ppsspp/GPU/GLES/VertexDecoder.cpp

708 lines
19 KiB
C++
Raw Normal View History

2012-11-01 15:19:01 +00:00
// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
2012-11-01 15:19:01 +00:00
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "math/lin/matrix4x4.h"
#include "../../Core/MemMap.h"
#include "../ge_constants.h"
#include "VertexDecoder.h"
2012-12-19 20:29:02 +00:00
void PrintDecodedVertex(VertexReader &vtx) {
if (vtx.hasNormal())
{
float nrm[3];
vtx.ReadNrm(nrm);
printf("N: %f %f %f\n", nrm[0], nrm[1], nrm[2]);
}
if (vtx.hasUV()) {
float uv[2];
vtx.ReadUV(uv);
printf("TC: %f %f\n", uv[0], uv[1]);
}
if (vtx.hasColor0()) {
float col0[4];
vtx.ReadColor0(col0);
printf("C0: %f %f %f %f\n", col0[0], col0[1], col0[2], col0[3]);
}
if (vtx.hasColor0()) {
float col1[3];
vtx.ReadColor1(col1);
printf("C1: %f %f %f\n", col1[0], col1[1], col1[2]);
}
// Etc..
float pos[3];
vtx.ReadPos(pos);
printf("P: %f %f %f\n", pos[0], pos[1], pos[2]);
}
2012-11-01 15:19:01 +00:00
const int tcsize[4] = {0,2,4,8}, tcalign[4] = {0,1,2,4};
const int colsize[8] = {0,0,0,0,2,2,2,4}, colalign[8] = {0,0,0,0,2,2,2,4};
const int nrmsize[4] = {0,3,6,12}, nrmalign[4] = {0,1,2,4};
const int possize[4] = {0,3,6,12}, posalign[4] = {0,1,2,4};
const int wtsize[4] = {0,1,2,4}, wtalign[4] = {0,1,2,4};
inline int align(int n, int align) {
return (n + (align - 1)) & ~(align - 1);
2012-11-01 15:19:01 +00:00
}
int DecFmtSize(u8 fmt) {
switch (fmt) {
case DEC_NONE: return 0;
case DEC_FLOAT_1: return 4;
case DEC_FLOAT_2: return 8;
case DEC_FLOAT_3: return 12;
case DEC_FLOAT_4: return 16;
case DEC_S8_3: return 4;
case DEC_S16_3: return 8;
case DEC_U8_4: return 4;
default:
return 0;
}
}
#if 0
// This is what the software transform spits out, and thus w
DecVtxFormat GetTransformedVtxFormat(const DecVtxFormat &fmt) {
DecVtxFormat tfm = {0};
int size = 0;
int offset = 0;
// Weights disappear during transform.
if (fmt.uvfmt) {
// UV always becomes float2.
tfm.uvfmt = DEC_FLOAT_2;
tfm.uvoff = offset;
offset += DecFmtSize(tfm.uvfmt);
}
// We always (?) get two colors out, they're floats (although we'd probably be fine with less precision).
tfm.c0fmt = DEC_FLOAT_4;
tfm.c0off = offset;
offset += DecFmtSize(tfm.c0fmt);
tfm.c1fmt = DEC_FLOAT_3; // color1 (specular) doesn't have alpha.
tfm.c1off = offset;
offset += DecFmtSize(tfm.c1fmt);
// We never get a normal, it's gone.
// But we do get a position, and it's always float3.
tfm.posfmt = DEC_FLOAT_3;
tfm.posoff = offset;
offset += DecFmtSize(tfm.posfmt);
// Update stride.
tfm.stride = offset;
return tfm;
}
#endif
void VertexDecoder::Step_WeightsU8() const
{
2012-12-20 17:31:21 +00:00
float *wt = (float *)(decoded_ + decFmt.w0off);
const u8 *wdata = (const u8*)(ptr_);
for (int j = 0; j < nweights; j++)
wt[j] = (float)wdata[j] / 128.0f;
}
void VertexDecoder::Step_WeightsU16() const
{
2012-12-20 17:31:21 +00:00
float *wt = (float *)(decoded_ + decFmt.w0off);
const u16 *wdata = (const u16*)(ptr_);
for (int j = 0; j < nweights; j++)
wt[j] = (float)wdata[j] / 32768.0f;
}
void VertexDecoder::Step_WeightsFloat() const
{
2012-12-20 17:31:21 +00:00
float *wt = (float *)(decoded_ + decFmt.w0off);
const float *wdata = (const float*)(ptr_);
for (int j = 0; j < nweights; j++)
wt[j] = wdata[j];
}
void VertexDecoder::Step_TcU8() const
{
2012-12-20 17:31:21 +00:00
float *uv = (float *)(decoded_ + decFmt.uvoff);
const u8 *uvdata = (const u8*)(ptr_ + tcoff);
for (int j = 0; j < 2; j++)
uv[j] = (float)uvdata[j] / 128.0f;
}
void VertexDecoder::Step_TcU16() const
{
2012-12-20 17:31:21 +00:00
float *uv = (float *)(decoded_ + decFmt.uvoff);
const u16 *uvdata = (const u16*)(ptr_ + tcoff);
uv[0] = (float)uvdata[0] / 32768.0f;
uv[1] = (float)uvdata[1] / 32768.0f;
}
void VertexDecoder::Step_TcU16Through() const
{
2012-12-20 17:31:21 +00:00
float *uv = (float *)(decoded_ + decFmt.uvoff);
const u16 *uvdata = (const u16*)(ptr_ + tcoff);
uv[0] = (float)uvdata[0] / (float)(gstate_c.curTextureWidth);
uv[1] = (float)uvdata[1] / (float)(gstate_c.curTextureHeight);
}
void VertexDecoder::Step_TcFloat() const
{
2012-12-20 17:31:21 +00:00
float *uv = (float *)(decoded_ + decFmt.uvoff);
const float *uvdata = (const float*)(ptr_ + tcoff);
uv[0] = uvdata[0];
uv[1] = uvdata[1];
}
void VertexDecoder::Step_TcFloatThrough() const
{
2012-12-20 17:31:21 +00:00
float *uv = (float *)(decoded_ + decFmt.uvoff);
const float *uvdata = (const float*)(ptr_ + tcoff);
uv[0] = uvdata[0] / (float)(gstate_c.curTextureWidth);
uv[1] = uvdata[1] / (float)(gstate_c.curTextureHeight);
}
void VertexDecoder::Step_Color565() const
{
u8 *c = decoded_ + decFmt.c0off;
u16 cdata = *(u16*)(ptr_ + coloff);
c[0] = Convert5To8(cdata & 0x1f);
c[1] = Convert6To8((cdata>>5) & 0x3f);
c[2] = Convert5To8((cdata>>11) & 0x1f);
c[3] = 1.0f;
}
void VertexDecoder::Step_Color5551() const
{
u8 *c = decoded_ + decFmt.c0off;
u16 cdata = *(u16*)(ptr_ + coloff);
c[0] = Convert5To8(cdata & 0x1f);
c[1] = Convert5To8((cdata>>5) & 0x1f);
c[2] = Convert5To8((cdata>>10) & 0x1f);
c[3] = (cdata>>15) ? 255 : 0;
}
void VertexDecoder::Step_Color4444() const
{
u8 *c = decoded_ + decFmt.c0off;
u16 cdata = *(u16*)(ptr_ + coloff);
for (int j = 0; j < 4; j++)
c[j] = Convert4To8((cdata >> (j * 4)) & 0xF);
}
void VertexDecoder::Step_Color8888() const
{
u8 *c = decoded_ + decFmt.c0off;
// TODO: speedup
const u8 *cdata = (const u8*)(ptr_ + coloff);
for (int j = 0; j < 4; j++)
c[j] = cdata[j];
}
void VertexDecoder::Step_Color565Morph() const
{
float col[3] = {0};
for (int n = 0; n < morphcount; n++)
{
float w = gstate_c.morphWeights[n];
u16 cdata = *(u16*)(ptr_ + onesize_*n + coloff);
col[0] += w * (cdata & 0x1f) / 31.f;
col[1] += w * ((cdata>>5) & 0x3f) / 63.f;
col[2] += w * ((cdata>>11) & 0x1f) / 31.f;
}
u8 *c = decoded_ + decFmt.c0off;
for (int i = 0; i < 3; i++) {
c[i] = (u8)(col[i] * 255.0f);
}
c[3] = 255;
}
void VertexDecoder::Step_Color5551Morph() const
{
float col[4] = {0};
for (int n = 0; n < morphcount; n++)
{
float w = gstate_c.morphWeights[n];
u16 cdata = *(u16*)(ptr_ + onesize_*n + coloff);
col[0] += w * (cdata & 0x1f) / 31.f;
col[1] += w * ((cdata>>5) & 0x1f) / 31.f;
col[2] += w * ((cdata>>10) & 0x1f) / 31.f;
col[3] += w * ((cdata>>15) ? 1.0f : 0.0f);
}
u8 *c = decoded_ + decFmt.c0off;
for (int i = 0; i < 4; i++) {
c[i] = (u8)(col[i] * 255.0f);
}
}
void VertexDecoder::Step_Color4444Morph() const
{
float col[4] = {0};
for (int n = 0; n < morphcount; n++)
{
float w = gstate_c.morphWeights[n];
u16 cdata = *(u16*)(ptr_ + onesize_*n + coloff);
for (int j = 0; j < 4; j++)
col[j] += w * ((cdata >> (j * 4)) & 0xF) / 15.f;
}
u8 *c = decoded_ + decFmt.c0off;
for (int i = 0; i < 4; i++) {
c[i] = (u8)(col[i] * 255.0f);
}
}
void VertexDecoder::Step_Color8888Morph() const
{
float col[4] = {0};
for (int n = 0; n < morphcount; n++)
{
float w = gstate_c.morphWeights[n];
const u8 *cdata = (const u8*)(ptr_ + onesize_*n + coloff);
for (int j = 0; j < 4; j++)
col[j] += w * cdata[j];
}
u8 *c = decoded_ + decFmt.c0off;
for (int i = 0; i < 4; i++) {
c[i] = (u8)(col[i]);
}
}
void VertexDecoder::Step_NormalS8() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
float multiplier = 1.0f;
if (gstate.reversenormals & 0xFFFFFF)
multiplier = -multiplier;
const s8 *sv = (const s8*)(ptr_ + nrmoff);
for (int j = 0; j < 3; j++)
normal[j] = (sv[j] / 127.0f) * multiplier;
}
void VertexDecoder::Step_NormalS16() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
float multiplier = 1.0f;
if (gstate.reversenormals & 0xFFFFFF)
multiplier = -multiplier;
const short *sv = (const short*)(ptr_ + nrmoff);
for (int j = 0; j < 3; j++)
normal[j] = (sv[j] / 32767.0f) * multiplier;
}
void VertexDecoder::Step_NormalFloat() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
float multiplier = 1.0f;
if (gstate.reversenormals & 0xFFFFFF)
multiplier = -multiplier;
const float *fv = (const float*)(ptr_ + nrmoff);
for (int j = 0; j < 3; j++)
normal[j] = fv[j] * multiplier;
}
void VertexDecoder::Step_NormalS8Morph() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
memset(normal, 0, sizeof(float)*3);
for (int n = 0; n < morphcount; n++)
{
float multiplier = gstate_c.morphWeights[n];
if (gstate.reversenormals & 0xFFFFFF) {
multiplier = -multiplier;
}
const s8 *sv = (const s8*)(ptr_ + onesize_*n + nrmoff);
for (int j = 0; j < 3; j++)
normal[j] += (sv[j]/32767.0f) * multiplier;
}
}
void VertexDecoder::Step_NormalS16Morph() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
memset(normal, 0, sizeof(float)*3);
for (int n = 0; n < morphcount; n++)
{
float multiplier = gstate_c.morphWeights[n];
if (gstate.reversenormals & 0xFFFFFF) {
multiplier = -multiplier;
}
const float *fv = (const float*)(ptr_ + onesize_*n + nrmoff);
for (int j = 0; j < 3; j++)
normal[j] += fv[j] * multiplier;
}
}
void VertexDecoder::Step_NormalFloatMorph() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
memset(normal, 0, sizeof(float)*3);
for (int n = 0; n < morphcount; n++)
{
float multiplier = gstate_c.morphWeights[n];
if (gstate.reversenormals & 0xFFFFFF) {
multiplier = -multiplier;
}
const float *fv = (const float*)(ptr_ + onesize_*n + nrmoff);
for (int j = 0; j < 3; j++)
normal[j] += fv[j] * multiplier;
}
}
void VertexDecoder::Step_PosS8() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
float multiplier = 1.0f / 127.0f;
const s8 *sv = (const s8*)(ptr_ + posoff);
for (int j = 0; j < 3; j++)
v[j] = sv[j] * multiplier;
}
void VertexDecoder::Step_PosS16() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
float multiplier = 1.0f / 32767.0f;
const short *sv = (const short*)(ptr_ + posoff);
for (int j = 0; j < 3; j++)
v[j] = sv[j] * multiplier;
}
void VertexDecoder::Step_PosFloat() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
const float *fv = (const float*)(ptr_ + posoff);
for (int j = 0; j < 3; j++)
v[j] = fv[j];
}
void VertexDecoder::Step_PosS8Through() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
const s8 *sv = (const s8*)(ptr_ + posoff);
for (int j = 0; j < 3; j++)
v[j] = sv[j];
}
void VertexDecoder::Step_PosS16Through() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
const short *sv = (const short*)(ptr_ + posoff);
for (int j = 0; j < 3; j++)
v[j] = sv[j];
}
void VertexDecoder::Step_PosFloatThrough() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
const float *fv = (const float*)(ptr_ + posoff);
for (int j = 0; j < 3; j++)
v[j] = fv[j];
}
void VertexDecoder::Step_PosS8Morph() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
memset(v, 0, sizeof(float) * 3);
for (int n = 0; n < morphcount; n++) {
const s8 *sv = (const s8*)(ptr_ + onesize_*n + posoff);
for (int j = 0; j < 3; j++)
v[j] += (sv[j] / 127.f) * gstate_c.morphWeights[n];
}
}
void VertexDecoder::Step_PosS16Morph() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
memset(v, 0, sizeof(float) * 3);
for (int n = 0; n < morphcount; n++) {
float multiplier = 1.0f / 32767.0f;
const short *sv = (const short*)(ptr_ + onesize_*n + posoff);
for (int j = 0; j < 3; j++)
v[j] += (sv[j] * multiplier) * gstate_c.morphWeights[n];
}
}
void VertexDecoder::Step_PosFloatMorph() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
memset(v, 0, sizeof(float) * 3);
for (int n = 0; n < morphcount; n++) {
const float *fv = (const float*)(ptr_ + onesize_*n + posoff);
for (int j = 0; j < 3; j++)
v[j] += fv[j] * gstate_c.morphWeights[n];
}
}
const StepFunction wtstep[4] = {
0,
&VertexDecoder::Step_WeightsU8,
&VertexDecoder::Step_WeightsU16,
&VertexDecoder::Step_WeightsFloat,
};
const StepFunction tcstep[4] = {
0,
&VertexDecoder::Step_TcU8,
&VertexDecoder::Step_TcU16,
&VertexDecoder::Step_TcFloat,
};
const StepFunction tcstep_through[4] = {
0,
&VertexDecoder::Step_TcU8,
&VertexDecoder::Step_TcU16Through,
&VertexDecoder::Step_TcFloatThrough,
};
// TODO: Tc Morph
const StepFunction colstep[8] = {
0, 0, 0, 0,
&VertexDecoder::Step_Color565,
&VertexDecoder::Step_Color5551,
&VertexDecoder::Step_Color4444,
&VertexDecoder::Step_Color8888,
};
const StepFunction colstep_morph[8] = {
0, 0, 0, 0,
&VertexDecoder::Step_Color565Morph,
&VertexDecoder::Step_Color5551Morph,
&VertexDecoder::Step_Color4444Morph,
&VertexDecoder::Step_Color8888Morph,
};
const StepFunction nrmstep[4] = {
0,
&VertexDecoder::Step_NormalS8,
&VertexDecoder::Step_NormalS16,
&VertexDecoder::Step_NormalFloat,
};
const StepFunction nrmstep_morph[4] = {
0,
&VertexDecoder::Step_NormalS8Morph,
&VertexDecoder::Step_NormalS16Morph,
&VertexDecoder::Step_NormalFloatMorph,
};
const StepFunction posstep[4] = {
0,
&VertexDecoder::Step_PosS8,
&VertexDecoder::Step_PosS16,
&VertexDecoder::Step_PosFloat,
};
const StepFunction posstep_morph[4] = {
0,
&VertexDecoder::Step_PosS8Morph,
&VertexDecoder::Step_PosS16Morph,
&VertexDecoder::Step_PosFloatMorph,
};
const StepFunction posstep_through[4] = {
0,
&VertexDecoder::Step_PosS8Through,
&VertexDecoder::Step_PosS16Through,
&VertexDecoder::Step_PosFloatThrough,
};
void VertexDecoder::SetVertexType(u32 fmt) {
fmt_ = fmt;
2012-11-01 15:19:01 +00:00
throughmode = (fmt & GE_VTYPE_THROUGH) != 0;
numSteps_ = 0;
2012-11-01 15:19:01 +00:00
int biggest = 0;
size = 0;
tc = fmt & 0x3;
col = (fmt >> 2) & 0x7;
nrm = (fmt >> 5) & 0x3;
pos = (fmt >> 7) & 0x3;
2012-11-01 15:19:01 +00:00
weighttype = (fmt >> 9) & 0x3;
idx = (fmt >> 11) & 0x3;
2012-11-01 15:19:01 +00:00
morphcount = ((fmt >> 18) & 0x7)+1;
nweights = ((fmt >> 14) & 0x7)+1;
int decOff = 0;
memset(&decFmt, 0, sizeof(decFmt));
2012-11-01 15:19:01 +00:00
DEBUG_LOG(G3D,"VTYPE: THRU=%i TC=%i COL=%i POS=%i NRM=%i WT=%i NW=%i IDX=%i MC=%i", (int)throughmode, tc,col,pos,nrm,weighttype,nweights,idx,morphcount);
if (weighttype) { // && nweights?
2012-11-01 15:19:01 +00:00
//size = align(size, wtalign[weighttype]); unnecessary
size += wtsize[weighttype] * nweights;
if (wtalign[weighttype] > biggest)
biggest = wtalign[weighttype];
steps_[numSteps_++] = wtstep[weighttype];
if (nweights < 5) {
decFmt.w0off = decOff;
decFmt.w0fmt = DEC_FLOAT_1 + nweights - 1;
} else {
decFmt.w0off = decOff;
decFmt.w0fmt = DEC_FLOAT_4;
decFmt.w1off = decOff + 4 * 4;
decFmt.w1fmt = DEC_FLOAT_1 + nweights - 5;
}
decOff += nweights * 4;
2012-11-01 15:19:01 +00:00
}
if (tc) {
2012-11-01 15:19:01 +00:00
size = align(size, tcalign[tc]);
tcoff = size;
size += tcsize[tc];
if (tcalign[tc] > biggest)
biggest = tcalign[tc];
steps_[numSteps_++] = throughmode ? tcstep_through[tc] : tcstep[tc];
// All UV decode to DEC_FLOAT2 currently.
decFmt.uvfmt = DEC_FLOAT_2;
decFmt.uvoff = decOff;
decOff += DecFmtSize(decFmt.uvfmt);
2012-11-01 15:19:01 +00:00
}
if (col) {
size = align(size, colalign[col]);
2012-11-01 15:19:01 +00:00
coloff = size;
size += colsize[col];
if (colalign[col] > biggest)
biggest = colalign[col];
steps_[numSteps_++] = morphcount == 1 ? colstep[col] : colstep_morph[col];
// All color formats decode to DEC_U8_4 currently.
// They can become floats later during transform though.
decFmt.c0fmt = DEC_U8_4;
decFmt.c0off = decOff;
decOff += DecFmtSize(decFmt.c0fmt);
} else {
2012-11-01 15:19:01 +00:00
coloff = 0;
}
if (nrm) {
size = align(size, nrmalign[nrm]);
2012-11-01 15:19:01 +00:00
nrmoff = size;
size += nrmsize[nrm];
if (nrmalign[nrm] > biggest)
biggest = nrmalign[nrm];
steps_[numSteps_++] = morphcount == 1 ? nrmstep[nrm] : nrmstep_morph[nrm];
// The normal formats match the gl formats perfectly, let's use 'em.
switch (nrm) {
case GE_VTYPE_NRM_8BIT >> GE_VTYPE_NRM_SHIFT: decFmt.nrmfmt = DEC_S8_3; break;
case GE_VTYPE_NRM_16BIT >> GE_VTYPE_NRM_SHIFT: decFmt.nrmfmt = DEC_S16_3; break;
case GE_VTYPE_NRM_FLOAT >> GE_VTYPE_NRM_SHIFT: decFmt.nrmfmt = DEC_FLOAT_3; break;
}
// Actually, temporarily let's not.
decFmt.nrmfmt = DEC_FLOAT_3;
decFmt.nrmoff = decOff;
decOff += DecFmtSize(decFmt.nrmfmt);
2012-11-01 15:19:01 +00:00
}
//if (pos) - there's always a position
2012-11-01 15:19:01 +00:00
{
size = align(size, posalign[pos]);
2012-11-01 15:19:01 +00:00
posoff = size;
size += possize[pos];
if (posalign[pos] > biggest)
biggest = posalign[pos];
if (throughmode) {
steps_[numSteps_++] = posstep_through[pos];
decFmt.posfmt = DEC_FLOAT_3;
} else {
steps_[numSteps_++] = morphcount == 1 ? posstep[pos] : posstep_morph[pos];
// The non-through-mode position formats match the gl formats perfectly, let's use 'em.
switch (pos) {
case GE_VTYPE_POS_8BIT >> GE_VTYPE_POS_SHIFT: decFmt.posfmt = DEC_S8_3; break;
case GE_VTYPE_POS_16BIT >> GE_VTYPE_POS_SHIFT: decFmt.posfmt = DEC_S16_3; break;
case GE_VTYPE_POS_FLOAT >> GE_VTYPE_POS_SHIFT: decFmt.posfmt = DEC_FLOAT_3; break;
}
// Actually, temporarily let's not.
decFmt.posfmt = DEC_FLOAT_3;
}
decFmt.posoff = decOff;
decOff += DecFmtSize(decFmt.posfmt);
2012-11-01 15:19:01 +00:00
}
decFmt.stride = decOff;
2012-11-01 15:19:01 +00:00
size = align(size, biggest);
onesize_ = size;
2012-11-01 15:19:01 +00:00
size *= morphcount;
DEBUG_LOG(G3D,"SVT : size = %i, aligned to biggest %i", size, biggest);
}
void VertexDecoder::DecodeVerts(u8 *decodedptr, const void *verts, const void *inds, int prim, int count, int *indexLowerBound, int *indexUpperBound) const {
// Find index bounds. Could cache this in display lists.
// Also, this could be greatly sped up with SSE2, although rarely a bottleneck.
int lowerBound = 0x7FFFFFFF;
int upperBound = 0;
if (idx == (GE_VTYPE_IDX_8BIT >> GE_VTYPE_IDX_SHIFT)) {
const u8 *ind8 = (const u8 *)inds;
for (int i = 0; i < count; i++) {
if (ind8[i] < lowerBound)
lowerBound = ind8[i];
if (ind8[i] > upperBound)
upperBound = ind8[i];
2012-11-01 15:19:01 +00:00
}
} else if (idx == (GE_VTYPE_IDX_16BIT >> GE_VTYPE_IDX_SHIFT)) {
const u16 *ind16 = (const u16*)inds;
for (int i = 0; i < count; i++) {
if (ind16[i] < lowerBound)
lowerBound = ind16[i];
if (ind16[i] > upperBound)
upperBound = ind16[i];
2012-11-01 15:19:01 +00:00
}
} else {
lowerBound = 0;
upperBound = count - 1;
}
*indexLowerBound = lowerBound;
*indexUpperBound = upperBound;
2012-11-01 15:19:01 +00:00
// Decode the vertices within the found bounds, once each
decoded_ = decodedptr; // + lowerBound * decFmt.stride;
ptr_ = (const u8*)verts + lowerBound * size;
for (int index = lowerBound; index <= upperBound; index++) {
for (int i = 0; i < numSteps_; i++) {
((*this).*steps_[i])();
2012-11-01 15:19:01 +00:00
}
ptr_ += size;
decoded_ += decFmt.stride;
2012-11-01 15:19:01 +00:00
}
}
// TODO: Does not support morphs, skinning etc.
u32 VertexDecoder::InjectUVs(u8 *decoded, const void *verts, float *customuv, int count) const {
u32 customVertType = (gstate.vertType & ~GE_VTYPE_TC_MASK) | GE_VTYPE_TC_FLOAT;
VertexDecoder decOut;
decOut.SetVertexType(customVertType);
const u8 *inp = (const u8 *)verts;
u8 *out = decoded;
for (int i = 0; i < count; i++) {
if (pos) memcpy(out + decOut.posoff, inp + posoff, possize[pos]);
if (nrm) memcpy(out + decOut.nrmoff, inp + nrmoff, nrmsize[pos]);
if (col) memcpy(out + decOut.coloff, inp + coloff, colsize[pos]);
// Ignore others for now, this is all we need for puzbob.
// Inject!
memcpy(out + decOut.tcoff, &customuv[i * 2], tcsize[decOut.tc]);
inp += this->onesize_;
out += decOut.onesize_;
}
return customVertType;
}