2014-02-25 13:28:04 +00:00
ARM Trusted Firmware Design
===========================
Contents :
2014-11-25 09:55:26 +00:00
1. [Introduction ](#1--introduction )
2. [Cold boot ](#2--cold-boot )
3. [EL3 runtime services framework ](#3--el3-runtime-services-framework )
4. [Power State Coordination Interface ](#4--power-state-coordination-interface )
5. [Secure-EL1 Payloads and Dispatchers ](#5--secure-el1-payloads-and-dispatchers )
2015-12-14 09:35:25 +00:00
6. [Crash Reporting in BL31 ](#6--crash-reporting-in-bl3-1 )
2014-11-20 18:09:41 +00:00
7. [Guidelines for Reset Handlers ](#7--guidelines-for-reset-handlers )
8. [CPU specific operations framework ](#8--cpu-specific-operations-framework )
9. [Memory layout of BL images ](#9-memory-layout-of-bl-images )
10. [Firmware Image Package (FIP) ](#10--firmware-image-package-fip )
11. [Use of coherent memory in Trusted Firmware ](#11--use-of-coherent-memory-in-trusted-firmware )
12. [Code Structure ](#12--code-structure )
13. [References ](#13--references )
2014-02-25 13:28:04 +00:00
1. Introduction
----------------
The ARM Trusted Firmware implements a subset of the Trusted Board Boot
Requirements (TBBR) Platform Design Document (PDD) [1] for ARM reference
platforms. The TBB sequence starts when the platform is powered on and runs up
to the stage where it hands-off control to firmware running in the normal
world in DRAM. This is the cold boot path.
The ARM Trusted Firmware also implements the Power State Coordination Interface
([PSCI]) PDD [2] as a runtime service. PSCI is the interface from normal world
software to firmware implementing power management use-cases (for example,
secondary CPU boot, hotplug and idle). Normal world software can access ARM
Trusted Firmware runtime services via the ARM SMC (Secure Monitor Call)
instruction. The SMC instruction must be used as mandated by the [SMC Calling
Convention PDD][SMCCC] [3].
2014-06-02 21:27:36 +00:00
The ARM Trusted Firmware implements a framework for configuring and managing
interrupts generated in either security state. The details of the interrupt
management framework and its design can be found in [ARM Trusted
Firmware Interrupt Management Design guide][INTRG] [4].
2014-02-25 13:28:04 +00:00
2014-02-25 19:09:48 +00:00
2. Cold boot
2014-02-25 13:28:04 +00:00
-------------
2015-12-15 14:27:17 +00:00
The cold boot path starts when the platform is physically turned on. If
`COLD_BOOT_SINGLE_CPU=0` , one of the CPUs released from reset is chosen as the
primary CPU, and the remaining CPUs are considered secondary CPUs. The primary
CPU is chosen through platform-specific means. The cold boot path is mainly
executed by the primary CPU, other than essential CPU initialization executed by
all CPUs. The secondary CPUs are kept in a safe platform-specific state until
the primary CPU has performed enough initialization to boot them.
Refer to the [Reset Design] for more information on the effect of the
`COLD_BOOT_SINGLE_CPU` platform build option.
2014-02-25 13:28:04 +00:00
The cold boot path in this implementation of the ARM Trusted Firmware is divided
2014-02-27 19:46:37 +00:00
into five steps (in order of execution):
2014-02-25 13:28:04 +00:00
2014-02-27 19:46:37 +00:00
* Boot Loader stage 1 (BL1) _AP Trusted ROM_
* Boot Loader stage 2 (BL2) _Trusted Boot Firmware_
2015-12-14 09:35:25 +00:00
* Boot Loader stage 3-1 (BL31) _EL3 Runtime Firmware_
* Boot Loader stage 3-2 (BL32) _Secure-EL1 Payload_ (optional)
* Boot Loader stage 3-3 (BL33) _Non-trusted Firmware_
2014-02-25 13:28:04 +00:00
2014-08-26 16:28:03 +00:00
ARM development platforms (Fixed Virtual Platforms (FVPs) and Juno) implement a
combination of the following types of memory regions. Each bootloader stage uses
one or more of these memory regions.
* Regions accessible from both non-secure and secure states. For example,
non-trusted SRAM, ROM and DRAM.
* Regions accessible from only the secure state. For example, trusted SRAM and
ROM. The FVPs also implement the trusted DRAM which is statically
configured. Additionally, the Base FVPs and Juno development platform
configure the TrustZone Controller (TZC) to create a region in the DRAM
which is accessible only from the secure state.
2014-02-25 13:28:04 +00:00
2014-05-23 14:56:12 +00:00
The sections below provide the following details:
* initialization and execution of the first three stages during cold boot
2015-12-14 09:35:25 +00:00
* specification of the BL31 entrypoint requirements for use by alternative
2014-05-23 14:56:12 +00:00
Trusted Boot Firmware in place of the provided BL1 and BL2
2014-02-25 13:28:04 +00:00
### BL1
2014-08-26 16:28:03 +00:00
This stage begins execution from the platform's reset vector at EL3. The reset
address is platform dependent but it is usually located in a Trusted ROM area.
The BL1 data section is copied to trusted SRAM at runtime.
2015-03-19 19:24:43 +00:00
On the ARM development platforms, BL1 code starts execution from the reset
vector defined by the constant `BL1_RO_BASE` . The BL1 data section is copied
to the top of trusted SRAM as defined by the constant `BL1_RW_BASE` .
2014-08-26 16:28:03 +00:00
The functionality implemented by this stage is as follows.
2014-02-25 13:28:04 +00:00
#### Determination of boot path
Whenever a CPU is released from reset, BL1 needs to distinguish between a warm
2014-08-26 16:28:03 +00:00
boot and a cold boot. This is done using platform-specific mechanisms (see the
`platform_get_entrypoint()` function in the [Porting Guide]). In the case of a
warm boot, a CPU is expected to continue execution from a seperate
entrypoint. In the case of a cold boot, the secondary CPUs are placed in a safe
platform-specific state (see the `plat_secondary_cold_boot_setup()` function in
the [Porting Guide]) while the primary CPU executes the remaining cold boot path
as described in the following sections.
2014-02-25 13:28:04 +00:00
2015-12-15 14:27:17 +00:00
This step only applies when `PROGRAMMABLE_RESET_ADDRESS=0` . Refer to the
[Reset Design] for more information on the effect of the
`PROGRAMMABLE_RESET_ADDRESS` platform build option.
2014-02-25 13:28:04 +00:00
#### Architectural initialization
BL1 performs minimal architectural initialization as follows.
* Exception vectors
BL1 sets up simple exception vectors for both synchronous and asynchronous
2014-08-26 16:28:03 +00:00
exceptions. The default behavior upon receiving an exception is to populate
a status code in the general purpose register `X0` and call the
`plat_report_exception()` function (see the [Porting Guide]). The status
code is one of:
2014-02-25 13:28:04 +00:00
0x0 : Synchronous exception from Current EL with SP_EL0
0x1 : IRQ exception from Current EL with SP_EL0
0x2 : FIQ exception from Current EL with SP_EL0
0x3 : System Error exception from Current EL with SP_EL0
0x4 : Synchronous exception from Current EL with SP_ELx
0x5 : IRQ exception from Current EL with SP_ELx
0x6 : FIQ exception from Current EL with SP_ELx
0x7 : System Error exception from Current EL with SP_ELx
0x8 : Synchronous exception from Lower EL using aarch64
0x9 : IRQ exception from Lower EL using aarch64
0xa : FIQ exception from Lower EL using aarch64
0xb : System Error exception from Lower EL using aarch64
0xc : Synchronous exception from Lower EL using aarch32
0xd : IRQ exception from Lower EL using aarch32
0xe : FIQ exception from Lower EL using aarch32
0xf : System Error exception from Lower EL using aarch32
2014-08-26 16:28:03 +00:00
The `plat_report_exception()` implementation on the ARM FVP port programs
the Versatile Express System LED register in the following format to
indicate the occurence of an unexpected exception:
SYS_LED[0] - Security state (Secure=0/Non-Secure=1)
SYS_LED[2:1] - Exception Level (EL3=0x3, EL2=0x2, EL1=0x1, EL0=0x0)
SYS_LED[7:3] - Exception Class (Sync/Async & origin). This is the value
of the status code
2014-02-25 13:28:04 +00:00
A write to the LED register reflects in the System LEDs (S6LED0..7) in the
2014-08-26 16:28:03 +00:00
CLCD window of the FVP.
BL1 does not expect to receive any exceptions other than the SMC exception.
2014-02-25 13:28:04 +00:00
For the latter, BL1 installs a simple stub. The stub expects to receive
only a single type of SMC (determined by its function ID in the general
purpose register `X0` ). This SMC is raised by BL2 to make BL1 pass control
2015-12-14 09:35:25 +00:00
to BL31 (loaded by BL2) at EL3. Any other SMC leads to an assertion
2014-02-25 13:28:04 +00:00
failure.
2014-08-26 16:28:03 +00:00
* CPU initialization
BL1 calls the `reset_handler()` function which in turn calls the CPU
specific reset handler function (see the section: "CPU specific operations
framework").
2014-02-25 13:28:04 +00:00
* MMU setup
BL1 sets up EL3 memory translation by creating page tables to cover the
first 4GB of physical address space. This covers all the memories and
peripherals needed by BL1.
* Control register setup
- `SCTLR_EL3` . Instruction cache is enabled by setting the `SCTLR_EL3.I`
bit. Alignment and stack alignment checking is enabled by setting the
`SCTLR_EL3.A` and `SCTLR_EL3.SA` bits. Exception endianness is set to
little-endian by clearing the `SCTLR_EL3.EE` bit.
2014-08-26 16:28:03 +00:00
- `SCR_EL3` . The register width of the next lower exception level is set to
AArch64 by setting the `SCR.RW` bit.
2014-02-25 13:28:04 +00:00
- `CPTR_EL3` . Accesses to the `CPACR_EL1` register from EL1 or EL2, or the
`CPTR_EL2` register from EL2 are configured to not trap to EL3 by
clearing the `CPTR_EL3.TCPAC` bit. Access to the trace functionality is
configured not to trap to EL3 by clearing the `CPTR_EL3.TTA` bit.
Instructions that access the registers associated with Floating Point
and Advanced SIMD execution are configured to not trap to EL3 by
clearing the `CPTR_EL3.TFP` bit.
#### Platform initialization
2015-05-14 13:13:05 +00:00
BL1 enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
2015-03-19 19:24:43 +00:00
the CCI slave interface corresponding to the cluster that includes the
primary CPU. BL1 also initializes a UART (PL011 console), which enables access
to the `printf` family of functions in BL1.
2014-02-25 13:28:04 +00:00
2015-10-27 15:55:18 +00:00
#### Firmware Update detection and execution
After performing platform setup, BL1 common code calls
`bl1_plat_get_next_image_id()` to determine if [Firmware Update] is required or
to proceed with the normal boot process. If the platform code returns
`BL2_IMAGE_ID` then the normal boot sequence is executed as described in the
next section, else BL1 assumes that [Firmware Update] is required and execution
passes to the first image in the [Firmware Update] process. In either case, BL1
retrieves a descriptor of the next image by calling `bl1_plat_get_image_desc()` .
The image descriptor contains an `entry_point_info_t` structure, which BL1
uses to initialize the execution state of the next image.
2014-02-25 13:28:04 +00:00
#### BL2 image load and execution
2015-10-27 15:55:18 +00:00
In the normal boot flow, BL1 execution continues as follows:
2014-02-25 13:28:04 +00:00
1. BL1 determines the amount of free trusted SRAM memory available by
calculating the extent of its own data section, which also resides in
trusted SRAM. BL1 loads a BL2 raw binary image from platform storage, at a
2014-02-27 19:46:37 +00:00
platform-specific base address. If the BL2 image file is not present or if
there is not enough free trusted SRAM the following error message is
printed:
2014-02-25 13:28:04 +00:00
"Failed to load boot loader stage 2 (BL2) firmware."
If the load is successful, BL1 updates the limits of the remaining free
trusted SRAM. It also populates information about the amount of trusted
SRAM used by the BL2 image. The exact load location of the image is
provided as a base address in the platform header. Further description of
the memory layout can be found later in this document.
2. BL1 prints the following string from the primary CPU to indicate successful
execution of the BL1 stage:
"Booting trusted firmware boot loader stage 1"
3. BL1 passes control to the BL2 image at Secure EL1, starting from its load
address.
4. BL1 also passes information about the amount of trusted SRAM used and
available for use. This information is populated at a platform-specific
memory address.
### BL2
2014-02-27 19:46:37 +00:00
BL1 loads and passes control to BL2 at Secure-EL1. BL2 is linked against and
2014-02-25 13:28:04 +00:00
loaded at a platform-specific base address (more information can be found later
in this document). The functionality implemented by BL2 is as follows.
#### Architectural initialization
BL2 performs minimal architectural initialization required for subsequent
stages of the ARM Trusted Firmware and normal world software. It sets up
Secure EL1 memory translation by creating page tables to address the first 4GB
of the physical address space in a similar way to BL1. EL1 and EL0 are given
access to Floating Point & Advanced SIMD registers by clearing the `CPACR.FPEN`
bits.
#### Platform initialization
2014-04-01 18:28:07 +00:00
BL2 copies the information regarding the trusted SRAM populated by BL1 using a
2014-02-25 13:28:04 +00:00
platform-specific mechanism. It calculates the limits of DRAM (main memory)
2015-12-14 09:35:25 +00:00
to determine whether there is enough space to load the BL33 image. A platform
defined base address is used to specify the load address for the BL31 image.
It also defines the extents of memory available for use by the BL32 image.
2015-03-19 19:24:43 +00:00
BL2 also initializes a UART (PL011 console), which enables access to the
2014-04-01 18:28:07 +00:00
`printf` family of functions in BL2. Platform security is initialized to allow
2014-08-26 16:28:03 +00:00
access to controlled components. The storage abstraction layer is initialized
which is used to load further bootloader images.
2014-02-25 13:28:04 +00:00
2015-12-10 15:49:17 +00:00
#### SCP_BL2 (System Control Processor Firmware) image load
2014-05-01 13:09:16 +00:00
Some systems have a separate System Control Processor (SCP) for power, clock,
2015-12-10 15:49:17 +00:00
reset and system control. BL2 loads the optional SCP_BL2 image from platform
2014-05-01 13:09:16 +00:00
storage into a platform-specific region of secure memory. The subsequent
2015-12-10 15:49:17 +00:00
handling of SCP_BL2 is platform specific. For example, on the Juno ARM
development platform port the image is transferred into SCP's internal memory
using the Boot Over MHU (BOM) protocol after being loaded in the trusted SRAM
memory. The SCP executes SCP_BL2 and signals to the Application Processor (AP)
for BL2 execution to continue.
2014-05-01 13:09:16 +00:00
2015-12-14 09:35:25 +00:00
#### BL31 (EL3 Runtime Firmware) image load
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
BL2 loads the BL31 image from platform storage into a platform-specific address
2014-02-27 19:46:37 +00:00
in trusted SRAM. If there is not enough memory to load the image or image is
2015-12-14 09:35:25 +00:00
missing it leads to an assertion failure. If the BL31 image loads successfully,
BL2 updates the amount of trusted SRAM used and available for use by BL31.
2014-02-27 19:46:37 +00:00
This information is populated at a platform-specific memory address.
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
#### BL32 (Secure-EL1 Payload) image load
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
BL2 loads the optional BL32 image from platform storage into a platform-
2014-02-27 19:46:37 +00:00
specific region of secure memory. The image executes in the secure world. BL2
2015-12-14 09:35:25 +00:00
relies on BL31 to pass control to the BL32 image, if present. Hence, BL2
2014-02-27 19:46:37 +00:00
populates a platform-specific area of memory with the entrypoint/load-address
2015-12-14 09:35:25 +00:00
of the BL32 image. The value of the Saved Processor Status Register (`SPSR`)
for entry into BL32 is not determined by BL2, it is initialized by the
Secure-EL1 Payload Dispatcher (see later) within BL31, which is responsible for
managing interaction with BL32. This information is passed to BL31.
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
#### BL33 (Non-trusted Firmware) image load
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
BL2 loads the BL33 image (e.g. UEFI or other test or boot software) from
2014-08-26 16:28:03 +00:00
platform storage into non-secure memory as defined by the platform.
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
BL2 relies on BL31 to pass control to BL33 once secure state initialization is
2014-02-27 19:46:37 +00:00
complete. Hence, BL2 populates a platform-specific area of memory with the
entrypoint and Saved Program Status Register (`SPSR`) of the normal world
2015-12-14 09:35:25 +00:00
software image. The entrypoint is the load address of the BL33 image. The
2014-02-27 19:46:37 +00:00
`SPSR` is determined as specified in Section 5.13 of the [PSCI PDD] [PSCI]. This
2015-12-14 09:35:25 +00:00
information is passed to BL31.
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
#### BL31 (EL3 Runtime Firmware) execution
2014-02-25 13:28:04 +00:00
2014-02-27 19:46:37 +00:00
BL2 execution continues as follows:
2014-02-25 13:28:04 +00:00
2014-02-27 19:46:37 +00:00
1. BL2 passes control back to BL1 by raising an SMC, providing BL1 with the
2015-12-14 09:35:25 +00:00
BL31 entrypoint. The exception is handled by the SMC exception handler
2014-02-25 13:28:04 +00:00
installed by BL1.
2014-02-27 19:46:37 +00:00
2. BL1 turns off the MMU and flushes the caches. It clears the
2014-02-25 13:28:04 +00:00
`SCTLR_EL3.M/I/C` bits, flushes the data cache to the point of coherency
and invalidates the TLBs.
2015-12-14 09:35:25 +00:00
3. BL1 passes control to BL31 at the specified entrypoint at EL3.
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
### BL31
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
The image for this stage is loaded by BL2 and BL1 passes control to BL31 at
EL3. BL31 executes solely in trusted SRAM. BL31 is linked against and
2014-02-25 13:28:04 +00:00
loaded at a platform-specific base address (more information can be found later
2015-12-14 09:35:25 +00:00
in this document). The functionality implemented by BL31 is as follows.
2014-02-25 13:28:04 +00:00
#### Architectural initialization
2015-12-14 09:35:25 +00:00
Currently, BL31 performs a similar architectural initialization to BL1 as
2014-02-25 13:28:04 +00:00
far as system register settings are concerned. Since BL1 code resides in ROM,
2015-12-14 09:35:25 +00:00
architectural initialization in BL31 allows override of any previous
initialization done by BL1. BL31 creates page tables to address the first
2014-05-23 16:05:43 +00:00
4GB of physical address space and initializes the MMU accordingly. It initializes
2014-08-18 15:57:56 +00:00
a buffer of frequently used pointers, called per-CPU pointer cache, in memory for
faster access. Currently the per-CPU pointer cache contains only the pointer
2014-05-23 16:05:43 +00:00
to crash stack. It then replaces the exception vectors populated by BL1 with its
2015-12-14 09:35:25 +00:00
own. BL31 exception vectors implement more elaborate support for
2014-05-23 16:05:43 +00:00
handling SMCs since this is the only mechanism to access the runtime services
2015-12-14 09:35:25 +00:00
implemented by BL31 (PSCI for example). BL31 checks each SMC for validity as
2014-05-23 16:05:43 +00:00
specified by the [SMC calling convention PDD][SMCCC] before passing control to
2015-12-14 09:35:25 +00:00
the required SMC handler routine. BL31 programs the `CNTFRQ_EL0` register with
2014-05-23 16:05:43 +00:00
the clock frequency of the system counter, which is provided by the platform.
2014-02-25 13:28:04 +00:00
#### Platform initialization
2015-12-14 09:35:25 +00:00
BL31 performs detailed platform initialization, which enables normal world
2014-02-25 13:28:04 +00:00
software to function correctly. It also retrieves entrypoint information for
2015-12-14 09:35:25 +00:00
the BL33 image loaded by BL2 from the platform defined memory address populated
2015-05-14 13:13:05 +00:00
by BL2. It enables issuing of snoop and DVM (Distributed Virtual Memory)
requests to the CCI slave interface corresponding to the cluster that includes
2015-12-14 09:35:25 +00:00
the primary CPU. BL31 also initializes a UART (PL011 console), which enables
access to the `printf` family of functions in BL31. It enables the system
2014-03-31 10:25:18 +00:00
level implementation of the generic timer through the memory mapped interface.
2014-02-25 13:28:04 +00:00
* GICv2 initialization:
- Enable group0 interrupts in the GIC CPU interface.
- Configure group0 interrupts to be asserted as FIQs.
- Disable the legacy interrupt bypass mechanism.
- Configure the priority mask register to allow interrupts of all
priorities to be signaled to the CPU interface.
2015-06-24 16:51:09 +00:00
- Mark SGIs 8-15 and the other secure interrupts on the platform
as group0 (secure).
- Target all secure SPIs to CPU0.
2014-02-25 13:28:04 +00:00
- Enable these group0 interrupts in the GIC distributor.
- Configure all other interrupts as group1 (non-secure).
- Enable signaling of group0 interrupts in the GIC distributor.
* GICv3 initialization:
2015-12-14 09:35:25 +00:00
If a GICv3 implementation is available in the platform, BL31 initializes
2014-02-25 13:28:04 +00:00
the GICv3 in GICv2 emulation mode with settings as described for GICv2
above.
* Power management initialization:
2015-12-14 09:35:25 +00:00
BL31 implements a state machine to track CPU and cluster state. The state
2014-02-25 13:28:04 +00:00
can be one of `OFF` , `ON_PENDING` , `SUSPEND` or `ON` . All secondary CPUs are
initially in the `OFF` state. The cluster that the primary CPU belongs to is
2015-12-14 09:35:25 +00:00
`ON` ; any other cluster is `OFF` . BL31 initializes the data structures that
implement the state machine, including the locks that protect them. BL31
2014-02-25 13:28:04 +00:00
accesses the state of a CPU or cluster immediately after reset and before
2015-01-08 18:02:44 +00:00
the data cache is enabled in the warm boot path. It is not currently
2015-12-14 09:35:25 +00:00
possible to use 'exclusive' based spinlocks, therefore BL31 uses locks
based on Lamport's Bakery algorithm instead. BL31 allocates these locks in
2015-01-08 18:02:44 +00:00
device memory by default.
2014-02-25 13:28:04 +00:00
* Runtime services initialization:
2014-02-25 19:09:48 +00:00
The runtime service framework and its initialization is described in the
"EL3 runtime services framework" section below.
2014-02-25 13:28:04 +00:00
2014-02-25 19:09:48 +00:00
Details about the PSCI service are provided in the "Power State Coordination
Interface" section below.
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
* BL32 (Secure-EL1 Payload) image initialization
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
If a BL32 image is present then there must be a matching Secure-EL1 Payload
2014-02-25 19:09:48 +00:00
Dispatcher (SPD) service (see later for details). During initialization
2015-12-14 09:35:25 +00:00
that service must register a function to carry out initialization of BL32
once the runtime services are fully initialized. BL31 invokes such a
registered function to initialize BL32 before running BL33.
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
Details on BL32 initialization and the SPD's role are described in the
2014-02-25 19:09:48 +00:00
"Secure-EL1 Payloads and Dispatchers" section below.
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
* BL33 (Non-trusted Firmware) execution
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
BL31 initializes the EL2 or EL1 processor context for normal-world cold
2014-02-25 19:09:48 +00:00
boot, ensuring that no secure state information finds its way into the
2015-12-14 09:35:25 +00:00
non-secure execution state. BL31 uses the entrypoint information provided
by BL2 to jump to the Non-trusted firmware image (BL33) at the highest
2014-02-25 19:09:48 +00:00
available Exception Level (EL2 if available, otherwise EL1).
2014-02-25 13:28:04 +00:00
2014-05-23 14:56:12 +00:00
### Using alternative Trusted Boot Firmware in place of BL1 and BL2
Some platforms have existing implementations of Trusted Boot Firmware that
2015-12-14 09:35:25 +00:00
would like to use ARM Trusted Firmware BL31 for the EL3 Runtime Firmware. To
2014-05-23 14:56:12 +00:00
enable this firmware architecture it is important to provide a fully documented
2015-12-14 09:35:25 +00:00
and stable interface between the Trusted Boot Firmware and BL31.
2014-05-23 14:56:12 +00:00
2015-12-14 09:35:25 +00:00
Future changes to the BL31 interface will be done in a backwards compatible
2014-05-23 14:56:12 +00:00
way, and this enables these firmware components to be independently enhanced/
updated to develop and exploit new functionality.
#### Required CPU state when calling `bl31_entrypoint()` during cold boot
2015-05-19 10:54:45 +00:00
This function must only be called by the primary CPU.
2014-05-23 14:56:12 +00:00
On entry to this function the calling primary CPU must be executing in AArch64
EL3, little-endian data access, and all interrupt sources masked:
PSTATE.EL = 3
PSTATE.RW = 1
PSTATE.DAIF = 0xf
2015-01-28 10:11:48 +00:00
SCTLR_EL3.EE = 0
2014-05-23 14:56:12 +00:00
X0 and X1 can be used to pass information from the Trusted Boot Firmware to the
2015-12-14 09:35:25 +00:00
platform code in BL31:
2014-05-23 14:56:12 +00:00
X0 : Reserved for common Trusted Firmware information
X1 : Platform specific information
2015-12-14 09:35:25 +00:00
BL31 zero-init sections (e.g. `.bss` ) should not contain valid data on entry,
2014-05-23 14:56:12 +00:00
these will be zero filled prior to invoking platform setup code.
##### Use of the X0 and X1 parameters
The parameters are platform specific and passed from `bl31_entrypoint()` to
`bl31_early_platform_setup()` . The value of these parameters is never directly
2015-12-14 09:35:25 +00:00
used by the common BL31 code.
2014-05-23 14:56:12 +00:00
2015-12-14 09:35:25 +00:00
The convention is that `X0` conveys information regarding the BL31, BL32 and
BL33 images from the Trusted Boot firmware and `X1` can be used for other
2014-05-23 14:56:12 +00:00
platform specific purpose. This convention allows platforms which use ARM
Trusted Firmware's BL1 and BL2 images to transfer additional platform specific
information from Secure Boot without conflicting with future evolution of the
Trusted Firmware using `X0` to pass a `bl31_params` structure.
2015-12-14 09:35:25 +00:00
BL31 common and SPD initialization code depends on image and entrypoint
information about BL33 and BL32, which is provided via BL31 platform APIs.
This information is required until the start of execution of BL33. This
2014-05-23 14:56:12 +00:00
information can be provided in a platform defined manner, e.g. compiled into
2015-12-14 09:35:25 +00:00
the platform code in BL31, or provided in a platform defined memory location
2014-05-23 14:56:12 +00:00
by the Trusted Boot firmware, or passed from the Trusted Boot Firmware via the
Cold boot Initialization parameters. This data may need to be cleaned out of
the CPU caches if it is provided by an earlier boot stage and then accessed by
2015-12-14 09:35:25 +00:00
BL31 platform code before the caches are enabled.
2014-05-23 14:56:12 +00:00
ARM Trusted Firmware's BL2 implementation passes a `bl31_params` structure in
2015-12-14 09:35:25 +00:00
`X0` and the ARM development platforms interpret this in the BL31 platform
2015-03-19 19:24:43 +00:00
code.
2014-05-23 14:56:12 +00:00
##### MMU, Data caches & Coherency
2015-12-14 09:35:25 +00:00
BL31 does not depend on the enabled state of the MMU, data caches or
2014-05-23 14:56:12 +00:00
interconnect coherency on entry to `bl31_entrypoint()` . If these are disabled
on entry, these should be enabled during `bl31_plat_arch_setup()` .
2015-12-14 09:35:25 +00:00
##### Data structures used in the BL31 cold boot interface
2014-05-23 14:56:12 +00:00
These structures are designed to support compatibility and independent
evolution of the structures and the firmware images. For example, a version of
2015-12-14 09:35:25 +00:00
BL31 that can interpret the BL3x image information from different versions of
2014-05-23 14:56:12 +00:00
BL2, a platform that uses an extended entry_point_info structure to convey
2015-12-14 09:35:25 +00:00
additional register information to BL31, or a ELF image loader that can convey
2014-05-23 14:56:12 +00:00
more details about the firmware images.
To support these scenarios the structures are versioned and sized, which enables
2015-12-14 09:35:25 +00:00
BL31 to detect which information is present and respond appropriately. The
2014-05-23 14:56:12 +00:00
`param_header` is defined to capture this information:
typedef struct param_header {
uint8_t type; /* type of the structure */
uint8_t version; /* version of this structure */
uint16_t size; /* size of this structure in bytes */
uint32_t attr; /* attributes: unused bits SBZ */
} param_header_t;
The structures using this format are `entry_point_info` , `image_info` and
`bl31_params` . The code that allocates and populates these structures must set
2015-03-19 19:24:43 +00:00
the header fields appropriately, and the `SET_PARAM_HEAD()` a macro is defined
2014-05-23 14:56:12 +00:00
to simplify this action.
2015-12-14 09:35:25 +00:00
#### Required CPU state for BL31 Warm boot initialization
2014-05-23 14:56:12 +00:00
When requesting a CPU power-on, or suspending a running CPU, ARM Trusted
Firmware provides the platform power management code with a Warm boot
initialization entry-point, to be invoked by the CPU immediately after the
reset handler. On entry to the Warm boot initialization function the calling
CPU must be in AArch64 EL3, little-endian data access and all interrupt sources
masked:
PSTATE.EL = 3
PSTATE.RW = 1
PSTATE.DAIF = 0xf
SCTLR_EL3.EE = 0
The PSCI implementation will initialize the processor state and ensure that the
platform power management code is then invoked as required to initialize all
necessary system, cluster and CPU resources.
2014-02-25 19:09:48 +00:00
3. EL3 runtime services framework
----------------------------------
Software executing in the non-secure state and in the secure state at exception
levels lower than EL3 will request runtime services using the Secure Monitor
Call (SMC) instruction. These requests will follow the convention described in
the SMC Calling Convention PDD ([SMCCC]). The [SMCCC] assigns function
identifiers to each SMC request and describes how arguments are passed and
returned.
The EL3 runtime services framework enables the development of services by
different providers that can be easily integrated into final product firmware.
The following sections describe the framework which facilitates the
registration, initialization and use of runtime services in EL3 Runtime
2015-12-14 09:35:25 +00:00
Firmware (BL31).
2014-02-25 19:09:48 +00:00
The design of the runtime services depends heavily on the concepts and
definitions described in the [SMCCC], in particular SMC Function IDs, Owning
Entity Numbers (OEN), Fast and Standard calls, and the SMC32 and SMC64 calling
conventions. Please refer to that document for more detailed explanation of
these terms.
The following runtime services are expected to be implemented first. They have
not all been instantiated in the current implementation.
1. Standard service calls
This service is for management of the entire system. The Power State
Coordination Interface ([PSCI]) is the first set of standard service calls
defined by ARM (see PSCI section later).
NOTE: Currently this service is called PSCI since there are no other
defined standard service calls.
2. Secure-EL1 Payload Dispatcher service
If a system runs a Trusted OS or other Secure-EL1 Payload (SP) then
it also requires a _Secure Monitor_ at EL3 to switch the EL1 processor
context between the normal world (EL1/EL2) and trusted world (Secure-EL1).
The Secure Monitor will make these world switches in response to SMCs. The
[SMCCC] provides for such SMCs with the Trusted OS Call and Trusted
Application Call OEN ranges.
The interface between the EL3 Runtime Firmware and the Secure-EL1 Payload is
not defined by the [SMCCC] or any other standard. As a result, each
Secure-EL1 Payload requires a specific Secure Monitor that runs as a runtime
service - within ARM Trusted Firmware this service is referred to as the
Secure-EL1 Payload Dispatcher (SPD).
ARM Trusted Firmware provides a Test Secure-EL1 Payload (TSP) and its
associated Dispatcher (TSPD). Details of SPD design and TSP/TSPD operation
are described in the "Secure-EL1 Payloads and Dispatchers" section below.
3. CPU implementation service
This service will provide an interface to CPU implementation specific
services for a given platform e.g. access to processor errata workarounds.
This service is currently unimplemented.
Additional services for ARM Architecture, SiP and OEM calls can be implemented.
Each implemented service handles a range of SMC function identifiers as
described in the [SMCCC].
### Registration
A runtime service is registered using the `DECLARE_RT_SVC()` macro, specifying
the name of the service, the range of OENs covered, the type of service and
initialization and call handler functions. This macro instantiates a `const
struct rt_svc_desc` for the service with these details (see `runtime_svc.h` ).
This structure is allocated in a special ELF section `rt_svc_descs` , enabling
2015-12-14 09:35:25 +00:00
the framework to find all service descriptors included into BL31.
2014-02-25 19:09:48 +00:00
The specific service for a SMC Function is selected based on the OEN and call
type of the Function ID, and the framework uses that information in the service
descriptor to identify the handler for the SMC Call.
The service descriptors do not include information to identify the precise set
of SMC function identifiers supported by this service implementation, the
security state from which such calls are valid nor the capability to support
64-bit and/or 32-bit callers (using SMC32 or SMC64). Responding appropriately
to these aspects of a SMC call is the responsibility of the service
implementation, the framework is focused on integration of services from
different providers and minimizing the time taken by the framework before the
service handler is invoked.
Details of the parameters, requirements and behavior of the initialization and
call handling functions are provided in the following sections.
### Initialization
`runtime_svc_init()` in `runtime_svc.c` initializes the runtime services
2015-12-14 09:35:25 +00:00
framework running on the primary CPU during cold boot as part of the BL31
2014-02-25 19:09:48 +00:00
initialization. This happens prior to initializing a Trusted OS and running
Normal world boot firmware that might in turn use these services.
Initialization involves validating each of the declared runtime service
descriptors, calling the service initialization function and populating the
index used for runtime lookup of the service.
2015-12-14 09:35:25 +00:00
The BL31 linker script collects all of the declared service descriptors into a
2014-02-25 19:09:48 +00:00
single array and defines symbols that allow the framework to locate and traverse
the array, and determine its size.
The framework does basic validation of each descriptor to halt firmware
initialization if service declaration errors are detected. The framework does
not check descriptors for the following error conditions, and may behave in an
unpredictable manner under such scenarios:
1. Overlapping OEN ranges
2. Multiple descriptors for the same range of OENs and `call_type`
3. Incorrect range of owning entity numbers for a given `call_type`
Once validated, the service `init()` callback is invoked. This function carries
out any essential EL3 initialization before servicing requests. The `init()`
function is only invoked on the primary CPU during cold boot. If the service
uses per-CPU data this must either be initialized for all CPUs during this call,
or be done lazily when a CPU first issues an SMC call to that service. If
`init()` returns anything other than `0` , this is treated as an initialization
error and the service is ignored: this does not cause the firmware to halt.
The OEN and call type fields present in the SMC Function ID cover a total of
128 distinct services, but in practice a single descriptor can cover a range of
OENs, e.g. SMCs to call a Trusted OS function. To optimize the lookup of a
service handler, the framework uses an array of 128 indices that map every
distinct OEN/call-type combination either to one of the declared services or to
indicate the service is not handled. This `rt_svc_descs_indices[]` array is
populated for all of the OENs covered by a service after the service `init()`
function has reported success. So a service that fails to initialize will never
have it's `handle()` function invoked.
The following figure shows how the `rt_svc_descs_indices[]` index maps the SMC
Function ID call type and OEN onto a specific service handler in the
`rt_svc_descs[]` array.
![Image 1 ](diagrams/rt-svc-descs-layout.png?raw=true )
### Handling an SMC
When the EL3 runtime services framework receives a Secure Monitor Call, the SMC
Function ID is passed in W0 from the lower exception level (as per the
[SMCCC]). If the calling register width is AArch32, it is invalid to invoke an
SMC Function which indicates the SMC64 calling convention: such calls are
ignored and return the Unknown SMC Function Identifier result code `0xFFFFFFFF`
in R0/X0.
Bit[31] (fast/standard call) and bits[29:24] (owning entity number) of the SMC
Function ID are combined to index into the `rt_svc_descs_indices[]` array. The
resulting value might indicate a service that has no handler, in this case the
framework will also report an Unknown SMC Function ID. Otherwise, the value is
used as a further index into the `rt_svc_descs[]` array to locate the required
service and handler.
The service's `handle()` callback is provided with five of the SMC parameters
directly, the others are saved into memory for retrieval (if needed) by the
handler. The handler is also provided with an opaque `handle` for use with the
supporting library for parameter retrieval, setting return values and context
manipulation; and with `flags` indicating the security state of the caller. The
framework finally sets up the execution stack for the handler, and invokes the
services `handle()` function.
On return from the handler the result registers are populated in X0-X3 before
restoring the stack and CPU state and returning from the original SMC.
4. Power State Coordination Interface
--------------------------------------
TODO: Provide design walkthrough of PSCI implementation.
2015-01-15 11:49:58 +00:00
The PSCI v1.0 specification categorizes APIs as optional and mandatory. All the
mandatory APIs in PSCI v1.0 and all the APIs in PSCI v0.2 draft specification
[Power State Coordination Interface PDD] [PSCI] are implemented. The table lists
the PSCI v1.0 APIs and their support in generic code.
An API implementation might have a dependency on platform code e.g. CPU_SUSPEND
requires the platform to export a part of the implementation. Hence the level
of support of the mandatory APIs depends upon the support exported by the
platform port as well. The Juno and FVP (all variants) platforms export all the
required support.
| PSCI v1.0 API |Supported| Comments |
|:----------------------|:--------|:------------------------------------------|
|`PSCI_VERSION` | Yes | The version returned is 1.0 |
|`CPU_SUSPEND` | Yes* | The original `power_state` format is used |
|`CPU_OFF` | Yes* | |
|`CPU_ON` | Yes* | |
|`AFFINITY_INFO` | Yes | |
|`MIGRATE` | Yes** | |
|`MIGRATE_INFO_TYPE` | Yes** | |
|`MIGRATE_INFO_CPU` | Yes** | |
|`SYSTEM_OFF` | Yes* | |
|`SYSTEM_RESET` | Yes* | |
|`PSCI_FEATURES` | Yes | |
|`CPU_FREEZE` | No | |
|`CPU_DEFAULT_SUSPEND` | No | |
|`CPU_HW_STATE` | No | |
2014-12-17 14:47:57 +00:00
|`SYSTEM_SUSPEND` | Yes* | |
2015-01-15 11:49:58 +00:00
|`PSCI_SET_SUSPEND_MODE`| No | |
|`PSCI_STAT_RESIDENCY` | No | |
|`PSCI_STAT_COUNT` | No | |
*Note : These PSCI APIs require platform power management hooks to be
registered with the generic PSCI code to be supported.
**Note : These PSCI APIs require appropriate Secure Payload Dispatcher
hooks to be registered with the generic PSCI code to be supported.
2014-02-25 19:09:48 +00:00
5. Secure-EL1 Payloads and Dispatchers
---------------------------------------
On a production system that includes a Trusted OS running in Secure-EL1/EL0,
2015-12-14 09:35:25 +00:00
the Trusted OS is coupled with a companion runtime service in the BL31
2014-02-25 19:09:48 +00:00
firmware. This service is responsible for the initialisation of the Trusted
2015-12-14 09:35:25 +00:00
OS and all communications with it. The Trusted OS is the BL32 stage of the
2014-02-25 19:09:48 +00:00
boot flow in ARM Trusted Firmware. The firmware will attempt to locate, load
2015-12-14 09:35:25 +00:00
and execute a BL32 image.
2014-02-25 19:09:48 +00:00
2015-12-14 09:35:25 +00:00
ARM Trusted Firmware uses a more general term for the BL32 software that runs
2014-02-25 19:09:48 +00:00
at Secure-EL1 - the _Secure-EL1 Payload_ - as it is not always a Trusted OS.
The ARM Trusted Firmware provides a Test Secure-EL1 Payload (TSP) and a Test
Secure-EL1 Payload Dispatcher (TSPD) service as an example of how a Trusted OS
is supported on a production system using the Runtime Services Framework. On
2015-12-14 09:35:25 +00:00
such a system, the Test BL32 image and service are replaced by the Trusted OS
2014-09-08 16:51:01 +00:00
and its dispatcher service. The ARM Trusted Firmware build system expects that
the dispatcher will define the build flag `NEED_BL32` to enable it to include
2015-12-14 09:35:25 +00:00
the BL32 in the build either as a binary or to compile from source depending
2014-09-08 16:51:01 +00:00
on whether the `BL32` build option is specified or not.
2014-02-25 19:09:48 +00:00
The TSP runs in Secure-EL1. It is designed to demonstrate synchronous
communication with the normal-world software running in EL1/EL2. Communication
is initiated by the normal-world software
* either directly through a Fast SMC (as defined in the [SMCCC])
* or indirectly through a [PSCI] SMC. The [PSCI] implementation in turn
informs the TSPD about the requested power management operation. This allows
the TSP to prepare for or respond to the power state change
The TSPD service is responsible for.
* Initializing the TSP
* Routing requests and responses between the secure and the non-secure
states during the two types of communications just described
2015-12-14 09:35:25 +00:00
### Initializing a BL32 Image
2014-02-25 19:09:48 +00:00
The Secure-EL1 Payload Dispatcher (SPD) service is responsible for initializing
2015-12-14 09:35:25 +00:00
the BL32 image. It needs access to the information passed by BL2 to BL31 to do
2014-05-23 14:56:12 +00:00
so. This is provided by:
2014-02-25 19:09:48 +00:00
2014-05-23 14:56:12 +00:00
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t);
2014-02-25 19:09:48 +00:00
2014-05-23 14:56:12 +00:00
which returns a reference to the `entry_point_info` structure corresponding to
the image which will be run in the specified security state. The SPD uses this
2015-12-14 09:35:25 +00:00
API to get entry point information for the SECURE image, BL32.
2014-02-25 19:09:48 +00:00
2015-12-14 09:35:25 +00:00
In the absence of a BL32 image, BL31 passes control to the normal world
bootloader image (BL33). When the BL32 image is present, it is typical
that the SPD wants control to be passed to BL32 first and then later to BL33.
2014-02-25 19:09:48 +00:00
2015-12-14 09:35:25 +00:00
To do this the SPD has to register a BL32 initialization function during
initialization of the SPD service. The BL32 initialization function has this
2014-02-25 19:09:48 +00:00
prototype:
2014-05-23 14:56:12 +00:00
int32_t init();
2014-02-25 19:09:48 +00:00
and is registered using the `bl31_register_bl32_init()` function.
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
Trusted Firmware supports two approaches for the SPD to pass control to BL32
before returning through EL3 and running the non-trusted firmware (BL33):
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
1. In the BL32 setup function, use `bl31_set_next_image_type()` to
request that the exit from `bl31_main()` is to the BL32 entrypoint in
Secure-EL1. BL31 will exit to BL32 using the asynchronous method by
2014-07-15 15:49:22 +00:00
calling bl31_prepare_next_image_entry() and el3_exit().
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
When the BL32 has completed initialization at Secure-EL1, it returns to
BL31 by issuing an SMC, using a Function ID allocated to the SPD. On
2014-02-25 19:09:48 +00:00
receipt of this SMC, the SPD service handler should switch the CPU context
from trusted to normal world and use the `bl31_set_next_image_type()` and
`bl31_prepare_next_image_entry()` functions to set up the initial return to
2015-12-14 09:35:25 +00:00
the normal world firmware BL33. On return from the handler the framework
will exit to EL2 and run BL33.
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
2. The BL32 setup function registers a initialization function using
2014-07-15 15:49:22 +00:00
`bl31_register_bl32_init()` which provides a SPD-defined mechanism to
2015-12-14 09:35:25 +00:00
invoke a 'world-switch synchronous call' to Secure-EL1 to run the BL32
2014-02-25 19:09:48 +00:00
entrypoint.
NOTE: The Test SPD service included with the Trusted Firmware provides one
implementation of such a mechanism.
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
On completion BL32 returns control to BL31 via a SMC, and on receipt the
2014-02-25 19:09:48 +00:00
SPD service handler invokes the synchronous call return mechanism to return
2015-12-14 09:35:25 +00:00
to the BL32 initialization function. On return from this function,
`bl31_main()` will set up the return to the normal world firmware BL33 and
2014-02-25 19:09:48 +00:00
continue the boot process in the normal world.
2014-02-25 13:28:04 +00:00
2014-08-26 16:28:03 +00:00
2015-12-14 09:35:25 +00:00
6. Crash Reporting in BL31
2014-08-26 16:28:03 +00:00
----------------------------
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
BL31 implements a scheme for reporting the processor state when an unhandled
2014-05-23 16:05:43 +00:00
exception is encountered. The reporting mechanism attempts to preserve all the
2015-12-14 09:35:25 +00:00
register contents and report it via a dedicated UART (PL011 console). BL31
2015-03-19 19:24:43 +00:00
reports the general purpose, EL3, Secure EL1 and some EL2 state registers.
2014-05-23 16:05:43 +00:00
2015-12-14 09:35:25 +00:00
A dedicated per-CPU crash stack is maintained by BL31 and this is retrieved via
2014-08-18 15:57:56 +00:00
the per-CPU pointer cache. The implementation attempts to minimise the memory
2014-05-23 16:05:43 +00:00
required for this feature. The file `crash_reporting.S` contains the
implementation for crash reporting.
The sample crash output is shown below.
x0 :0x000000004F00007C
x1 :0x0000000007FFFFFF
x2 :0x0000000004014D50
x3 :0x0000000000000000
x4 :0x0000000088007998
x5 :0x00000000001343AC
x6 :0x0000000000000016
x7 :0x00000000000B8A38
x8 :0x00000000001343AC
x9 :0x00000000000101A8
x10 :0x0000000000000002
x11 :0x000000000000011C
x12 :0x00000000FEFDC644
x13 :0x00000000FED93FFC
x14 :0x0000000000247950
x15 :0x00000000000007A2
x16 :0x00000000000007A4
x17 :0x0000000000247950
x18 :0x0000000000000000
x19 :0x00000000FFFFFFFF
x20 :0x0000000004014D50
x21 :0x000000000400A38C
x22 :0x0000000000247950
x23 :0x0000000000000010
x24 :0x0000000000000024
x25 :0x00000000FEFDC868
x26 :0x00000000FEFDC86A
x27 :0x00000000019EDEDC
x28 :0x000000000A7CFDAA
x29 :0x0000000004010780
x30 :0x000000000400F004
scr_el3 :0x0000000000000D3D
sctlr_el3 :0x0000000000C8181F
cptr_el3 :0x0000000000000000
tcr_el3 :0x0000000080803520
daif :0x00000000000003C0
mair_el3 :0x00000000000004FF
spsr_el3 :0x00000000800003CC
elr_el3 :0x000000000400C0CC
ttbr0_el3 :0x00000000040172A0
esr_el3 :0x0000000096000210
sp_el3 :0x0000000004014D50
far_el3 :0x000000004F00007C
spsr_el1 :0x0000000000000000
elr_el1 :0x0000000000000000
spsr_abt :0x0000000000000000
spsr_und :0x0000000000000000
spsr_irq :0x0000000000000000
spsr_fiq :0x0000000000000000
sctlr_el1 :0x0000000030C81807
actlr_el1 :0x0000000000000000
cpacr_el1 :0x0000000000300000
csselr_el1 :0x0000000000000002
sp_el1 :0x0000000004028800
esr_el1 :0x0000000000000000
ttbr0_el1 :0x000000000402C200
ttbr1_el1 :0x0000000000000000
mair_el1 :0x00000000000004FF
amair_el1 :0x0000000000000000
tcr_el1 :0x0000000000003520
tpidr_el1 :0x0000000000000000
tpidr_el0 :0x0000000000000000
tpidrro_el0 :0x0000000000000000
dacr32_el2 :0x0000000000000000
ifsr32_el2 :0x0000000000000000
par_el1 :0x0000000000000000
far_el1 :0x0000000000000000
afsr0_el1 :0x0000000000000000
afsr1_el1 :0x0000000000000000
contextidr_el1 :0x0000000000000000
vbar_el1 :0x0000000004027000
cntp_ctl_el0 :0x0000000000000000
cntp_cval_el0 :0x0000000000000000
cntv_ctl_el0 :0x0000000000000000
cntv_cval_el0 :0x0000000000000000
cntkctl_el1 :0x0000000000000000
fpexc32_el2 :0x0000000004000700
sp_el0 :0x0000000004010780
2014-11-20 18:09:41 +00:00
7. Guidelines for Reset Handlers
---------------------------------
Trusted Firmware implements a framework that allows CPU and platform ports to
2015-05-27 16:14:22 +00:00
perform actions very early after a CPU is released from reset in both the cold
2014-11-20 18:09:41 +00:00
and warm boot paths. This is done by calling the `reset_handler()` function in
2015-12-14 09:35:25 +00:00
both the BL1 and BL31 images. It in turn calls the platform and CPU specific
2014-11-20 18:09:41 +00:00
reset handling functions.
Details for implementing a CPU specific reset handler can be found in
Section 8. Details for implementing a platform specific reset handler can be
found in the [Porting Guide ](see the `plat_reset_handler( )` function).
2015-05-27 16:14:22 +00:00
When adding functionality to a reset handler, keep in mind that if a different
reset handling behavior is required between the first and the subsequent
invocations of the reset handling code, this should be detected at runtime.
In other words, the reset handler should be able to detect whether an action has
already been performed and act as appropriate. Possible courses of actions are,
e.g. skip the action the second time, or undo/redo it.
2014-11-20 18:09:41 +00:00
8. CPU specific operations framework
2014-08-18 15:57:56 +00:00
-----------------------------
2014-05-23 16:05:43 +00:00
2014-08-18 15:57:56 +00:00
Certain aspects of the ARMv8 architecture are implementation defined,
that is, certain behaviours are not architecturally defined, but must be defined
and documented by individual processor implementations. The ARM Trusted
Firmware implements a framework which categorises the common implementation
defined behaviours and allows a processor to export its implementation of that
behaviour. The categories are:
1. Processor specific reset sequence.
2. Processor specific power down sequences.
3. Processor specific register dumping as a part of crash reporting.
Each of the above categories fulfils a different requirement.
1. allows any processor specific initialization before the caches and MMU
are turned on, like implementation of errata workarounds, entry into
the intra-cluster coherency domain etc.
2. allows each processor to implement the power down sequence mandated in
its Technical Reference Manual (TRM).
3. allows a processor to provide additional information to the developer
in the event of a crash, for example Cortex-A53 has registers which
can expose the data cache contents.
Please note that only 2. is mandated by the TRM.
The CPU specific operations framework scales to accommodate a large number of
different CPUs during power down and reset handling. The platform can specify
2014-09-22 13:13:34 +00:00
any CPU optimization it wants to enable for each CPU. It can also specify
2014-08-18 15:57:56 +00:00
the CPU errata workarounds to be applied for each CPU type during reset
handling by defining CPU errata compile time macros. Details on these macros
2014-09-22 13:13:34 +00:00
can be found in the [cpu-specific-build-macros.md][CPUBM] file.
2014-08-18 15:57:56 +00:00
The CPU specific operations framework depends on the `cpu_ops` structure which
needs to be exported for each type of CPU in the platform. It is defined in
`include/lib/cpus/aarch64/cpu_macros.S` and has the following fields : `midr` ,
`reset_func()` , `core_pwr_dwn()` , `cluster_pwr_dwn()` and `cpu_reg_dump()` .
The CPU specific files in `lib/cpus` export a `cpu_ops` data structure with
suitable handlers for that CPU. For example, `lib/cpus/cortex_a53.S` exports
the `cpu_ops` for Cortex-A53 CPU. According to the platform configuration,
these CPU specific files must must be included in the build by the platform
makefile. The generic CPU specific operations framework code exists in
`lib/cpus/aarch64/cpu_helpers.S` .
### CPU specific Reset Handling
After a reset, the state of the CPU when it calls generic reset handler is:
MMU turned off, both instruction and data caches turned off and not part
of any coherency domain.
The BL entrypoint code first invokes the `plat_reset_handler()` to allow
the platform to perform any system initialization required and any system
2015-01-28 10:11:48 +00:00
errata workarounds that needs to be applied. The `get_cpu_ops_ptr()` reads
2014-08-18 15:57:56 +00:00
the current CPU midr, finds the matching `cpu_ops` entry in the `cpu_ops`
2015-01-28 10:11:48 +00:00
array and returns it. Note that only the part number and implementer fields
2014-08-18 15:57:56 +00:00
in midr are used to find the matching `cpu_ops` entry. The `reset_func()` in
the returned `cpu_ops` is then invoked which executes the required reset
handling for that CPU and also any errata workarounds enabled by the platform.
2015-01-29 12:00:58 +00:00
This function must preserve the values of general purpose registers x20 to x29.
2014-08-18 15:57:56 +00:00
2014-11-20 18:09:41 +00:00
Refer to Section "Guidelines for Reset Handlers" for general guidelines
regarding placement of code in a reset handler.
2014-08-18 15:57:56 +00:00
### CPU specific power down sequence
2015-12-14 09:35:25 +00:00
During the BL31 initialization sequence, the pointer to the matching `cpu_ops`
2014-08-18 15:57:56 +00:00
entry is stored in per-CPU data by `init_cpu_ops()` so that it can be quickly
retrieved during power down sequences.
The PSCI service, upon receiving a power down request, determines the highest
affinity level at which to execute power down sequence for a particular CPU and
invokes the corresponding 'prepare' power down handler in the CPU specific
operations framework. For example, when a CPU executes a power down for affinity
level 0, the `prepare_core_pwr_dwn()` retrieves the `cpu_ops` pointer from the
per-CPU data and the corresponding `core_pwr_dwn()` is invoked. Similarly when
a CPU executes power down at affinity level 1, the `prepare_cluster_pwr_dwn()`
retrieves the `cpu_ops` pointer and the corresponding `cluster_pwr_dwn()` is
invoked.
At runtime the platform hooks for power down are invoked by the PSCI service to
perform platform specific operations during a power down sequence, for example
turning off CCI coherency during a cluster power down.
### CPU specific register reporting during crash
2015-12-14 09:35:25 +00:00
If the crash reporting is enabled in BL31, when a crash occurs, the crash
2014-08-18 15:57:56 +00:00
reporting framework calls `do_cpu_reg_dump` which retrieves the matching
`cpu_ops` using `get_cpu_ops_ptr()` function. The `cpu_reg_dump()` in
`cpu_ops` is invoked, which then returns the CPU specific register values to
be reported and a pointer to the ASCII list of register names in a format
expected by the crash reporting framework.
2014-08-26 16:28:03 +00:00
2014-11-20 18:09:41 +00:00
9. Memory layout of BL images
2014-08-26 16:28:03 +00:00
-----------------------------
2014-02-25 13:28:04 +00:00
2014-06-23 16:00:23 +00:00
Each bootloader image can be divided in 2 parts:
* the static contents of the image. These are data actually stored in the
binary on the disk. In the ELF terminology, they are called `PROGBITS`
sections;
* the run-time contents of the image. These are data that don't occupy any
space in the binary on the disk. The ELF binary just contains some
metadata indicating where these data will be stored at run-time and the
corresponding sections need to be allocated and initialized at run-time.
In the ELF terminology, they are called `NOBITS` sections.
All PROGBITS sections are grouped together at the beginning of the image,
followed by all NOBITS sections. This is true for all Trusted Firmware images
and it is governed by the linker scripts. This ensures that the raw binary
images are as small as possible. If a NOBITS section would sneak in between
PROGBITS sections then the resulting binary file would contain a bunch of zero
bytes at the location of this NOBITS section, making the image unnecessarily
bigger. Smaller images allow faster loading from the FIP to the main memory.
2014-08-26 16:28:03 +00:00
### Linker scripts and symbols
2014-05-21 16:08:26 +00:00
2014-02-25 13:28:04 +00:00
Each bootloader stage image layout is described by its own linker script. The
linker scripts export some symbols into the program symbol table. Their values
correspond to particular addresses. The trusted firmware code can refer to these
symbols to figure out the image memory layout.
Linker symbols follow the following naming convention in the trusted firmware.
* `__<SECTION>_START__`
Start address of a given section named `<SECTION>` .
* `__<SECTION>_END__`
End address of a given section named `<SECTION>` . If there is an alignment
constraint on the section's end address then `__<SECTION>_END__` corresponds
to the end address of the section's actual contents, rounded up to the right
boundary. Refer to the value of `__<SECTION>_UNALIGNED_END__` to know the
actual end address of the section's contents.
* `__<SECTION>_UNALIGNED_END__`
End address of a given section named `<SECTION>` without any padding or
rounding up due to some alignment constraint.
* `__<SECTION>_SIZE__`
Size (in bytes) of a given section named `<SECTION>` . If there is an
alignment constraint on the section's end address then `__<SECTION>_SIZE__`
corresponds to the size of the section's actual contents, rounded up to the
right boundary. In other words, `__< SECTION > _SIZE__ = __ < SECTION > _END__ -
_< SECTION > _START__`. Refer to the value of `__<SECTION>_UNALIGNED_SIZE__`
to know the actual size of the section's contents.
* `__<SECTION>_UNALIGNED_SIZE__`
Size (in bytes) of a given section named `<SECTION>` without any padding or
rounding up due to some alignment constraint. In other words,
`__< SECTION > _UNALIGNED_SIZE__ = __ < SECTION > _UNALIGNED_END__ -
__ < SECTION > _START__`.
Some of the linker symbols are mandatory as the trusted firmware code relies on
them to be defined. They are listed in the following subsections. Some of them
must be provided for each bootloader stage and some are specific to a given
bootloader stage.
The linker scripts define some extra, optional symbols. They are not actually
used by any code but they help in understanding the bootloader images' memory
layout as they are easy to spot in the link map files.
2014-08-26 16:28:03 +00:00
#### Common linker symbols
2014-02-25 13:28:04 +00:00
Early setup code needs to know the extents of the BSS section to zero-initialise
it before executing any C code. The following linker symbols are defined for
this purpose:
* `__BSS_START__` This address must be aligned on a 16-byte boundary.
* `__BSS_SIZE__`
2015-01-08 18:02:44 +00:00
Similarly, the coherent memory section (if enabled) must be zero-initialised.
Also, the MMU setup code needs to know the extents of this section to set the
right memory attributes for it. The following linker symbols are defined for
this purpose:
2014-02-25 13:28:04 +00:00
* `__COHERENT_RAM_START__` This address must be aligned on a page-size boundary.
* `__COHERENT_RAM_END__` This address must be aligned on a page-size boundary.
* `__COHERENT_RAM_UNALIGNED_SIZE__`
2014-08-26 16:28:03 +00:00
#### BL1's linker symbols
2014-02-25 13:28:04 +00:00
BL1's early setup code needs to know the extents of the .data section to
relocate it from ROM to RAM before executing any C code. The following linker
symbols are defined for this purpose:
* `__DATA_ROM_START__` This address must be aligned on a 16-byte boundary.
* `__DATA_RAM_START__` This address must be aligned on a 16-byte boundary.
* `__DATA_SIZE__`
BL1's platform setup code needs to know the extents of its read-write data
region to figure out its memory layout. The following linker symbols are defined
for this purpose:
* `__BL1_RAM_START__` This is the start address of BL1 RW data.
* `__BL1_RAM_END__` This is the end address of BL1 RW data.
2015-12-14 09:35:25 +00:00
#### BL2's, BL31's and TSP's linker symbols
2014-02-25 13:28:04 +00:00
2015-12-14 09:35:25 +00:00
BL2, BL31 and TSP need to know the extents of their read-only section to set
2014-02-25 13:28:04 +00:00
the right memory attributes for this memory region in their MMU setup code. The
following linker symbols are defined for this purpose:
* `__RO_START__`
* `__RO_END__`
2014-05-21 16:08:26 +00:00
### How to choose the right base addresses for each bootloader stage image
2014-02-25 13:28:04 +00:00
2014-05-21 16:08:26 +00:00
There is currently no support for dynamic image loading in the Trusted Firmware.
This means that all bootloader images need to be linked against their ultimate
runtime locations and the base addresses of each image must be chosen carefully
such that images don't overlap each other in an undesired way. As the code
grows, the base addresses might need adjustments to cope with the new memory
layout.
2014-02-25 13:28:04 +00:00
2014-05-21 16:08:26 +00:00
The memory layout is completely specific to the platform and so there is no
general recipe for choosing the right base addresses for each bootloader image.
However, there are tools to aid in understanding the memory layout. These are
the link map files: `build/<platform>/<build-type>/bl<x>/bl<x>.map` , with `<x>`
being the stage bootloader. They provide a detailed view of the memory usage of
each image. Among other useful information, they provide the end address of
each image.
2014-02-25 13:28:04 +00:00
* `bl1.map` link map file provides `__BL1_RAM_END__` address.
* `bl2.map` link map file provides `__BL2_END__` address.
* `bl31.map` link map file provides `__BL31_END__` address.
2014-05-21 16:08:26 +00:00
* `bl32.map` link map file provides `__BL32_END__` address.
2014-02-25 13:28:04 +00:00
2014-05-21 16:08:26 +00:00
For each bootloader image, the platform code must provide its start address
as well as a limit address that it must not overstep. The latter is used in the
linker scripts to check that the image doesn't grow past that address. If that
happens, the linker will issue a message similar to the following:
2014-02-25 13:28:04 +00:00
2014-05-21 16:08:26 +00:00
aarch64-none-elf-ld: BLx has exceeded its limit.
2014-02-25 13:28:04 +00:00
2014-06-23 16:00:23 +00:00
Additionally, if the platform memory layout implies some image overlaying like
2015-12-14 09:35:25 +00:00
on FVP, BL31 and TSP need to know the limit address that their PROGBITS
2014-06-23 16:00:23 +00:00
sections must not overstep. The platform code must provide those.
2014-02-25 13:28:04 +00:00
2014-08-26 16:28:03 +00:00
2015-03-19 19:24:43 +00:00
#### Memory layout on ARM development platforms
The following list describes the memory layout on the ARM development platforms:
2014-08-26 16:28:03 +00:00
2015-03-19 19:24:43 +00:00
* A 4KB page of shared memory is used for communication between Trusted
Firmware and the platform's power controller. This is located at the base of
Trusted SRAM. The amount of Trusted SRAM available to load the bootloader
images is reduced by the size of the shared memory.
2014-08-26 16:28:03 +00:00
2015-03-19 19:24:43 +00:00
The shared memory is used to store the entrypoint mailboxes for each CPU.
On Juno, this is also used for the MHU payload when passing messages to and
from the SCP.
2014-08-26 16:28:03 +00:00
2015-03-19 19:24:43 +00:00
* On FVP, BL1 is originally sitting in the Trusted ROM at address `0x0` . On
Juno, BL1 resides in flash memory at address `0x0BEC0000` . BL1 read-write
data are relocated to the top of Trusted SRAM at runtime.
2014-08-26 16:28:03 +00:00
2015-12-14 09:35:25 +00:00
* BL31 is loaded at the top of the Trusted SRAM, such that its NOBITS
2015-03-19 19:24:43 +00:00
sections will overwrite BL1 R/W data. This implies that BL1 global variables
2015-12-14 09:35:25 +00:00
remain valid only until execution reaches the BL31 entry point during
2015-03-19 19:24:43 +00:00
a cold boot.
2014-08-26 16:28:03 +00:00
2015-12-14 09:35:25 +00:00
* BL2 is loaded below BL31.
2014-08-26 16:28:03 +00:00
2015-12-14 09:35:25 +00:00
* On Juno, SCP_BL2 is loaded temporarily into the BL31 memory region and
transfered to the SCP before being overwritten by BL31.
2015-03-19 19:24:43 +00:00
2015-12-14 09:35:25 +00:00
* BL32 can be loaded in one of the following locations:
2014-08-26 16:28:03 +00:00
2014-12-19 09:51:00 +00:00
* Trusted SRAM
2015-03-19 19:24:43 +00:00
* Trusted DRAM (FVP only)
2014-12-19 09:51:00 +00:00
* Secure region of DRAM (top 16MB of DRAM configured by the TrustZone
controller)
2015-12-14 09:35:25 +00:00
When BL32 is loaded into Trusted SRAM, its NOBITS sections are allowed to
overlay BL2. This memory layout is designed to give the BL32 image as much
2014-12-19 09:51:00 +00:00
memory as possible when it is loaded into Trusted SRAM.
2015-12-14 09:35:25 +00:00
The location of the BL32 image will result in different memory maps. This is
2015-03-19 19:24:43 +00:00
illustrated for both FVP and Juno in the following diagrams, using the TSP as
an example.
2015-12-14 09:35:25 +00:00
Note: Loading the BL32 image in TZC secured DRAM doesn't change the memory
2015-03-19 19:24:43 +00:00
layout of the other images in Trusted SRAM.
2014-08-26 16:28:03 +00:00
2015-03-19 19:24:43 +00:00
**FVP with TSP in Trusted SRAM (default option):**
2014-08-26 16:28:03 +00:00
Trusted SRAM
2014-09-24 09:00:06 +00:00
0x04040000 +----------+ loaded by BL2 ------------------
2015-12-14 09:35:25 +00:00
| BL1 (rw) | < < < < < < < < < < < < < | BL31 NOBITS |
2014-08-26 16:28:03 +00:00
|----------| < < < < < < < < < < < < < |----------------|
2015-12-14 09:35:25 +00:00
| | < < < < < < < < < < < < < | BL31 PROGBITS |
2014-08-26 16:28:03 +00:00
|----------| ------------------
2015-12-14 09:35:25 +00:00
| BL2 | < < < < < < < < < < < < < | BL32 NOBITS |
2014-08-26 16:28:03 +00:00
|----------| < < < < < < < < < < < < < |----------------|
2015-12-14 09:35:25 +00:00
| | < < < < < < < < < < < < < | BL32 PROGBITS |
2014-09-24 09:00:06 +00:00
0x04001000 +----------+ ------------------
| Shared |
0x04000000 +----------+
2014-08-26 16:28:03 +00:00
Trusted ROM
0x04000000 +----------+
| BL1 (ro) |
0x00000000 +----------+
2015-03-19 19:24:43 +00:00
**FVP with TSP in Trusted DRAM:**
2014-08-26 16:28:03 +00:00
Trusted DRAM
0x08000000 +----------+
2015-12-14 09:35:25 +00:00
| BL32 |
2014-08-26 16:28:03 +00:00
0x06000000 +----------+
Trusted SRAM
0x04040000 +----------+ loaded by BL2 ------------------
2015-12-14 09:35:25 +00:00
| BL1 (rw) | < < < < < < < < < < < < < | BL31 NOBITS |
2014-08-26 16:28:03 +00:00
|----------| < < < < < < < < < < < < < |----------------|
2015-12-14 09:35:25 +00:00
| | < < < < < < < < < < < < < | BL31 PROGBITS |
2014-08-26 16:28:03 +00:00
|----------| ------------------
| BL2 |
|----------|
| |
2014-09-24 09:00:06 +00:00
0x04001000 +----------+
2014-08-26 16:28:03 +00:00
| Shared |
2014-09-24 09:00:06 +00:00
0x04000000 +----------+
2014-08-26 16:28:03 +00:00
Trusted ROM
0x04000000 +----------+
| BL1 (ro) |
0x00000000 +----------+
2015-03-19 19:24:43 +00:00
**FVP with TSP in TZC-Secured DRAM:**
2014-12-19 09:51:00 +00:00
DRAM
0xffffffff +----------+
2015-12-14 09:35:25 +00:00
| BL32 | (secure)
2014-12-19 09:51:00 +00:00
0xff000000 +----------+
| |
: : (non-secure)
| |
0x80000000 +----------+
Trusted SRAM
0x04040000 +----------+ loaded by BL2 ------------------
2015-12-14 09:35:25 +00:00
| BL1 (rw) | < < < < < < < < < < < < < | BL31 NOBITS |
2014-12-19 09:51:00 +00:00
|----------| < < < < < < < < < < < < < |----------------|
2015-12-14 09:35:25 +00:00
| | < < < < < < < < < < < < < | BL31 PROGBITS |
2014-12-19 09:51:00 +00:00
|----------| ------------------
| BL2 |
|----------|
| |
0x04001000 +----------+
| Shared |
0x04000000 +----------+
Trusted ROM
0x04000000 +----------+
| BL1 (ro) |
0x00000000 +----------+
2014-11-07 09:44:58 +00:00
2015-12-14 09:35:25 +00:00
**Juno with BL32 in Trusted SRAM (default option):**
2014-09-05 16:29:38 +00:00
2014-08-26 16:28:03 +00:00
Flash0
0x0C000000 +----------+
: :
0x0BED0000 |----------|
| BL1 (ro) |
0x0BEC0000 |----------|
: :
2015-12-14 09:35:25 +00:00
0x08000000 +----------+ BL31 is loaded
2015-12-10 15:49:17 +00:00
after SCP_BL2 has
2014-11-07 09:44:58 +00:00
Trusted SRAM been sent to SCP
0x04040000 +----------+ loaded by BL2 ------------------
2015-12-14 09:35:25 +00:00
| BL1 (rw) | < < < < < < < < < < < < < | BL31 NOBITS |
2014-11-07 09:44:58 +00:00
|----------| < < < < < < < < < < < < < |----------------|
2015-12-14 09:35:25 +00:00
| SCP_BL2 | < < < < < < < < < < < < < | BL31 PROGBITS |
2014-11-07 09:44:58 +00:00
|----------| ------------------
2015-12-14 09:35:25 +00:00
| BL2 | < < < < < < < < < < < < < | BL32 NOBITS |
2014-11-07 09:44:58 +00:00
|----------| < < < < < < < < < < < < < |----------------|
2015-12-14 09:35:25 +00:00
| | < < < < < < < < < < < < < | BL32 PROGBITS |
2014-11-07 09:44:58 +00:00
0x04001000 +----------+ ------------------
2014-09-05 16:29:38 +00:00
| MHU |
0x04000000 +----------+
2014-11-07 09:44:58 +00:00
2015-12-14 09:35:25 +00:00
**Juno with BL32 in TZC-secured DRAM:**
2014-09-05 16:29:38 +00:00
DRAM
0xFFE00000 +----------+
2015-12-14 09:35:25 +00:00
| BL32 | (secure)
2014-09-05 16:29:38 +00:00
0xFF000000 |----------|
| |
2014-11-07 09:44:58 +00:00
: : (non-secure)
2014-09-05 16:29:38 +00:00
| |
0x80000000 +----------+
Flash0
0x0C000000 +----------+
: :
0x0BED0000 |----------|
| BL1 (ro) |
0x0BEC0000 |----------|
: :
2015-12-14 09:35:25 +00:00
0x08000000 +----------+ BL31 is loaded
2015-12-10 15:49:17 +00:00
after SCP_BL2 has
2014-11-07 09:44:58 +00:00
Trusted SRAM been sent to SCP
0x04040000 +----------+ loaded by BL2 ------------------
2015-12-14 09:35:25 +00:00
| BL1 (rw) | < < < < < < < < < < < < < | BL31 NOBITS |
2014-11-07 09:44:58 +00:00
|----------| < < < < < < < < < < < < < |----------------|
2015-12-14 09:35:25 +00:00
| SCP_BL2 | < < < < < < < < < < < < < | BL31 PROGBITS |
2014-11-07 09:44:58 +00:00
|----------| ------------------
| BL2 |
|----------|
| |
0x04001000 +----------+
2014-08-26 16:28:03 +00:00
| MHU |
0x04000000 +----------+
2014-11-20 18:09:41 +00:00
10. Firmware Image Package (FIP)
2014-08-26 16:28:03 +00:00
---------------------------------
2014-02-25 13:28:04 +00:00
Using a Firmware Image Package (FIP) allows for packing bootloader images (and
potentially other payloads) into a single archive that can be loaded by the ARM
Trusted Firmware from non-volatile platform storage. A driver to load images
from a FIP has been added to the storage layer and allows a package to be read
from supported platform storage. A tool to create Firmware Image Packages is
also provided and described below.
### Firmware Image Package layout
The FIP layout consists of a table of contents (ToC) followed by payload data.
The ToC itself has a header followed by one or more table entries. The ToC is
terminated by an end marker entry. All ToC entries describe some payload data
that has been appended to the end of the binary package. With the information
provided in the ToC entry the corresponding payload data can be retrieved.
------------------
| ToC Header |
|----------------|
| ToC Entry 0 |
|----------------|
| ToC Entry 1 |
|----------------|
| ToC End Marker |
|----------------|
| |
| Data 0 |
| |
|----------------|
| |
| Data 1 |
| |
------------------
The ToC header and entry formats are described in the header file
`include/firmware_image_package.h` . This file is used by both the tool and the
ARM Trusted firmware.
The ToC header has the following fields:
`name` : The name of the ToC. This is currently used to validate the header.
`serial_number` : A non-zero number provided by the creation tool
`flags` : Flags associated with this data. None are yet defined.
A ToC entry has the following fields:
`uuid` : All files are referred to by a pre-defined Universally Unique
IDentifier [UUID] . The UUIDs are defined in
`include/firmware_image_package` . The platform translates the requested
image name into the corresponding UUID when accessing the package.
`offset_address` : The offset address at which the corresponding payload data
can be found. The offset is calculated from the ToC base address.
`size` : The size of the corresponding payload data in bytes.
`flags` : Flags associated with this entry. Non are yet defined.
### Firmware Image Package creation tool
The FIP creation tool can be used to pack specified images into a binary package
that can be loaded by the ARM Trusted Firmware from platform storage. The tool
currently only supports packing bootloader images. Additional image definitions
can be added to the tool as required.
The tool can be found in `tools/fip_create` .
### Loading from a Firmware Image Package (FIP)
The Firmware Image Package (FIP) driver can load images from a binary package on
2015-03-19 19:24:43 +00:00
non-volatile platform storage. For the ARM development platforms, this is
currently NOR FLASH.
2014-02-25 13:28:04 +00:00
2015-03-19 19:24:43 +00:00
Bootloader images are loaded according to the platform policy as specified by
the function `plat_get_image_source()` . For the ARM development platforms, this
means the platform will attempt to load images from a Firmware Image Package
located at the start of NOR FLASH0.
2014-02-25 13:28:04 +00:00
2015-03-19 19:24:43 +00:00
The ARM development platforms' policy is to only allow loading of a known set of
images. The platform policy can be modified to allow additional images.
2014-02-25 13:28:04 +00:00
2014-11-20 18:09:41 +00:00
11. Use of coherent memory in Trusted Firmware
2015-01-08 18:02:44 +00:00
----------------------------------------------
There might be loss of coherency when physical memory with mismatched
shareability, cacheability and memory attributes is accessed by multiple CPUs
(refer to section B2.9 of [ARM ARM] for more details). This possibility occurs
in Trusted Firmware during power up/down sequences when coherency, MMU and
caches are turned on/off incrementally.
Trusted Firmware defines coherent memory as a region of memory with Device
nGnRE attributes in the translation tables. The translation granule size in
Trusted Firmware is 4KB. This is the smallest possible size of the coherent
memory region.
By default, all data structures which are susceptible to accesses with
mismatched attributes from various CPUs are allocated in a coherent memory
region (refer to section 2.1 of [Porting Guide]). The coherent memory region
accesses are Outer Shareable, non-cacheable and they can be accessed
with the Device nGnRE attributes when the MMU is turned on. Hence, at the
expense of at least an extra page of memory, Trusted Firmware is able to work
around coherency issues due to mismatched memory attributes.
The alternative to the above approach is to allocate the susceptible data
structures in Normal WriteBack WriteAllocate Inner shareable memory. This
approach requires the data structures to be designed so that it is possible to
work around the issue of mismatched memory attributes by performing software
cache maintenance on them.
### Disabling the use of coherent memory in Trusted Firmware
It might be desirable to avoid the cost of allocating coherent memory on
platforms which are memory constrained. Trusted Firmware enables inclusion of
coherent memory in firmware images through the build flag `USE_COHERENT_MEM` .
This flag is enabled by default. It can be disabled to choose the second
approach described above.
The below sections analyze the data structures allocated in the coherent memory
region and the changes required to allocate them in normal memory.
2015-09-10 10:39:36 +00:00
### Coherent memory usage in PSCI implementation
The `psci_non_cpu_pd_nodes` data structure stores the platform's power domain
tree information for state management of power domains. By default, this data
structure is allocated in the coherent memory region in the Trusted Firmware
because it can be accessed by multple CPUs, either with caches enabled or
disabled.
typedef struct non_cpu_pwr_domain_node {
/*
* Index of the first CPU power domain node level 0 which has this node
* as its parent.
*/
unsigned int cpu_start_idx;
/*
* Number of CPU power domains which are siblings of the domain indexed
* by 'cpu_start_idx' i.e. all the domains in the range 'cpu_start_idx
* -> cpu_start_idx + ncpus' have this node as their parent.
*/
unsigned int ncpus;
/*
* Index of the parent power domain node.
* TODO: Figure out whether to whether using pointer is more efficient.
*/
unsigned int parent_node;
plat_local_state_t local_state;
unsigned char level;
/* For indexing the psci_lock array*/
unsigned char lock_index;
} non_cpu_pd_node_t;
2015-01-08 18:02:44 +00:00
In order to move this data structure to normal memory, the use of each of its
2015-09-10 10:39:36 +00:00
fields must be analyzed. Fields like `cpu_start_idx` , `ncpus` , `parent_node`
`level` and `lock_index` are only written once during cold boot. Hence removing
them from coherent memory involves only doing a clean and invalidate of the
cache lines after these fields are written.
The field `local_state` can be concurrently accessed by multiple CPUs in
different cache states. A Lamport's Bakery lock `psci_locks` is used to ensure
mutual exlusion to this field and a clean and invalidate is needed after it
is written.
2015-01-08 18:02:44 +00:00
### Bakery lock data
The bakery lock data structure `bakery_lock_t` is allocated in coherent memory
and is accessed by multiple CPUs with mismatched attributes. `bakery_lock_t` is
defined as follows:
typedef struct bakery_lock {
2015-09-10 10:39:36 +00:00
/*
* The lock_data is a bit-field of 2 members:
* Bit[0] : choosing. This field is set when the CPU is
* choosing its bakery number.
* Bits[1 - 15] : number. This is the bakery number allocated.
*/
volatile uint16_t lock_data[BAKERY_LOCK_MAX_CPUS];
2015-01-08 18:02:44 +00:00
} bakery_lock_t;
It is a characteristic of Lamport's Bakery algorithm that the volatile per-CPU
fields can be read by all CPUs but only written to by the owning CPU.
Depending upon the data cache line size, the per-CPU fields of the
`bakery_lock_t` structure for multiple CPUs may exist on a single cache line.
These per-CPU fields can be read and written during lock contention by multiple
CPUs with mismatched memory attributes. Since these fields are a part of the
lock implementation, they do not have access to any other locking primitive to
safeguard against the resulting coherency issues. As a result, simple software
cache maintenance is not enough to allocate them in coherent memory. Consider
the following example.
CPU0 updates its per-CPU field with data cache enabled. This write updates a
local cache line which contains a copy of the fields for other CPUs as well. Now
CPU1 updates its per-CPU field of the `bakery_lock_t` structure with data cache
disabled. CPU1 then issues a DCIVAC operation to invalidate any stale copies of
its field in any other cache line in the system. This operation will invalidate
the update made by CPU0 as well.
To use bakery locks when `USE_COHERENT_MEM` is disabled, the lock data structure
has been redesigned. The changes utilise the characteristic of Lamport's Bakery
2015-09-10 10:39:36 +00:00
algorithm mentioned earlier. The bakery_lock structure only allocates the memory
for a single CPU. The macro `DEFINE_BAKERY_LOCK` allocates all the bakery locks
needed for a CPU into a section `bakery_lock` . The linker allocates the memory
for other cores by using the total size allocated for the bakery_lock section
and multiplying it with (PLATFORM_CORE_COUNT - 1). This enables software to
2015-01-08 18:02:44 +00:00
perform software cache maintenance on the lock data structure without running
into coherency issues associated with mismatched attributes.
The bakery lock data structure `bakery_info_t` is defined for use when
`USE_COHERENT_MEM` is disabled as follows:
typedef struct bakery_info {
/*
* The lock_data is a bit-field of 2 members:
* Bit[0] : choosing. This field is set when the CPU is
* choosing its bakery number.
* Bits[1 - 15] : number. This is the bakery number allocated.
*/
volatile uint16_t lock_data;
} bakery_info_t;
The `bakery_info_t` represents a single per-CPU field of one lock and
the combination of corresponding `bakery_info_t` structures for all CPUs in the
2015-09-10 10:39:36 +00:00
system represents the complete bakery lock. The view in memory for a system
with n bakery locks are:
2015-01-08 18:02:44 +00:00
2015-09-10 10:39:36 +00:00
bakery_lock section start
2015-01-08 18:02:44 +00:00
|----------------|
| `bakery_info_t` | < -- Lock_0 per-CPU field
| Lock_0 | for CPU0
|----------------|
| `bakery_info_t` | < -- Lock_1 per-CPU field
| Lock_1 | for CPU0
|----------------|
| .... |
|----------------|
| `bakery_info_t` | < -- Lock_N per-CPU field
| Lock_N | for CPU0
------------------
2015-09-10 10:39:36 +00:00
| XXXXX |
| Padding to |
| next Cache WB | < --- Calculate PERCPU_BAKERY_LOCK_SIZE , allocate
| Granule | continuous memory for remaining CPUs.
2015-01-08 18:02:44 +00:00
------------------
| `bakery_info_t` | < -- Lock_0 per-CPU field
| Lock_0 | for CPU1
|----------------|
| `bakery_info_t` | < -- Lock_1 per-CPU field
| Lock_1 | for CPU1
|----------------|
| .... |
|----------------|
| `bakery_info_t` | < -- Lock_N per-CPU field
| Lock_N | for CPU1
------------------
2015-09-10 10:39:36 +00:00
| XXXXX |
| Padding to |
| next Cache WB |
| Granule |
------------------
2015-01-08 18:02:44 +00:00
2015-09-10 10:39:36 +00:00
Consider a system of 2 CPUs with 'N' bakery locks as shown above. For an
2015-01-08 18:02:44 +00:00
operation on Lock_N, the corresponding `bakery_info_t` in both CPU0 and CPU1
2015-09-10 10:39:36 +00:00
`bakery_lock` section need to be fetched and appropriate cache operations need
to be performed for each access.
On ARM Platforms, bakery locks are used in psci (`psci_locks`) and power controller
driver (`arm_lock`).
2015-01-08 18:02:44 +00:00
### Non Functional Impact of removing coherent memory
Removal of the coherent memory region leads to the additional software overhead
of performing cache maintenance for the affected data structures. However, since
the memory where the data structures are allocated is cacheable, the overhead is
mostly mitigated by an increase in performance.
There is however a performance impact for bakery locks, due to:
* Additional cache maintenance operations, and
* Multiple cache line reads for each lock operation, since the bakery locks
for each CPU are distributed across different cache lines.
The implementation has been optimized to mimimize this additional overhead.
Measurements indicate that when bakery locks are allocated in Normal memory, the
minimum latency of acquiring a lock is on an average 3-4 micro seconds whereas
in Device memory the same is 2 micro seconds. The measurements were done on the
Juno ARM development platform.
As mentioned earlier, almost a page of memory can be saved by disabling
`USE_COHERENT_MEM` . Each platform needs to consider these trade-offs to decide
whether coherent memory should be used. If a platform disables
2015-09-10 10:39:36 +00:00
`USE_COHERENT_MEM` and needs to use bakery locks in the porting layer, it can
optionally define macro `PLAT_PERCPU_BAKERY_LOCK_SIZE` (see the [Porting
Guide]). Refer to the reference platform code for examples.
2015-01-08 18:02:44 +00:00
2014-11-20 18:09:41 +00:00
12. Code Structure
2014-08-26 16:28:03 +00:00
-------------------
2014-02-25 13:28:04 +00:00
Trusted Firmware code is logically divided between the three boot loader
stages mentioned in the previous sections. The code is also divided into the
following categories (present as directories in the source code):
* **Platform specific.** Choice of architecture specific code depends upon
the platform.
* **Common code.** This is platform and architecture agnostic code.
* **Library code.** This code comprises of functionality commonly used by all
other code.
* **Stage specific.** Code specific to a boot stage.
* **Drivers.**
2014-02-25 19:09:48 +00:00
* **Services.** EL3 runtime services, e.g. PSCI or SPD. Specific SPD services
reside in the `services/spd` directory (e.g. `services/spd/tspd` ).
2014-02-25 13:28:04 +00:00
Each boot loader stage uses code from one or more of the above mentioned
categories. Based upon the above, the code layout looks like this:
2015-12-14 09:35:25 +00:00
Directory Used by BL1? Used by BL2? Used by BL31?
2014-02-25 13:28:04 +00:00
bl1 Yes No No
bl2 No Yes No
bl31 No No Yes
plat Yes Yes Yes
drivers Yes No Yes
common Yes Yes Yes
lib Yes Yes Yes
2014-02-25 19:09:48 +00:00
services No No Yes
2014-02-25 13:28:04 +00:00
2014-07-16 14:12:21 +00:00
The build system provides a non configurable build option IMAGE_BLx for each
boot loader stage (where x = BL stage). e.g. for BL1 , IMAGE_BL1 will be
defined by the build system. This enables the Trusted Firmware to compile
certain code only for specific boot loader stages
2014-02-25 13:28:04 +00:00
All assembler files have the `.S` extension. The linker source files for each
boot stage have the extension `.ld.S` . These are processed by GCC to create the
linker scripts which have the extension `.ld` .
FDTs provide a description of the hardware platform and are used by the Linux
kernel at boot time. These can be found in the `fdts` directory.
2014-11-20 18:09:41 +00:00
13. References
2014-08-26 16:28:03 +00:00
---------------
2014-02-25 13:28:04 +00:00
1. Trusted Board Boot Requirements CLIENT PDD (ARM DEN 0006B-5). Available
under NDA through your ARM account representative.
2. [Power State Coordination Interface PDD (ARM DEN 0022B.b)][PSCI].
3. [SMC Calling Convention PDD (ARM DEN 0028A)][SMCCC].
2014-06-02 21:27:36 +00:00
4. [ARM Trusted Firmware Interrupt Management Design guide][INTRG].
2014-02-25 13:28:04 +00:00
- - - - - - - - - - - - - - - - - - - - - - - - - -
2015-03-19 19:24:43 +00:00
_Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved._
2014-02-25 13:28:04 +00:00
2015-01-08 18:02:44 +00:00
[ARM ARM]: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.e/index.html "ARMv8-A Reference Manual (ARM DDI0487A.E)"
2015-02-02 17:31:42 +00:00
[PSCI]: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf "Power State Coordination Interface PDD (ARM DEN 0022C)"
2014-02-25 13:28:04 +00:00
[SMCCC]: http://infocenter.arm.com/help/topic/com.arm.doc.den0028a/index.html "SMC Calling Convention PDD (ARM DEN 0028A)"
[UUID]: https://tools.ietf.org/rfc/rfc4122.txt "A Universally Unique IDentifier (UUID) URN Namespace"
2014-06-02 21:27:36 +00:00
[User Guide]: ./user-guide.md
2014-08-26 16:28:03 +00:00
[Porting Guide]: ./porting-guide.md
2015-12-15 14:27:17 +00:00
[Reset Design]: ./reset-design.md
2014-06-02 21:27:36 +00:00
[INTRG]: ./interrupt-framework-design.md
2014-09-22 13:13:34 +00:00
[CPUBM]: ./cpu-specific-build-macros.md.md
2015-10-27 15:55:18 +00:00
[Firmware Update]: ./firmware-update.md