[astc] add support for workgroup in astc

This commit is contained in:
wildcard
2026-02-02 00:12:32 +01:00
committed by Caio Oliveira
parent 8ed0ed5828
commit 670764b535
2 changed files with 374 additions and 318 deletions

View File

@@ -36,6 +36,12 @@ struct EncodingData {
uint data;
};
struct PartitionTable {
uint s1, s2, s3, s4, s5, s6, s7, s8;
uint rnum;
bool small_block;
};
layout(binding = BINDING_INPUT_BUFFER, std430) readonly restrict buffer InputBufferU32 {
uvec4 astc_data[];
};
@@ -62,26 +68,40 @@ const uint encoding_values[22] = uint[](
(QUINT | (4u << 8u)), (TRIT | (5u << 8u)), (JUST_BITS | (7u << 8u)), (QUINT | (5u << 8u)),
(TRIT | (6u << 8u)), (JUST_BITS | (8u << 8u)));
// Input ASTC texture globals
int total_bitsread = 0;
uvec4 local_buff;
// Shared memory for workgroup processing
shared uvec4 local_buff;
shared int total_bitsread;
// Color data globals
uvec4 color_endpoint_data;
int color_bitsread = 0;
shared uvec4 color_endpoint_data;
shared int color_bitsread;
// Global "vector" to be pushed into when decoding
// At most will require BLOCK_WIDTH x BLOCK_HEIGHT in single plane mode
// At most will require BLOCK_WIDTH x BLOCK_HEIGHT x 2 in dual plane mode
// So the maximum would be 144 (12 x 12) elements, x 2 for two planes
#define DIVCEIL(number, divisor) (number + divisor - 1) / divisor
#define ARRAY_NUM_ELEMENTS 144
#define VECTOR_ARRAY_SIZE DIVCEIL(ARRAY_NUM_ELEMENTS * 2, 4)
uint result_vector[ARRAY_NUM_ELEMENTS * 2];
shared uint result_vector[ARRAY_NUM_ELEMENTS * 2];
int result_index = 0;
uint result_vector_max_index;
bool result_limit_reached = false;
shared int result_index;
shared uint result_vector_max_index;
shared bool result_limit_reached;
// avoid intermediate result_vector storage during color decode phase
shared bool write_color_values;
shared uint color_values_direct[32];
shared uint color_out_index;
shared uint color_num_values;
// Shared variables for DecompressBlock interthread communication
shared uvec4 endpoints0[4];
shared uvec4 endpoints1[4];
shared PartitionTable pt;
shared uvec2 size_params;
shared uint num_partitions;
shared uint partition_index;
shared uint plane_index;
shared bool dual_plane;
shared vec4 fill_color;
// EncodingData helpers
uint Encoding(EncodingData val) {
@@ -114,9 +134,110 @@ EncodingData CreateEncodingData(uint encoding, uint num_bits, uint bit_val, uint
return EncodingData(((encoding) << 0u) | ((num_bits) << 8u) |
((bit_val) << 16u) | ((quint_trit_val) << 24u));
}
uint ReplicateBitTo9(uint bit);
uint FastReplicateTo8(uint value, uint num_bits);
void EmitColorValue(EncodingData val) {
// write directly to color_values_direct[]
const uint encoding = Encoding(val);
const uint bitlen = NumBits(val);
const uint bitval = BitValue(val);
if (encoding == JUST_BITS) {
color_values_direct[++color_out_index] = FastReplicateTo8(bitval, bitlen);
return;
}
uint A = ReplicateBitTo9((bitval & 1));
uint B = 0, C = 0, D = QuintTritValue(val);
if (encoding == TRIT) {
switch (bitlen) {
case 1:
C = 204;
break;
case 2: {
C = 93;
const uint b = (bitval >> 1) & 1;
B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
break;
}
case 3: {
C = 44;
const uint cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 2) | cb;
break;
}
case 4: {
C = 22;
const uint dcb = (bitval >> 1) & 7;
B = (dcb << 6) | dcb;
break;
}
case 5: {
C = 11;
const uint edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 2);
break;
}
case 6: {
C = 5;
const uint fedcb = (bitval >> 1) & 0x1F;
B = (fedcb << 4) | (fedcb >> 4);
break;
}
}
} else { // QUINT
switch (bitlen) {
case 1:
C = 113;
break;
case 2: {
C = 54;
const uint b = (bitval >> 1) & 1;
B = (b << 8) | (b << 3) | (b << 2);
break;
}
case 3: {
C = 26;
const uint cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 1) | (cb >> 1);
break;
}
case 4: {
C = 13;
const uint dcb = (bitval >> 1) & 7;
B = (dcb << 6) | (dcb >> 1);
break;
}
case 5: {
C = 6;
const uint edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 3);
break;
}
}
}
uint T = (D * C) + B;
T ^= A;
T = (A & 0x80) | (T >> 2);
color_values_direct[++color_out_index] = T;
}
void ResultEmplaceBack(EncodingData val) {
if (write_color_values) {
if (color_out_index >= color_num_values) {
// avoid decoding more than needed by this phase
result_limit_reached = true;
return;
}
EmitColorValue(val);
return;
}
if (result_index >= result_vector_max_index) {
// Alert callers to avoid decoding more than needed by this phase
result_limit_reached = true;
@@ -197,32 +318,31 @@ uint Hash52(uint p) {
return p;
}
uint Select2DPartition(uint seed, uint x, uint y, uint partition_count) {
if ((block_dims.y * block_dims.x) < 32) {
x <<= 1;
y <<= 1;
}
PartitionTable GetPartitionTable(uint seed, uint partition_count) {
PartitionTable pt;
pt.small_block = (block_dims.y * block_dims.x) < 32;
seed += (partition_count - 1) * 1024;
uint rnum = Hash52(uint(seed));
pt.rnum = rnum;
const uint rnum = Hash52(uint(seed));
uint seed1 = uint(rnum & 0xF);
uint seed2 = uint((rnum >> 4) & 0xF);
uint seed3 = uint((rnum >> 8) & 0xF);
uint seed4 = uint((rnum >> 12) & 0xF);
uint seed5 = uint((rnum >> 16) & 0xF);
uint seed6 = uint((rnum >> 20) & 0xF);
uint seed7 = uint((rnum >> 24) & 0xF);
uint seed8 = uint((rnum >> 28) & 0xF);
seed1 = (seed1 * seed1);
seed2 = (seed2 * seed2);
seed3 = (seed3 * seed3);
seed4 = (seed4 * seed4);
seed5 = (seed5 * seed5);
seed6 = (seed6 * seed6);
seed7 = (seed7 * seed7);
seed8 = (seed8 * seed8);
uint seed1 = (rnum & 0xF);
seed1 *= seed1;
uint seed2 = (rnum >> 4) & 0xF;
seed2 *= seed2;
uint seed3 = (rnum >> 8) & 0xF;
seed3 *= seed3;
uint seed4 = (rnum >> 12) & 0xF;
seed4 *= seed4;
uint seed5 = (rnum >> 16) & 0xF;
seed5 *= seed5;
uint seed6 = (rnum >> 20) & 0xF;
seed6 *= seed6;
uint seed7 = (rnum >> 24) & 0xF;
seed7 *= seed7;
uint seed8 = (rnum >> 28) & 0xF;
seed8 *= seed8;
uint sh1, sh2;
if ((seed & 1) > 0) {
@@ -232,31 +352,37 @@ uint Select2DPartition(uint seed, uint x, uint y, uint partition_count) {
sh1 = (partition_count == 3) ? 6 : 5;
sh2 = (seed & 2) > 0 ? 4 : 5;
}
seed1 >>= sh1;
seed2 >>= sh2;
seed3 >>= sh1;
seed4 >>= sh2;
seed5 >>= sh1;
seed6 >>= sh2;
seed7 >>= sh1;
seed8 >>= sh2;
uint a = seed1 * x + seed2 * y + (rnum >> 14);
uint b = seed3 * x + seed4 * y + (rnum >> 10);
uint c = seed5 * x + seed6 * y + (rnum >> 6);
uint d = seed7 * x + seed8 * y + (rnum >> 2);
pt.s1 = seed1 >> sh1;
pt.s2 = seed2 >> sh2;
pt.s3 = seed3 >> sh1;
pt.s4 = seed4 >> sh2;
pt.s5 = seed5 >> sh1;
pt.s6 = seed6 >> sh2;
pt.s7 = seed7 >> sh1;
pt.s8 = seed8 >> sh2;
return pt;
}
uint SelectPartition(PartitionTable pt, uint x, uint y, uint partition_count) {
if (pt.small_block) {
x <<= 1;
y <<= 1;
}
uint a = pt.s1 * x + pt.s2 * y + (pt.rnum >> 14);
uint b = pt.s3 * x + pt.s4 * y + (pt.rnum >> 10);
uint c = pt.s5 * x + pt.s6 * y + (pt.rnum >> 6);
uint d = pt.s7 * x + pt.s8 * y + (pt.rnum >> 2);
a &= 0x3F;
b &= 0x3F;
c &= 0x3F;
d &= 0x3F;
if (partition_count < 4) {
d = 0;
}
if (partition_count < 3) {
c = 0;
}
if (partition_count < 4) d = 0;
if (partition_count < 3) c = 0;
if (a >= b && a >= c && a >= d) {
return 0;
@@ -457,7 +583,7 @@ void DecodeIntegerSequence(uint max_range, uint num_values) {
}
}
void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits, out uint color_values[32]) {
void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
uint num_values = 0;
for (uint i = 0; i < num_partitions; i++) {
num_values += ((modes[i] >> 2) + 1) << 1;
@@ -471,104 +597,21 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits, o
break;
}
}
DecodeIntegerSequence(range - 1, num_values);
uint out_index = 0;
for (int itr = 0; itr < result_index; ++itr) {
if (out_index >= num_values) {
break;
}
const EncodingData val = GetEncodingFromVector(itr);
const uint encoding = Encoding(val);
const uint bitlen = NumBits(val);
const uint bitval = BitValue(val);
uint A = 0, B = 0, C = 0, D = 0;
A = ReplicateBitTo9((bitval & 1));
switch (encoding) {
case JUST_BITS:
color_values[++out_index] = FastReplicateTo8(bitval, bitlen);
break;
case TRIT: {
D = QuintTritValue(val);
switch (bitlen) {
case 1:
C = 204;
break;
case 2: {
C = 93;
const uint b = (bitval >> 1) & 1;
B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
break;
}
case 3: {
C = 44;
const uint cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 2) | cb;
break;
}
case 4: {
C = 22;
const uint dcb = (bitval >> 1) & 7;
B = (dcb << 6) | dcb;
break;
}
case 5: {
C = 11;
const uint edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 2);
break;
}
case 6: {
C = 5;
const uint fedcb = (bitval >> 1) & 0x1F;
B = (fedcb << 4) | (fedcb >> 4);
break;
}
}
break;
}
case QUINT: {
D = QuintTritValue(val);
switch (bitlen) {
case 1:
C = 113;
break;
case 2: {
C = 54;
const uint b = (bitval >> 1) & 1;
B = (b << 8) | (b << 3) | (b << 2);
break;
}
case 3: {
C = 26;
const uint cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 1) | (cb >> 1);
break;
}
case 4: {
C = 13;
const uint dcb = (bitval >> 1) & 7;
B = (dcb << 6) | (dcb >> 1);
break;
}
case 5: {
C = 6;
const uint edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 3);
break;
}
}
break;
}
}
if (encoding != JUST_BITS) {
uint T = (D * C) + B;
T ^= A;
T = (A & 0x80) | (T >> 2);
color_values[++out_index] = T;
}
// Decode directly into color_values_direct[]
write_color_values = true;
color_out_index = 0;
color_num_values = num_values;
for (uint i = 0; i < 32; ++i) {
color_values_direct[i] = 0;
}
DecodeIntegerSequence(range - 1, num_values);
write_color_values = false;
}
ivec2 BitTransferSigned(int a, int b) {
ivec2 transferred;
transferred.y = b >> 1;
@@ -730,7 +773,7 @@ uint UnquantizeTexelWeight(EncodingData val) {
uint encoding = Encoding(val), bitlen = NumBits(val), bitval = BitValue(val);
if (encoding == JUST_BITS) {
return (bitlen >= 1 && bitlen <= 5)
? uint(floor(0.5f + float(bitval) * 64.0f / float((1 << bitlen) - 1)))
? ((bitval * 64) + ((1 << bitlen) - 1) / 2) / ((1 << bitlen) - 1)
: FastReplicateTo6(bitval, bitlen);
} else if (encoding == TRIT || encoding == QUINT) {
uint B = 0, C = 0, D = 0;
@@ -864,27 +907,32 @@ int FindLayout(uint mode) {
void FillError(ivec3 coord) {
for (uint j = 0; j < block_dims.y; j++) {
for (uint i = 0; i < block_dims.x; i++) {
imageStore(dest_image, coord + ivec3(i, j, 0), vec4(0.0, 0.0, 0.0, 0.0));
}
const uint total_texels = block_dims.x * block_dims.y;
for (uint tid = gl_LocalInvocationIndex; tid < total_texels; tid += gl_WorkGroupSize.x * gl_WorkGroupSize.y) {
uint x = tid % block_dims.x;
uint y = tid / block_dims.x;
imageStore(dest_image, coord + ivec3(x, y, 0), vec4(0.0, 0.0, 0.0, 0.0));
}
}
void FillVoidExtentLDR(ivec3 coord) {
SkipBits(52);
const uint r_u = StreamBits(16);
const uint g_u = StreamBits(16);
const uint b_u = StreamBits(16);
const uint a_u = StreamBits(16);
const float a = float(a_u) / 65535.0f;
const float r = float(r_u) / 65535.0f;
const float g = float(g_u) / 65535.0f;
const float b = float(b_u) / 65535.0f;
for (uint j = 0; j < block_dims.y; j++) {
for (uint i = 0; i < block_dims.x; i++) {
imageStore(dest_image, coord + ivec3(i, j, 0), vec4(r, g, b, a));
}
// Thread 0 decodes color
if (gl_LocalInvocationIndex == 0) {
SkipBits(52);
const uint r_u = StreamBits(16);
const uint g_u = StreamBits(16);
const uint b_u = StreamBits(16);
const uint a_u = StreamBits(16);
fill_color = vec4(float(r_u) / 65535.0f, float(g_u) / 65535.0f, float(b_u) / 65535.0f, float(a_u) / 65535.0f);
}
barrier();
const uint total_texels = block_dims.x * block_dims.y;
for (uint tid = gl_LocalInvocationIndex; tid < total_texels; tid += gl_WorkGroupSize.x * gl_WorkGroupSize.y) {
uint x = tid % block_dims.x;
uint y = tid / block_dims.x;
imageStore(dest_image, coord + ivec3(x, y, 0), fill_color);
}
}
@@ -966,160 +1014,156 @@ uint DecodeMaxWeight(uint mode) {
}
void DecompressBlock(ivec3 coord) {
uint mode = StreamBits(11);
if (IsError(mode)) {
if (gl_LocalInvocationIndex == 0) {
uint mode = StreamBits(11);
bool early_exit = false;
if (IsError(mode)) {
size_params = uvec2(0);
early_exit = true;
} else if ((mode & 0x1ff) == 0x1fc) {
size_params = uvec2(0xFFFFFFFF);
early_exit = true;
} else {
size_params = DecodeBlockSize(mode);
if ((size_params.x > block_dims.x) || (size_params.y > block_dims.y)) {
size_params = uvec2(0);
early_exit = true;
}
}
if (!early_exit) {
num_partitions = StreamBits(2) + 1;
uint mode_layout = FindLayout(mode);
dual_plane = (mode_layout != 9) && ((mode & 0x400) != 0);
if (num_partitions > 4 || (num_partitions == 4 && dual_plane)) {
size_params = uvec2(0);
early_exit = true;
}
}
if (!early_exit) {
uint partition_index_local = 1;
uvec4 color_endpoint_mode = uvec4(0);
uint ced_pointer = 0;
uint base_cem = 0;
if (num_partitions == 1) {
color_endpoint_mode.x = StreamBits(4);
partition_index_local = 0;
} else {
partition_index_local = StreamBits(10);
base_cem = StreamBits(6);
}
partition_index = partition_index_local; // Store to shared
const uint base_mode = base_cem & 3;
const uint max_weight = DecodeMaxWeight(mode);
const uint weight_bits = GetPackedBitSize(size_params, dual_plane, max_weight);
uint remaining_bits = 128 - weight_bits - total_bitsread;
uint extra_cem_bits = 0;
if (base_mode > 0) {
switch (num_partitions) {
case 2: extra_cem_bits += 2; break;
case 3: extra_cem_bits += 5; break;
case 4: extra_cem_bits += 8; break;
}
}
remaining_bits -= extra_cem_bits;
const uint plane_selector_bits = dual_plane ? 2 : 0;
remaining_bits -= plane_selector_bits;
if (remaining_bits > 128) {
size_params = uvec2(0); // Error
} else {
const uint color_data_bits = remaining_bits;
while (remaining_bits > 0) {
const int nb = int(min(remaining_bits, 32U));
const uint b = StreamBits(nb);
color_endpoint_data[ced_pointer] = uint(bitfieldExtract(b, 0, nb));
++ced_pointer;
remaining_bits -= nb;
}
plane_index = uint(StreamBits(plane_selector_bits));
if (base_mode > 0) {
const uint extra_cem = StreamBits(extra_cem_bits);
uint cem = (extra_cem << 6) | base_cem;
cem >>= 2;
uvec4 C = uvec4(0);
for (uint i = 0; i < num_partitions; i++) {
C[i] = (cem & 1); cem >>= 1;
}
uvec4 M = uvec4(0);
for (uint i = 0; i < num_partitions; i++) {
M[i] = cem & 3; cem >>= 2;
}
for (uint i = 0; i < num_partitions; i++) {
color_endpoint_mode[i] = base_mode;
if (C[i] == 0) --color_endpoint_mode[i];
color_endpoint_mode[i] <<= 2;
color_endpoint_mode[i] |= M[i];
}
} else if (num_partitions > 1) {
const uint cem = base_cem >> 2;
for (uint i = 0; i < num_partitions; i++) {
color_endpoint_mode[i] = cem;
}
}
result_limit_reached = false;
uint colvals_index = 0;
DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits);
for (uint i = 0; i < num_partitions; i++) {
ComputeEndpoints(endpoints0[i], endpoints1[i], color_endpoint_mode[i], color_values_direct, colvals_index);
}
color_endpoint_data = local_buff;
color_endpoint_data = bitfieldReverse(color_endpoint_data).wzyx;
const uint clear_byte_start = (weight_bits >> 3) + 1;
const uint byte_insert = ExtractBits(color_endpoint_data, int(clear_byte_start - 1) * 8, 8) & uint(((1 << (weight_bits % 8)) - 1));
const uint vec_index = (clear_byte_start - 1) >> 2;
color_endpoint_data[vec_index] = bitfieldInsert(color_endpoint_data[vec_index], byte_insert, int((clear_byte_start - 1) % 4) * 8, 8);
for (uint i = clear_byte_start; i < 16; ++i) {
const uint idx = i >> 2;
color_endpoint_data[idx] = bitfieldInsert(color_endpoint_data[idx], 0, int(i % 4) * 8, 8);
}
result_index = 0;
color_bitsread = 0;
result_limit_reached = false;
result_vector_max_index = size_params.x * size_params.y;
if (dual_plane) result_vector_max_index *= 2;
DecodeIntegerSequence(max_weight, GetNumWeightValues(size_params, dual_plane));
UnquantizeTexelWeights(size_params, dual_plane);
if (num_partitions > 1) {
pt = GetPartitionTable(partition_index, num_partitions);
}
}
}
}
barrier();
if (size_params.x == 0) {
FillError(coord);
return;
}
if ((mode & 0x1ff) == 0x1fc) {
// params.void_extent_ldr = true;
if (size_params.x == 0xFFFFFFFF) {
FillVoidExtentLDR(coord);
return;
}
const uvec2 size_params = DecodeBlockSize(mode);
if ((size_params.x > block_dims.x) || (size_params.y > block_dims.y)) {
FillError(coord);
return;
}
const uint num_partitions = StreamBits(2) + 1;
const uint mode_layout = FindLayout(mode);
const bool dual_plane = (mode_layout != 9) && ((mode & 0x400) != 0);
if (num_partitions > 4 || (num_partitions == 4 && dual_plane)) {
FillError(coord);
return;
}
uint partition_index = 1;
uvec4 color_endpoint_mode = uvec4(0);
uint ced_pointer = 0;
uint base_cem = 0;
if (num_partitions == 1) {
color_endpoint_mode.x = StreamBits(4);
partition_index = 0;
} else {
partition_index = StreamBits(10);
base_cem = StreamBits(6);
}
const uint base_mode = base_cem & 3;
const uint max_weight = DecodeMaxWeight(mode);
const uint weight_bits = GetPackedBitSize(size_params, dual_plane, max_weight);
uint remaining_bits = 128 - weight_bits - total_bitsread;
uint extra_cem_bits = 0;
if (base_mode > 0) {
switch (num_partitions) {
case 2:
extra_cem_bits += 2;
break;
case 3:
extra_cem_bits += 5;
break;
case 4:
extra_cem_bits += 8;
break;
default:
return;
}
}
remaining_bits -= extra_cem_bits;
const uint plane_selector_bits = dual_plane ? 2 : 0;
remaining_bits -= plane_selector_bits;
if (remaining_bits > 128) {
// Bad data, more remaining bits than 4 bytes
// return early
return;
}
// Read color data...
const uint color_data_bits = remaining_bits;
while (remaining_bits > 0) {
const int nb = int(min(remaining_bits, 32U));
const uint b = StreamBits(nb);
color_endpoint_data[ced_pointer] = uint(bitfieldExtract(b, 0, nb));
++ced_pointer;
remaining_bits -= nb;
}
const uint plane_index = uint(StreamBits(plane_selector_bits));
if (base_mode > 0) {
const uint extra_cem = StreamBits(extra_cem_bits);
uint cem = (extra_cem << 6) | base_cem;
cem >>= 2;
uvec4 C = uvec4(0);
for (uint i = 0; i < num_partitions; i++) {
C[i] = (cem & 1);
cem >>= 1;
}
uvec4 M = uvec4(0);
for (uint i = 0; i < num_partitions; i++) {
M[i] = cem & 3;
cem >>= 2;
}
for (uint i = 0; i < num_partitions; i++) {
color_endpoint_mode[i] = base_mode;
if (C[i] == 0) {
--color_endpoint_mode[i];
}
color_endpoint_mode[i] <<= 2;
color_endpoint_mode[i] |= M[i];
}
} else if (num_partitions > 1) {
const uint cem = base_cem >> 2;
for (uint i = 0; i < num_partitions; i++) {
color_endpoint_mode[i] = cem;
}
}
uvec4 endpoints0[4];
uvec4 endpoints1[4];
{
// This decode phase should at most push 32 elements into the vector
result_vector_max_index = 32;
uint color_values[32];
uint colvals_index = 0;
DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits, color_values);
for (uint i = 0; i < num_partitions; i++) {
ComputeEndpoints(endpoints0[i], endpoints1[i], color_endpoint_mode[i], color_values,
colvals_index);
}
}
color_endpoint_data = local_buff;
color_endpoint_data = bitfieldReverse(color_endpoint_data).wzyx;
const uint clear_byte_start = (weight_bits >> 3) + 1;
const uint byte_insert = ExtractBits(color_endpoint_data, int(clear_byte_start - 1) * 8, 8) &
uint(((1 << (weight_bits % 8)) - 1));
const uint vec_index = (clear_byte_start - 1) >> 2;
color_endpoint_data[vec_index] = bitfieldInsert(color_endpoint_data[vec_index], byte_insert,
int((clear_byte_start - 1) % 4) * 8, 8);
for (uint i = clear_byte_start; i < 16; ++i) {
const uint idx = i >> 2;
color_endpoint_data[idx] = bitfieldInsert(color_endpoint_data[idx], 0, int(i % 4) * 8, 8);
}
// Re-init vector variables for next decode phase
result_index = 0;
color_bitsread = 0;
result_limit_reached = false;
// The limit for the Unquantize phase, avoids decoding more data than needed.
result_vector_max_index = size_params.x * size_params.y;
if (dual_plane) {
result_vector_max_index *= 2;
}
DecodeIntegerSequence(max_weight, GetNumWeightValues(size_params, dual_plane));
UnquantizeTexelWeights(size_params, dual_plane);
for (uint j = 0; j < block_dims.y; j++) {
for (uint i = 0; i < block_dims.x; i++) {
uint local_partition = 0;
if (num_partitions > 1) {
local_partition = Select2DPartition(partition_index, i, j, num_partitions);
}
const uvec4 C0 = ReplicateByteTo16(endpoints0[local_partition]);
const uvec4 C1 = ReplicateByteTo16(endpoints1[local_partition]);
const uvec4 weight_vec = GetUnquantizedWeightVector(j, i, size_params, plane_index, dual_plane);
const vec4 Cf =
vec4((C0 * (uvec4(64) - weight_vec) + C1 * weight_vec + uvec4(32)) / 64);
const vec4 p = (Cf / 65535.0f);
imageStore(dest_image, coord + ivec3(i, j, 0), p.gbar);
const uint total_texels = block_dims.x * block_dims.y;
for (uint tid = gl_LocalInvocationIndex; tid < total_texels; tid += gl_WorkGroupSize.x * gl_WorkGroupSize.y) {
uint x = tid % block_dims.x;
uint y = tid / block_dims.x;
uint local_partition = 0;
if (num_partitions > 1) {
local_partition = SelectPartition(pt, x, y, num_partitions);
}
const uvec4 C0 = ReplicateByteTo16(endpoints0[local_partition]);
const uvec4 C1 = ReplicateByteTo16(endpoints1[local_partition]);
const uvec4 weight_vec = GetUnquantizedWeightVector(y, x, size_params, plane_index, dual_plane);
const vec4 Cf = vec4((C0 * (uvec4(64) - weight_vec) + C1 * weight_vec + uvec4(32)) / 64);
const vec4 p = (Cf / 65535.0f);
imageStore(dest_image, coord + ivec3(x, y, 0), p.gbar);
}
}
@@ -1132,7 +1176,8 @@ uint SwizzleOffset(uvec2 pos) {
}
void main() {
uvec3 pos = gl_GlobalInvocationID;
uvec3 block_id = gl_WorkGroupID;
uvec3 pos = block_id;
pos.x <<= BYTES_PER_BLOCK_LOG2;
const uint swizzle = SwizzleOffset(pos.xy);
const uint block_y = pos.y >> GOB_SIZE_Y_SHIFT;
@@ -1144,10 +1189,21 @@ void main() {
offset += (pos.x >> GOB_SIZE_X_SHIFT) << x_shift;
offset += swizzle;
const ivec3 coord = ivec3(gl_GlobalInvocationID * uvec3(block_dims, 1));
if (gl_LocalInvocationIndex == 0) {
total_bitsread = 0;
result_index = 0;
color_bitsread = 0;
write_color_values = false;
result_limit_reached = false;
color_out_index = 0;
color_num_values = 0;
local_buff = astc_data[offset / 16];
}
barrier();
ivec3 coord = ivec3(block_id * uvec3(block_dims, 1));
if (any(greaterThanEqual(coord, imageSize(dest_image)))) {
return;
}
local_buff = astc_data[offset / 16];
DecompressBlock(coord);
}

View File

@@ -586,8 +586,8 @@ void ASTCDecoderPass::Assemble(Image& image, const StagingBufferRef& map,
});
for (const VideoCommon::SwizzleParameters& swizzle : swizzles) {
const size_t input_offset = swizzle.buffer_offset + map.offset;
const u32 num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 8U);
const u32 num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 8U);
const u32 num_dispatches_x = swizzle.num_tiles.width;
const u32 num_dispatches_y = swizzle.num_tiles.height;
const u32 num_dispatches_z = image.info.resources.layers;
compute_pass_descriptor_queue.Acquire();