ggml_nelements(x); j++) { vec_x2[j] = (sigma_fn(s) / sigma_fn(t)) * vec_x[j] - (exp(-h * 0.5f) - 1) * vec_denoised[j]; } denoise(x2, sigmas[i + 1], i + 1); // Second half-step for (int j = 0; j < ggml_nelements(x); j++) { vec_x[j] = (sigma_fn(t_next) / sigma_fn(t)) * vec_x[j] - (exp(-h) - 1) * vec_denoised[j]; } } // Noise addition if (sigmas[i + 1] > 0) { ggml_tensor_set_f32_randn(noise, rng); { float* vec_x = (float*)x->data; float* vec_noise = (float*)noise->data; for (int i = 0; i < ggml_nelements(x); i++) { vec_x[i] = vec_x[i] + vec_noise[i] * sigma_up; } } } } } break; case DPMPP2M: // DPM++ (2M) from Karras et al (2022) { struct ggml_tensor* old_denoised = ggml_dup_tensor(work_ctx, x); auto t_fn = [](float sigma) -> float { return -log(sigma); }; for (int i = 0; i < steps; i++) { // denoise denoise(x, sigmas[i], i + 1); float t = t_fn(sigmas[i]); float t_next = t_fn(sigmas[i + 1]); float h = t_next - t; float a = sigmas[i + 1] / sigmas[i]; float b = exp(-h) - 1.f; float* vec_x = (float*)x->data; float* vec_denoised = (float*)denoised->data; float* vec_old_denoised = (float*)old_denoised->data; if (i == 0 || sigmas[i + 1] == 0) { // Simpler step for the edge cases for (int j = 0; j < ggml_nelements(x); j++) { vec_x[j] = a * vec_x[j] - b * vec_denoised[j]; } } else { float h_last = t - t_fn(sigmas[i - 1]); float r = h_last / h; for (int j = 0; j < ggml_nelements(x); j++) { float denoised_d = (1.f + 1.f / (2.f * r)) * vec_denoised[j] - (1.f / (2.f * r)) * vec_old_denoised[j]; vec_x[j] = a * vec_x[j] - b * denoised_d; } } // old_denoised = denoised for (int j = 0; j < ggml_nelements(x); j++) { vec_old_denoised[j] = vec_denoised[j]; } } } break; case DPMPP2Mv2: // Modified DPM++ (2M) from https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/8457 { struct ggml_tensor* old_denoised = ggml_dup_tensor(work_ctx, x); auto t_fn = [](float sigma) -> float { return -log(sigma); }; for (int i = 0; i < steps; i++) { // denoise denoise(x, sigmas[i], i + 1); float t = t_fn(sigmas[i]); float t_next = t_fn(sigmas[i + 1]); float h = t_next - t; float a = sigmas[i + 1] / sigmas[i]; float* vec_x = (float*)x->data; float* vec_denoised = (float*)denoised->data; float* vec_old_denoised = (float*)old_denoised->data; if (i == 0 || sigmas[i + 1] == 0) { // Simpler step for the edge cases float b = exp(-h) - 1.f; for (int j = 0; j < ggml_nelements(x); j++) { vec_x[j] = a * vec_x[j] - b * vec_denoised[j]; } } else { float h_last = t - t_fn(sigmas[i - 1]); float h_min = std::min(h_last, h); float h_max = std::max(h_last, h); float r = h_max / h_min; float h_d = (h_max + h_min) / 2.f; float b = exp(-h_d) - 1.f; for (int j = 0; j < ggml_nelements(x); j++) { float denoised_d = (1.f + 1.f / (2.f * r)) * vec_denoised[j] - (1.f / (2.f * r)) * vec_old_denoised[j]; vec_x[j] = a * vec_x[j] - b * denoised_d; } } // old_denoised = denoised for (int j = 0; j < ggml_nelements(x); j++) { vec_old_denoised[j] = vec_denoised[j]; } } } break; case LCM: // Latent Consistency Models { struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x); struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x); for (int i = 0; i < steps; i++) { float sigma = sigmas[i]; // denoise denoise(x, sigma, i + 1); // x = denoised { float* vec_x = (float*)x->data; float* vec_denoised = (float*)denoised->data; for (int j = 0; j < ggml_nelements(x); j++) { vec_x[j] = vec_denoised[j]; } } if (sigmas[i + 1] > 0) { // x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1]) ggml_tensor_set_f32_randn(noise, rng); // noise = load_tensor_from_file(res_ctx, "./rand" + std::to_string(i+1) + ".bin"); { float* vec_x = (float*)x->data; float* vec_noise = (float*)noise->data; for (int j = 0; j < ggml_nelements(x); j++) { vec_x[j] = vec_x[j] + sigmas[i + 1] * vec_noise[j]; } } } } } break; default: LOG_ERROR("Attempting to sample with nonexisting sample method %i", method); abort(); } diffusion_model.end(); return x; } // ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding ggml_tensor* get_first_stage_encoding(ggml_context* work_ctx, ggml_tensor* moments) { // ldm.modules.distributions.distributions.DiagonalGaussianDistribution.sample ggml_tensor* latent = ggml_new_tensor_4d(work_ctx, moments->type, moments->ne[0], moments->ne[1], moments->ne[2] / 2, moments->ne[3]); struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, latent); ggml_tensor_set_f32_randn(noise, rng); // noise = load_tensor_from_file(work_ctx, "noise.bin"); { float mean = 0; float logvar = 0; float value = 0; float std_ = 0; for (int i = 0; i < latent->ne[3]; i++) { for (int j = 0; j < latent->ne[2]; j++) { for (int k = 0; k < latent->ne[1]; k++) { for (int l = 0; l < latent->ne[0]; l++) { mean = ggml_tensor_get_f32(moments, l, k, j, i); logvar = ggml_tensor_get_f32(moments, l, k, j + (int)latent->ne[2], i); logvar = std::max(-30.0f, std::min(logvar, 20.0f)); std_ = std::exp(0.5f * logvar); value = mean + std_ * ggml_tensor_get_f32(noise, l, k, j, i); value = value * scale_factor; // printf("%d %d %d %d -> %f\n", i, j, k, l, value); ggml_tensor_set_f32(latent, value, l, k, j, i); } } } } } return latent; } ggml_tensor* compute_first_stage(ggml_context* work_ctx, ggml_tensor* x, bool decode) { int64_t W = x->ne[0]; int64_t H = x->ne[1]; ggml_tensor* result = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, decode ? (W * 8) : (W / 8), // width decode ? (H * 8) : (H / 8), // height decode ? 3 : (use_tiny_autoencoder ? 4 : 8)); // channels int64_t t0 = ggml_time_ms(); if (!use_tiny_autoencoder) { if (decode) { ggml_tensor_scale(x, 1.0f / scale_factor); } else { ggml_tensor_scale_input(x); } if (vae_tiling && decode) { // TODO: support tiling vae encode // split latent in 32x32 tiles and compute in several steps auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) { if (init) { first_stage_model.begin(in, decode); } else { first_stage_model.compute(out, n_threads, in, decode); } }; sd_tiling(x, result, 8, 32, 0.5f, on_tiling); } else { first_stage_model.begin(x, decode); first_stage_model.compute(result, n_threads, x, decode); } first_stage_model.end(); if (decode) { ggml_tensor_scale_output(result); } } else { if (vae_tiling && decode) { // TODO: support tiling vae encode // split latent in 64x64 tiles and compute in several steps auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) { if (init) { tae_first_stage.begin(in, decode); } else { tae_first_stage.compute(out, n_threads, in, decode); } }; sd_tiling(x, result, 8, 64, 0.5f, on_tiling); } else { tae_first_stage.begin(x, decode); tae_first_stage.compute(result, n_threads, x, decode); } tae_first_stage.end(); } int64_t t1 = ggml_time_ms(); LOG_DEBUG("computing vae [mode: %s] graph completed, taking %.2fs", decode ? "DECODE" : "ENCODE", (t1 - t0) * 1.0f / 1000); if (decode) { ggml_tensor_clamp(result, 0.0f, 1.0f); } return result; } uint8_t* upscale(ggml_tensor* image) { int output_width = image->ne[0] * esrgan_upscaler.scale; int output_height = image->ne[1] * esrgan_upscaler.scale; LOG_INFO("upscaling from (%i x %i) to (%i x %i)", image->ne[0], image->ne[1], output_width, output_height); struct ggml_init_params params; params.mem_size = output_width * output_height * 3 * sizeof(float); // upscaled params.mem_size += 1 * ggml_tensor_overhead(); params.mem_buffer = NULL; params.no_alloc = false; // draft context struct ggml_context* upscale_ctx = ggml_init(params); if (!upscale_ctx) { LOG_ERROR("ggml_init() failed"); return NULL; } LOG_DEBUG("upscale work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f); ggml_tensor* upscaled = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, output_width, output_height, image->ne[2], 1); auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) { if (init) { esrgan_upscaler.begin(in); } else { esrgan_upscaler.compute(out, n_threads, in); } }; int64_t t0 = ggml_time_ms(); sd_tiling(image, upscaled, esrgan_upscaler.scale, esrgan_upscaler.tile_size, 0.25f, on_tiling); esrgan_upscaler.end(); ggml_tensor_clamp(upscaled, 0.f, 1.f); uint8_t* upscaled_data = sd_tensor_to_image(upscaled); ggml_free(upscale_ctx); int64_t t3 = ggml_time_ms(); LOG_INFO("image upscaled, taking %.2fs", (t3 - t0) / 1000.0f); return upscaled_data; } ggml_tensor* encode_first_stage(ggml_context* work_ctx, ggml_tensor* x) { return compute_first_stage(work_ctx, x, false); } ggml_tensor* decode_first_stage(ggml_context* work_ctx, ggml_tensor* x) { return compute_first_stage(work_ctx, x, true); } }; /*================================================= StableDiffusion ==================================================*/ StableDiffusion::StableDiffusion(int n_threads, bool vae_decode_only, std::string taesd_path, std::string esrgan_path, bool free_params_immediately, bool vae_tiling, std::string lora_model_dir, RNGType rng_type) { sd = std::make_shared(n_threads, vae_decode_only, free_params_immediately, lora_model_dir, rng_type); sd->use_tiny_autoencoder = taesd_path.size() > 0; sd->taesd_path = taesd_path; sd->upscale_output = esrgan_path.size() > 0; sd->esrgan_path = esrgan_path; sd->vae_tiling = vae_tiling; } bool StableDiffusion::load_from_file(const std::string& model_path, const std::string& vae_path, ggml_type wtype, Schedule s, int clip_skip) { return sd->load_from_file(model_path, vae_path, wtype, s, clip_skip); } std::vector StableDiffusion::txt2img(std::string prompt, std::string negative_prompt, float cfg_scale, int width, int height, SampleMethod sample_method, int sample_steps, int64_t seed, int batch_count) { std::vector results; // if (width >= 1024 && height >= 1024) { // 1024 x 1024 images // LOG_WARN("Image too large, try a smaller size."); // return results; // } // extract and remove lora auto result_pair = extract_and_remove_lora(prompt); std::unordered_map lora_f2m = result_pair.first; // lora_name -> multiplier for (auto& kv : lora_f2m) { LOG_DEBUG("lora %s:%.2f", kv.first.c_str(), kv.second); } prompt = result_pair.second; LOG_DEBUG("prompt after extract and remove lora: \"%s\"", prompt.c_str()); int64_t t0 = ggml_time_ms(); sd->apply_loras(lora_f2m); int64_t t1 = ggml_time_ms(); LOG_INFO("apply_loras completed, taking %.2fs", (t1 - t0) * 1.0f / 1000); struct ggml_init_params params; params.mem_size = static_cast(10 * 1024 * 1024); // 10 MB params.mem_size += width * height * 3 * sizeof(float); params.mem_size *= batch_count; params.mem_buffer = NULL; params.no_alloc = false; // LOG_DEBUG("mem_size %u ", params.mem_size); struct ggml_context* work_ctx = ggml_init(params); if (!work_ctx) { LOG_ERROR("ggml_init() failed"); return results; } if (seed < 0) { // Generally, when using the provided command line, the seed is always >0. // However, to prevent potential issues if 'stable-diffusion.cpp' is invoked as a library // by a third party with a seed <0, let's incorporate randomization here. srand((int)time(NULL)); seed = rand(); } t0 = ggml_time_ms(); auto cond_pair = sd->get_learned_condition(work_ctx, prompt, width, height); ggml_tensor* c = cond_pair.first; ggml_tensor* c_vector = cond_pair.second; // [adm_in_channels, ] struct ggml_tensor* uc = NULL; struct ggml_tensor* uc_vector = NULL; if (cfg_scale != 1.0) { bool force_zero_embeddings = false; if (sd->version == VERSION_XL && negative_prompt.size() == 0) { force_zero_embeddings = true; } auto uncond_pair = sd->get_learned_condition(work_ctx, negative_prompt, width, height, force_zero_embeddings); uc = uncond_pair.first; uc_vector = uncond_pair.second; // [adm_in_channels, ] } t1 = ggml_time_ms(); LOG_INFO("get_learned_condition completed, taking %" PRId64 " ms", t1 - t0); if (sd->free_params_immediately) { sd->cond_stage_model.destroy(); } std::vector final_latents; // collect latents to decode int C = 4; int W = width / 8; int H = height / 8; LOG_INFO("sampling using %s method", sampling_methods_str[sample_method]); for (int b = 0; b < batch_count; b++) { int64_t sampling_start = ggml_time_ms(); int cur_seed = seed + b; LOG_INFO("generating image: %i/%i - seed %i", b + 1, batch_count, cur_seed); sd->rng->manual_seed(cur_seed); struct ggml_tensor* x_t = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, 1); ggml_tensor_set_f32_randn(x_t, sd->rng); std::vector sigmas = sd->denoiser->schedule->get_sigmas(sample_steps); struct ggml_tensor* x_0 = sd->sample(work_ctx, x_t, NULL, c, c_vector, uc, uc_vector, cfg_scale, sample_method, sigmas); // struct ggml_tensor* x_0 = load_tensor_from_file(ctx, "samples_ddim.bin"); // print_ggml_tensor(x_0); int64_t sampling_end = ggml_time_ms(); LOG_INFO("sampling completed, taking %.2fs", (sampling_end - sampling_start) * 1.0f / 1000); final_latents.push_back(x_0); } if (sd->free_params_immediately) { sd->diffusion_model.destroy(); } int64_t t3 = ggml_time_ms(); LOG_INFO("generating %" PRId64 " latent images completed, taking %.2fs", final_latents.size(), (t3 - t1) * 1.0f / 1000); LOG_INFO("decoding %zu latents", final_latents.size()); std::vector decoded_images; // collect decoded images for (size_t i = 0; i < final_latents.size(); i++) { t1 = ggml_time_ms(); struct ggml_tensor* img = sd->decode_first_stage(work_ctx, final_latents[i] /* x_0 */); // print_ggml_tensor(img); if (img != NULL) { decoded_images.push_back(img); } int64_t t2 = ggml_time_ms(); LOG_INFO("latent %" PRId64 " decoded, taking %.2fs", i + 1, (t2 - t1) * 1.0f / 1000); } int64_t t4 = ggml_time_ms(); LOG_INFO("decode_first_stage completed, taking %.2fs", (t4 - t3) * 1.0f / 1000); if (sd->free_params_immediately && !sd->use_tiny_autoencoder) { sd->first_stage_model.destroy(); } if (sd->upscale_output) { LOG_INFO("upscaling %" PRId64 " images", decoded_images.size()); } for (size_t i = 0; i < decoded_images.size(); i++) { if (sd->upscale_output) { results.push_back(sd->upscale(decoded_images[i])); } else { results.push_back(sd_tensor_to_image(decoded_images[i])); } } ggml_free(work_ctx); LOG_INFO( "txt2img completed in %.2fs", (t4 - t0) * 1.0f / 1000); return results; } std::vector StableDiffusion::img2img(const uint8_t* init_img_data, std::string prompt, std::string negative_prompt, float cfg_scale, int width, int height, SampleMethod sample_method, int sample_steps, float strength, int64_t seed) { std::vector result; LOG_INFO("img2img %dx%d", width, height); std::vector sigmas = sd->denoiser->schedule->get_sigmas(sample_steps); size_t t_enc = static_cast(sample_steps * strength); LOG_INFO("target t_enc is %zu steps", t_enc); std::vector sigma_sched; sigma_sched.assign(sigmas.begin() + sample_steps - t_enc - 1, sigmas.end()); struct ggml_init_params params; params.mem_size = static_cast(10 * 1024) * 1024; // 10 MB params.mem_size += width * height * 3 * sizeof(float) * 2; params.mem_buffer = NULL; params.no_alloc = false; // LOG_DEBUG("mem_size %u ", params.mem_size); // draft context struct ggml_context* work_ctx = ggml_init(params); if (!work_ctx) { LOG_ERROR("ggml_init() failed"); return result; } if (seed < 0) { seed = (int)time(NULL); } sd->rng->manual_seed(seed); // extract and remove lora auto result_pair = extract_and_remove_lora(prompt); std::unordered_map lora_f2m = result_pair.first; // lora_name -> multiplier for (auto& kv : lora_f2m) { LOG_DEBUG("lora %s:%.2f", kv.first.c_str(), kv.second); } prompt = result_pair.second; LOG_DEBUG("prompt after extract and remove lora: \"%s\"", prompt.c_str()); // load lora from file int64_t t0 = ggml_time_ms(); sd->apply_loras(lora_f2m); int64_t t1 = ggml_time_ms(); LOG_INFO("apply_loras completed, taking %.2fs", (t1 - t0) * 1.0f / 1000); ggml_tensor* init_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1); sd_image_to_tensor(init_img_data, init_img); t0 = ggml_time_ms(); ggml_tensor* init_latent = NULL; if (!sd->use_tiny_autoencoder) { ggml_tensor* moments = sd->encode_first_stage(work_ctx, init_img); init_latent = sd->get_first_stage_encoding(work_ctx, moments); } else { init_latent = sd->encode_first_stage(work_ctx, init_img); } // print_ggml_tensor(init_latent); t1 = ggml_time_ms(); LOG_INFO("encode_first_stage completed, taking %.2fs", (t1 - t0) * 1.0f / 1000); auto cond_pair = sd->get_learned_condition(work_ctx, prompt, width, height); ggml_tensor* c = cond_pair.first; ggml_tensor* c_vector = cond_pair.second; // [adm_in_channels, ] struct ggml_tensor* uc = NULL; struct ggml_tensor* uc_vector = NULL; if (cfg_scale != 1.0) { bool force_zero_embeddings = false; if (sd->version == VERSION_XL && negative_prompt.size() == 0) { force_zero_embeddings = true; } auto uncond_pair = sd->get_learned_condition(work_ctx, negative_prompt, width, height, force_zero_embeddings); uc = uncond_pair.first; uc_vector = uncond_pair.second; // [adm_in_channels, ] } int64_t t2 = ggml_time_ms(); LOG_INFO("get_learned_condition completed, taking %" PRId64 " ms", t2 - t1); if (sd->free_params_immediately) { sd->cond_stage_model.destroy(); } // SDXL // requires encode_adm // apply set_timestep_embedding with dim 256 sd->rng->manual_seed(seed); struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, init_latent); ggml_tensor_set_f32_randn(noise, sd->rng); LOG_INFO("sampling using %s method", sampling_methods_str[sample_method]); struct ggml_tensor* x_0 = sd->sample(work_ctx, init_latent, noise, c, c_vector, uc, uc_vector, cfg_scale, sample_method, sigma_sched); // struct ggml_tensor *x_0 = load_tensor_from_file(ctx, "samples_ddim.bin"); // print_ggml_tensor(x_0); int64_t t3 = ggml_time_ms(); LOG_INFO("sampling completed, taking %.2fs", (t3 - t2) * 1.0f / 1000); if (sd->free_params_immediately) { sd->diffusion_model.destroy(); } struct ggml_tensor* img = sd->decode_first_stage(work_ctx, x_0); if (img != NULL) { if (sd->upscale_output) { result.push_back(sd->upscale(img)); } else { result.push_back(sd_tensor_to_image(img)); } } int64_t t4 = ggml_time_ms(); LOG_INFO("decode_first_stage completed, taking %.2fs", (t4 - t3) * 1.0f / 1000); if (sd->free_params_immediately && !sd->use_tiny_autoencoder) { sd->first_stage_model.destroy(); } LOG_INFO( "img2img completed in %.2fs", (t4 - t0) * 1.0f / 1000); ggml_free(work_ctx); return result; }