33 KiB
ARM Trusted Firmware User Guide
Contents :
-
Introduction
-
Host machine requirements
-
Tools
-
Building the Trusted Firmware
-
Obtaining the normal world software
-
Running the software
-
Introduction
This document describes how to build ARM Trusted Firmware and run it with a tested set of other software components using defined configurations on ARM Fixed Virtual Platform (FVP) models. It is possible to use other software components, configurations and platforms but that is outside the scope of this document.
This document should be used in conjunction with the Firmware Design.
- Host machine requirements
The minimum recommended machine specification for building the software and running the FVP models is a dual-core processor running at 2GHz with 12GB of RAM. For best performance, use a machine with a quad-core processor running at 2.6GHz with 16GB of RAM.
The software has been tested on Ubuntu 12.04.04 (64-bit). Packages used for building the software were installed from that distribution unless otherwise specified.
- Tools
The following tools are required to use the ARM Trusted Firmware:
-
git
package to obtain source code -
ia32-libs
package -
build-essential
anduuid-dev
packages for building UEFI and the Firmware Image Package(FIP) tool -
bc
andncurses-dev
packages for building Linux -
Baremetal GNU GCC tools. Verified packages can be downloaded from [Linaro] Linaro Toolchain. The rest of this document assumes that the
gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz
tools are used.wget http://releases.linaro.org/13.11/components/toolchain/binaries/gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz tar -xf gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz
-
The Device Tree Compiler (DTC) included with Linux kernel 3.15-rc6 is used to build the Flattened Device Tree (FDT) source files (
.dts
files) provided with this software. -
(Optional) For debugging, ARM Development Studio 5 (DS-5) v5.18.
- Building the Trusted Firmware
To build the software for the FVPs, follow these steps:
-
Clone the ARM Trusted Firmware repository from GitHub:
git clone https://github.com/ARM-software/arm-trusted-firmware.git
-
Change to the trusted firmware directory:
cd arm-trusted-firmware
-
Set the compiler path, specify a Non-trusted Firmware image (BL3-3) and build:
CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \ BL33=<path-to>/<bl33_image> \ make PLAT=fvp all fip
See the "Summary of build options" for information on available build options.
By default this produces a release version of the build. To produce a debug version instead, refer to the "Debugging options" section below. UEFI can be used as the BL3-3 image, refer to the "Obtaining the normal world software" section below. By default this won't compile the TSP in, refer to the "Building the Test Secure Payload" section below.
The build process creates products in a
build
directory tree, building the objects and binaries for each boot loader stage in separate sub-directories. The following boot loader binary files are created from the corresponding ELF files:build/<platform>/<build-type>/bl1.bin
build/<platform>/<build-type>/bl2.bin
build/<platform>/<build-type>/bl31.bin
... where
<platform>
currently defaults tofvp
and<build-type>
is eitherdebug
orrelease
. A Firmare Image Package(FIP) will be created as part of the build. It contains all boot loader images except forbl1.bin
.build/<platform>/<build-type>/fip.bin
For more information on FIPs, see the "Firmware Image Package" section in the Firmware Design.
-
Copy the
bl1.bin
andfip.bin
binary files to the directory from which the FVP will be launched. Symbolic links of the same names may be created instead. -
(Optional) Build products for a specific build variant can be removed using:
make DEBUG=<D> PLAT=fvp clean
... where
<D>
is0
or1
, as specified when building.The build tree can be removed completely using:
make realclean
Summary of build options
ARM Trusted Firmware build system supports the following build options. Unless mentioned otherwise, these options are expected to be specified at the build command line and are not to be modified in any component makefiles. Note that the build system doesn't track dependency for build options. Therefore, if any of the build options are changed from a previous build, a clean build must be performed.
-
BL33
: Path to BL33 image in the host file system. This is mandatory forfip
target -
CROSS_COMPILE
: Prefix to tool chain binaries. Please refer to examples in this document for usage -
DEBUG
: Chooses between a debug and release build. It can take either 0 (release) or 1 (debug) as values. 0 is the default -
NS_TIMER_SWITCH
: Enable save and restore for non-secure timer register contents upon world switch. It can take either 0 (don't save and restore) or 1 (do save and restore). 0 is the default. An SPD could set this to 1 if it wants the timer registers to be saved and restored -
PLAT
: Choose a platform to build ARM Trusted Firmware for. The chosen platform name must be the name of one of the directories under theplat/
directory other thancommon
-
SPD
: Choose a Secure Payload Dispatcher component to be built into the Trusted Firmware. The value should be the path to the directory containing SPD source; the directory is expected to containspd.mk
makefile -
V
: Verbose build. If assigned anything other than 0, the build commands are printed. Default is 0 -
FVP_GIC_ARCH
: Choice of ARM GIC architecture version used by the FVP port for implementing the platform GIC API. This API is used by the interrupt management framework. Default is 2 i.e. version 2.0 -
IMF_READ_INTERRUPT_ID
: Boolean flag used by the interrupt management framework to enable passing of the interrupt id to its handler. The id is read using a platform GIC API.INTR_ID_UNAVAILABLE
is passed instead if this option set to 0. Default is 0. -
RESET_TO_BL31
: Enable BL3-1 entrypoint as the CPU reset vector in place of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1 entrypoint) or 1 (CPU reset to BL3-1 entrypoint). The default value is 0.
Creating a Firmware Image Package
FIPs are automatically created as part of the build instructions described in the previous section. It is also possible to independently build the FIP creation tool and FIPs if required. To do this, follow these steps:
Build the tool:
make -C tools/fip_create
It is recommended to remove the build artifacts before rebuilding:
make -C tools/fip_create clean
Create a Firmware package that contains existing FVP BL2 and BL3-1 images:
# fip_create --help to print usage information
# fip_create <fip_name> <images to add> [--dump to show result]
./tools/fip_create/fip_create fip.bin --dump \
--bl2 build/fvp/debug/bl2.bin --bl31 build/fvp/debug/bl31.bin
Firmware Image Package ToC:
---------------------------
- Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
file: 'build/fvp/debug/bl2.bin'
- EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
file: 'build/fvp/debug/bl31.bin'
---------------------------
Creating "fip.bin"
View the contents of an existing Firmware package:
./tools/fip_create/fip_create fip.bin --dump
Firmware Image Package ToC:
---------------------------
- Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
- EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
---------------------------
Existing package entries can be individially updated:
# Change the BL2 from Debug to Release version
./tools/fip_create/fip_create fip.bin --dump \
--bl2 build/fvp/release/bl2.bin
Firmware Image Package ToC:
---------------------------
- Trusted Boot Firmware BL2: offset=0x88, size=0x7240
file: 'build/fvp/release/bl2.bin'
- EL3 Runtime Firmware BL3-1: offset=0x72C8, size=0xC218
---------------------------
Updating "fip.bin"
Debugging options
To compile a debug version and make the build more verbose use
CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
BL33=<path-to>/<bl33_image> \
make PLAT=fvp DEBUG=1 V=1 all fip
AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
-gdwarf-<version>
flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.
When debugging logic problems it might also be useful to disable all compiler
optimizations by using -O0
.
NOTE: Using -O0
could cause output images to be larger and base addresses
might need to be recalculated (see the later memory layout section).
Extra debug options can be passed to the build system by setting CFLAGS
:
CFLAGS='-O0 -gdwarf-2' \
CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
BL33=<path-to>/<bl33_image> \
make PLAT=fvp DEBUG=1 V=1 all fip
NOTE: The Foundation FVP does not provide a debugger interface.
Building the Test Secure Payload
The TSP is coupled with a companion runtime service in the BL3-1 firmware, called the TSPD. Therefore, if you intend to use the TSP, the BL3-1 image must be recompiled as well. For more information on SPs and SPDs, see the "Secure-EL1 Payloads and Dispatchers" section in the Firmware Design.
First clean the Trusted Firmware build directory to get rid of any previous BL3-1 binary. Then to build the TSP image and include it into the FIP use:
CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
BL33=<path-to>/<bl33_image> \
make PLAT=fvp SPD=tspd all fip
An additional boot loader binary file is created in the build
directory:
* `build/<platform>/<build-type>/bl32.bin`
The Firmware Package contains this new image:
Firmware Image Package ToC:
---------------------------
- Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
file: './build/fvp/release/bl2.bin'
- EL3 Runtime Firmware BL3-1: offset=0x60D8, size=0x9000
file: './build/fvp/release/bl31.bin'
- Secure Payload BL3-2 (Trusted OS): offset=0xF0D8, size=0x3000
file: './build/fvp/release/bl32.bin'
- Non-Trusted Firmware BL3-3: offset=0x120D8, size=0x280000
file: '../FVP_AARCH64_EFI.fd'
---------------------------
Creating "build/fvp/release/fip.bin"
On FVP, the TSP binary runs from Trusted SRAM by default. It is also possible
to run it from Trusted DRAM. This is controlled by the build configuration
TSP_RAM_LOCATION
:
CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
BL33=<path-to>/<bl33_image> \
make PLAT=fvp SPD=tspd TSP_RAM_LOCATION=tdram all fip
Checking source code style
When making changes to the source for submission to the project, the source must be in compliance with the Linux style guide, and to assist with this check the project Makefile contains two targets, which both utilise the checkpatch.pl script that ships with the Linux source tree.
To check the entire source tree, you must first download a copy of checkpatch.pl (or the full Linux source), set the CHECKPATCH environment variable to point to the script and build the target checkcodebase:
make CHECKPATCH=../linux/scripts/checkpatch.pl checkcodebase
To just check the style on the files that differ between your local branch and the remote master, use:
make CHECKPATCH=../linux/scripts/checkpatch.pl checkpatch
If you wish to check your patch against something other than the remote master, set the BASE_COMMIT variable to your desired branch. By default, BASE_COMMIT is set to 'origin/master'.
- Obtaining the normal world software
Obtaining EDK2
Potentially any kind of non-trusted firmware may be used with the ARM Trusted Firmware but the software has only been tested with the EFI Development Kit 2 (EDK2) open source implementation of the UEFI specification.
Clone the EDK2 source code from GitHub. This version supports the Base and Foundation FVPs:
git clone -n https://github.com/tianocore/edk2.git
cd edk2
git checkout 129ff94661bd3a6c759b1e154c143d0136bedc7d
To build the software to be compatible with Foundation and Base FVPs, follow these steps:
-
Copy build config templates to local workspace
# in edk2/ . edksetup.sh
-
Build the EDK2 host tools
make -C BaseTools clean make -C BaseTools
-
Build the EDK2 software
CROSS_COMPILE=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \ make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64 \ EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \ EDK2_TOOLCHAIN=ARMGCC EDK2_MACROS="-n 6 -D ARM_FOUNDATION_FVP=1"
The EDK2 binary for use with the ARM Trusted Firmware can then be found here:
Build/ArmVExpress-FVP-AArch64/DEBUG_ARMGCC/FV/FVP_AARCH64_EFI.fd
This will build EDK2 for the default settings as used by the FVPs. The EDK2 binary
FVP_AARCH64_EFI.fd
should be specified asBL33
in in themake
command line when building the Trusted Firmware. See the "Building the Trusted Firmware" section above. -
(Optional) To boot Linux using a VirtioBlock file-system, the command line passed from EDK2 to the Linux kernel must be modified as described in the "Obtaining a root file-system" section below.
-
(Optional) If legacy GICv2 locations are used, the EDK2 platform description must be updated. This is required as EDK2 does not support probing for the GIC location. To do this, first clean the EDK2 build directory.
make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64 \ EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \ EDK2_TOOLCHAIN=ARMGCC clean
Then rebuild EDK2 as described in step 3, using the following flag:
-D ARM_FVP_LEGACY_GICV2_LOCATION=1
Finally rebuild the Trusted Firmware to generate a new FIP using the instructions in the "Building the Trusted Firmware" section.
Obtaining a Linux kernel
The software has been verified using a Linux kernel based on version 3.15-rc6. Patches have been applied in order to enable the CPU idle feature.
Preparing a Linux kernel for use on the FVPs with CPU idle support can be done as follows (GICv2 support only):
-
Clone Linux:
git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Not all CPU idle features are included in the mainline kernel yet. To use these, add the patches from Sudeep Holla's kernel:
cd linux git remote add -f --tags arm64_idle_v3.15-rc6 git://linux-arm.org/linux-skn.git git checkout -b cpuidle arm64_idle_v3.15-rc6
-
Build with the Linaro GCC tools.
# in linux/ make mrproper make ARCH=arm64 defconfig # Enable CPU idle make ARCH=arm64 menuconfig # CPU Power Management ---> CPU Idle ---> [*] CPU idle PM support # CPU Power Management ---> CPU Idle ---> ARM64 CPU Idle Drivers ---> [*] Generic ARM64 CPU idle Driver CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \ make -j6 ARCH=arm64
-
Copy the Linux image
arch/arm64/boot/Image
to the working directory from where the FVP is launched. Alternatively a symbolic link may be used.
Obtaining the Flattened Device Trees
Depending on the FVP configuration and Linux configuration used, different
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
the Trusted Firmware source directory under fdts/
. The Foundation FVP has a
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
and MMC support, and has only one CPU cluster.
-
fvp-base-gicv2-psci.dtb
(Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map configuration.
-
fvp-base-gicv2legacy-psci.dtb
For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
-
fvp-base-gicv3-psci.dtb
For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map configuration and Linux GICv3 support.
-
fvp-foundation-gicv2-psci.dtb
(Default) For use with Foundation FVP with Base memory map configuration.
-
fvp-foundation-gicv2legacy-psci.dtb
For use with Foundation FVP with legacy VE GIC memory map configuration.
-
fvp-foundation-gicv3-psci.dtb
For use with Foundation FVP with Base memory map configuration and Linux GICv3 support.
Copy the chosen FDT blob as fdt.dtb
to the directory from which the FVP
is launched. Alternatively a symbolic link may be used.
Obtaining a root file-system
To prepare a Linaro LAMP based Open Embedded file-system, the following instructions can be used as a guide. The file-system can be provided to Linux via VirtioBlock or as a RAM-disk. Both methods are described below.
Prepare VirtioBlock
To prepare a VirtioBlock file-system, do the following:
-
Download and unpack the disk image.
NOTE: The unpacked disk image grows to 3 GiB in size.
wget http://releases.linaro.org/14.04/openembedded/aarch64/vexpress64-openembedded_lamp-armv8-gcc-4.8_20140417-630.img.gz gunzip vexpress64-openembedded_lamp-armv8-gcc-4.8_20140417-630.img.gz
-
Make sure the Linux kernel has Virtio support enabled using
make ARCH=arm64 menuconfig
.Device Drivers ---> Virtio drivers ---> <*> Platform bus driver for memory mapped virtio devices Device Drivers ---> [*] Block devices ---> <*> Virtio block driver File systems ---> <*> The Extended 4 (ext4) filesystem
If some of these configurations are missing, enable them, save the kernel configuration, then rebuild the kernel image using the instructions provided in the section "Obtaining a Linux kernel".
-
Change the Kernel command line to include
root=/dev/vda2
. This can either be done in the EDK2 boot menu or in the platform file. Editing the platform file and rebuilding EDK2 will make the change persist. To do this:-
In EDK2, edit the following file:
ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc
-
Add
root=/dev/vda2
to:gArmPlatformTokenSpaceGuid.PcdDefaultBootArgument|"<Other default options>"
-
Remove the entry:
gArmPlatformTokenSpaceGuid.PcdDefaultBootInitrdPath|""
-
Rebuild EDK2 (see "Obtaining UEFI" section above).
-
-
The file-system image file should be provided to the model environment by passing it the correct command line option. In the FVPs the following option should be provided in addition to the ones described in the "Running the software" section below.
NOTE: A symbolic link to this file cannot be used with the FVP; the path to the real file must be provided.
On the Base FVPs:
-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
On the Foundation FVP:
--block-device="<path-to>/<file-system-image>"
-
Ensure that the FVP doesn't output any error messages. If the following error message is displayed:
ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
then make sure the path to the file-system image in the model parameter is correct and that read permission is correctly set on the file-system image file.
Prepare RAM-disk
To prepare a RAM-disk root file-system, do the following:
-
Download the file-system image:
wget http://releases.linaro.org/14.04/openembedded/aarch64/linaro-image-lamp-genericarmv8-20140417-667.rootfs.tar.gz
-
Modify the Linaro image:
# Prepare for use as RAM-disk. Normally use MMC, NFS or VirtioBlock. # Be careful, otherwise you could damage your host file-system. mkdir tmp; cd tmp sudo sh -c "zcat ../linaro-image-lamp-genericarmv8-20140417-667.rootfs.tar.gz | cpio -id" sudo ln -s sbin/init . sudo sh -c "echo 'devtmpfs /dev devtmpfs mode=0755,nosuid 0 0' >> etc/fstab" sudo sh -c "find . | cpio --quiet -H newc -o | gzip -3 -n > ../filesystem.cpio.gz" cd ..
-
Copy the resultant
filesystem.cpio.gz
to the directory where the FVP is launched from. Alternatively a symbolic link may be used. -
Running the software
This version of the ARM Trusted Firmware has been tested on the following ARM FVPs (64-bit versions only).
Foundation_v8
(Version 2.0, Build 0.8.5206)FVP_Base_AEMv8A-AEMv8A
(Version 5.6, Build 0.8.5602)FVP_Base_Cortex-A57x4-A53x4
(Version 5.6, Build 0.8.5602)FVP_Base_Cortex-A57x1-A53x1
(Version 5.6, Build 0.8.5602)FVP_Base_Cortex-A57x2-A53x4
(Version 5.6, Build 0.8.5602)
NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an unhandled argument
error in this case.
Please refer to the FVP documentation for a detailed description of the model parameter options. A brief description of the important ones that affect the ARM Trusted Firmware and normal world software behavior is provided below.
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be downloaded for free from ARM's website.
Running on the Foundation FVP with reset to BL1 entrypoint
The following Foundation_v8
parameters should be used to boot Linux with
4 CPUs using the ARM Trusted Firmware.
NOTE: Using the --block-device
parameter is not necessary if a Linux RAM-disk
file-system is used (see the "Obtaining a File-system" section above).
NOTE: The --data="<path to FIP binary>"@0x8000000
parameter is used to load a
Firmware Image Package at the start of NOR FLASH0 (see the "Building the
Trusted Firmware" section above).
<path-to>/Foundation_v8 \
--cores=4 \
--no-secure-memory \
--visualization \
--gicv3 \
--data="<path-to>/<bl1-binary>"@0x0 \
--data="<path-to>/<FIP-binary>"@0x8000000 \
--block-device="<path-to>/<file-system-image>"
The default use-case for the Foundation FVP is to enable the GICv3 device in the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2 emulation mode.
The memory mapped addresses 0x0
and 0x8000000
correspond to the start of
trusted ROM and NOR FLASH0 respectively.
Notes regarding Base FVP configuration options
-
The
-C bp.flashloader0.fname
parameter is used to load a Firmware Image Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware" section above). -
Using
cache_state_modelled=1
makes booting very slow. The software will still work (and run much faster) without this option but this will hide any cache maintenance defects in the software. -
Using the
-C bp.virtioblockdevice.image_path
parameter is not necessary if a Linux RAM-disk file-system is used (see the "Obtaining a root file-system" section above). -
Setting the
-C bp.secure_memory
parameter to1
is only supported on Base FVP versions 5.4 and newer. Setting this parameter to0
is also supported. The-C bp.tzc_400.diagnostics=1
parameter is optional. It instructs the FVP to provide some helpful information if a secure memory violation occurs. -
The
--data="<path-to><bl31/bl32/bl33-binary>"@base address of binaries
parameter is used to load bootloader images in the Base FVP memory (see the "Building the Trusted Firmware" section above). The base address used to load the binaries with --data should match the image base addresses in platform_def.h used while linking the images. BL3-2 image is only needed if BL3-1 has been built to expect a secure-EL1 payload.
Running on the AEMv8 Base FVP with reset to BL1 entrypoint
Please read "Notes regarding Base FVP configuration options" section above for information about some of the options to run the software.
The following FVP_Base_AEMv8A-AEMv8A
parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C bp.pl011_uart0.untimed_fifos=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
Please read "Notes regarding Base FVP configuration options" section above for information about some of the options to run the software.
The following FVP_Base_Cortex-A57x4-A53x4
model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.
<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C bp.pl011_uart0.untimed_fifos=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
Running on the AEMv8 Base FVP with reset to BL3-1 entrypoint
Please read "Notes regarding Base FVP configuration options" section above for information about some of the options to run the software.
The following FVP_Base_AEMv8A-AEMv8A
parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
NOTE: Uses the -c clusterX.cpuX.RVBAR=@base address of BL3-1
where X is
the cluster number in clusterX and cpu number in cpuX is used to set the reset
vector for each core.
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C bp.pl011_uart0.untimed_fifos=1 \
-C cluster0.cpu0.RVBAR=0x04006000 \
-C cluster0.cpu1.RVBAR=0x04006000 \
-C cluster0.cpu2.RVBAR=0x04006000 \
-C cluster0.cpu3.RVBAR=0x04006000 \
-C cluster1.cpu0.RVBAR=0x04006000 \
-C cluster1.cpu1.RVBAR=0x04006000 \
-C cluster1.cpu2.RVBAR=0x04006000 \
-C cluster1.cpu3.RVBAR=0x04006000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04006000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04024000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
Running on the Cortex-A57-A53 Base FVP with reset to BL3-1 entrypoint
Please read "Notes regarding Base FVP configuration options" section above for information about some of the options to run the software.
The following FVP_Base_Cortex-A57x4-A53x4
model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.
NOTE: Uses the -c clusterX.cpuX.RVBARADDR=@base address of BL3-1
where X is
the cluster number in clusterX and cpu number in cpuX is used to set the reset
vector for each core.
<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C bp.pl011_uart0.untimed_fifos=1 \
-C cluster0.cpu0.RVBARADDR=0x04006000 \
-C cluster0.cpu1.RVBARADDR=0x04006000 \
-C cluster0.cpu2.RVBARADDR=0x04006000 \
-C cluster0.cpu3.RVBARADDR=0x04006000 \
-C cluster1.cpu0.RVBARADDR=0x04006000 \
-C cluster1.cpu1.RVBARADDR=0x04006000 \
-C cluster1.cpu2.RVBARADDR=0x04006000 \
-C cluster1.cpu3.RVBARADDR=0x04006000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04006000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04024000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
Configuring the GICv2 memory map
The Base FVP models support GICv2 with the default model parameters at the following addresses. The Foundation FVP also supports these addresses when configured for GICv3 in GICv2 emulation mode.
GICv2 Distributor Interface 0x2f000000
GICv2 CPU Interface 0x2c000000
GICv2 Virtual CPU Interface 0x2c010000
GICv2 Hypervisor Interface 0x2c02f000
The AEMv8 Base FVP can be configured to support GICv2 at addresses corresponding to the legacy (Versatile Express) memory map as follows. These are the default addresses when using the Foundation FVP in GICv2 mode.
GICv2 Distributor Interface 0x2c001000
GICv2 CPU Interface 0x2c002000
GICv2 Virtual CPU Interface 0x2c004000
GICv2 Hypervisor Interface 0x2c006000
The choice of memory map is reflected in the build variant field (bits[15:12])
in the SYS_ID
register (Offset 0x0
) in the Versatile Express System
registers memory map (0x1c010000
).
-
SYS_ID.Build[15:12]
0x1
corresponds to the presence of the Base GIC memory map. This is the default value on the Base FVPs. -
SYS_ID.Build[15:12]
0x0
corresponds to the presence of the Legacy VE GIC memory map. This is the default value on the Foundation FVP.
This register can be configured as described in the following sections.
NOTE: If the legacy VE GIC memory map is used, then the corresponding FDT and BL3-3 images should be used.
Configuring AEMv8 Foundation FVP GIC for legacy VE memory map
The following parameters configure the Foundation FVP to use GICv2 with the legacy VE memory map:
<path-to>/Foundation_v8 \
--cores=4 \
--no-secure-memory \
--visualization \
--no-gicv3 \
--data="<path-to>/<bl1-binary>"@0x0 \
--data="<path-to>/<FIP-binary>"@0x8000000 \
--block-device="<path-to>/<file-system-image>"
Explicit configuration of the SYS_ID
register is not required.
Configuring AEMv8 Base FVP GIC for legacy VE memory map
The following parameters configure the AEMv8 Base FVP to use GICv2 with the legacy VE memory map. They must added to the parameters described in the "Running on the AEMv8 Base FVP" section above:
-C cluster0.gic.GICD-offset=0x1000 \
-C cluster0.gic.GICC-offset=0x2000 \
-C cluster0.gic.GICH-offset=0x4000 \
-C cluster0.gic.GICH-other-CPU-offset=0x5000 \
-C cluster0.gic.GICV-offset=0x6000 \
-C cluster0.gic.PERIPH-size=0x8000 \
-C cluster1.gic.GICD-offset=0x1000 \
-C cluster1.gic.GICC-offset=0x2000 \
-C cluster1.gic.GICH-offset=0x4000 \
-C cluster1.gic.GICH-other-CPU-offset=0x5000 \
-C cluster1.gic.GICV-offset=0x6000 \
-C cluster1.gic.PERIPH-size=0x8000 \
-C gic_distributor.GICD-alias=0x2c001000 \
-C bp.variant=0x0
The bp.variant
parameter corresponds to the build variant field of the
SYS_ID
register. Setting this to 0x0
allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.