ppsspp/Core/MIPS/MIPSVFPUUtils.cpp

1061 lines
25 KiB
C++
Raw Normal View History

2012-11-01 15:19:01 +00:00
// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
2012-11-01 15:19:01 +00:00
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cstdint>
#include <limits>
#include <cstdio>
#include <cstring>
#include "Common/BitScan.h"
2014-12-06 11:19:23 +00:00
#include "Common/CommonFuncs.h"
#include "Core/Reporting.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSVFPUUtils.h"
2012-11-01 15:19:01 +00:00
#define V(i) (currentMIPS->v[voffset[i]])
#define VI(i) (currentMIPS->vi[voffset[i]])
2012-11-01 15:19:01 +00:00
union float2int {
uint32_t i;
float f;
};
void GetVectorRegs(u8 regs[4], VectorSize N, int vectorReg) {
int mtx = (vectorReg >> 2) & 7;
int col = vectorReg & 3;
int row = 0;
int length = 0;
int transpose = (vectorReg>>5) & 1;
2013-02-15 22:09:02 +00:00
switch (N) {
case V_Single: transpose = 0; row=(vectorReg>>5)&3; length = 1; break;
case V_Pair: row=(vectorReg>>5)&2; length = 2; break;
case V_Triple: row=(vectorReg>>6)&1; length = 3; break;
case V_Quad: row=(vectorReg>>5)&2; length = 4; break;
default: _assert_msg_(false, "%s: Bad vector size", __FUNCTION__);
}
2013-02-15 22:09:02 +00:00
for (int i = 0; i < length; i++) {
int index = mtx * 4;
if (transpose)
index += ((row+i)&3) + col*32;
else
index += col + ((row+i)&3)*32;
regs[i] = index;
}
}
void GetMatrixRegs(u8 regs[16], MatrixSize N, int matrixReg) {
int mtx = (matrixReg >> 2) & 7;
int col = matrixReg & 3;
int row = 0;
int side = 0;
int transpose = (matrixReg >> 5) & 1;
2013-02-15 22:09:02 +00:00
switch (N) {
case M_1x1: transpose = 0; row = (matrixReg >> 5) & 3; side = 1; break;
case M_2x2: row = (matrixReg >> 5) & 2; side = 2; break;
case M_3x3: row = (matrixReg >> 6) & 1; side = 3; break;
case M_4x4: row = (matrixReg >> 5) & 2; side = 4; break;
default: _assert_msg_(false, "%s: Bad matrix size", __FUNCTION__);
}
2013-02-15 22:09:02 +00:00
for (int i = 0; i < side; i++) {
for (int j = 0; j < side; j++) {
int index = mtx * 4;
if (transpose)
index += ((row+i)&3) + ((col+j)&3)*32;
else
index += ((col+j)&3) + ((row+i)&3)*32;
regs[j*4 + i] = index;
}
}
}
int GetMatrixName(int matrix, MatrixSize msize, int column, int row, bool transposed) {
// TODO: Fix (?)
int name = (matrix * 4) | (transposed << 5);
switch (msize) {
case M_4x4:
if (row || column) {
ERROR_LOG(JIT, "GetMatrixName: Invalid row %i or column %i for size %i", row, column, msize);
}
break;
case M_3x3:
if (row & ~2) {
ERROR_LOG(JIT, "GetMatrixName: Invalid row %i for size %i", row, msize);
}
if (column & ~2) {
ERROR_LOG(JIT, "GetMatrixName: Invalid col %i for size %i", column, msize);
}
name |= (row << 6) | column;
break;
case M_2x2:
if (row & ~2) {
ERROR_LOG(JIT, "GetMatrixName: Invalid row %i for size %i", row, msize);
}
if (column & ~2) {
ERROR_LOG(JIT, "GetMatrixName: Invalid col %i for size %i", column, msize);
}
name |= (row << 5) | column;
break;
2014-12-06 11:19:23 +00:00
default: _assert_msg_(false, "%s: Bad matrix size", __FUNCTION__);
}
return name;
}
int GetColumnName(int matrix, MatrixSize msize, int column, int offset) {
return matrix * 4 + column + offset * 32;
}
int GetRowName(int matrix, MatrixSize msize, int column, int offset) {
return 0x20 | (matrix * 4 + column + offset * 32);
}
void GetMatrixColumns(int matrixReg, MatrixSize msize, u8 vecs[4]) {
int n = GetMatrixSide(msize);
int col = matrixReg & 3;
int row = (matrixReg >> 5) & 2;
int transpose = (matrixReg >> 5) & 1;
for (int i = 0; i < n; i++) {
vecs[i] = (transpose << 5) | (row << 5) | (matrixReg & 0x1C) | (i + col);
}
}
void GetMatrixRows(int matrixReg, MatrixSize msize, u8 vecs[4]) {
int n = GetMatrixSide(msize);
int col = matrixReg & 3;
int row = (matrixReg >> 5) & 2;
int swappedCol = row ? (msize == M_3x3 ? 1 : 2) : 0;
int swappedRow = col ? 2 : 0;
int transpose = ((matrixReg >> 5) & 1) ^ 1;
for (int i = 0; i < n; i++) {
vecs[i] = (transpose << 5) | (swappedRow << 5) | (matrixReg & 0x1C) | (i + swappedCol);
}
}
2013-02-15 22:09:02 +00:00
void ReadVector(float *rd, VectorSize size, int reg) {
int row = 0;
int length = 0;
switch (size) {
case V_Single: rd[0] = V(reg); return; // transpose = 0; row=(reg>>5)&3; length = 1; break;
case V_Pair: row=(reg>>5)&2; length = 2; break;
case V_Triple: row=(reg>>6)&1; length = 3; break;
case V_Quad: row=(reg>>5)&2; length = 4; break;
default: _assert_msg_(false, "%s: Bad vector size", __FUNCTION__);
}
int transpose = (reg>>5) & 1;
const int mtx = (reg >> 2) & 7;
const int col = reg & 3;
2012-11-01 15:19:01 +00:00
if (transpose) {
const int base = mtx * 4 + col * 32;
for (int i = 0; i < length; i++)
2016-12-01 17:23:58 +00:00
rd[i] = V(base + ((row+i)&3));
} else {
const int base = mtx * 4 + col;
for (int i = 0; i < length; i++)
2016-12-01 17:23:58 +00:00
rd[i] = V(base + ((row+i)&3)*32);
}
2012-11-01 15:19:01 +00:00
}
2013-02-15 22:09:02 +00:00
void WriteVector(const float *rd, VectorSize size, int reg) {
if (size == V_Single) {
// Optimize the common case.
if (!currentMIPS->VfpuWriteMask(0)) {
V(reg) = rd[0];
}
return;
}
const int mtx = (reg>>2)&7;
const int col = reg & 3;
int transpose = (reg>>5)&1;
int row = 0;
int length = 0;
switch (size) {
case V_Single: _dbg_assert_(false); return; // transpose = 0; row=(reg>>5)&3; length = 1; break;
case V_Pair: row=(reg>>5)&2; length = 2; break;
case V_Triple: row=(reg>>6)&1; length = 3; break;
case V_Quad: row=(reg>>5)&2; length = 4; break;
default: _assert_msg_(false, "%s: Bad vector size", __FUNCTION__);
}
2012-11-01 15:19:01 +00:00
if (currentMIPS->VfpuWriteMask() == 0) {
if (transpose) {
const int base = mtx * 4 + col * 32;
for (int i = 0; i < length; i++)
2016-12-01 17:23:58 +00:00
V(base + ((row+i)&3)) = rd[i];
} else {
const int base = mtx * 4 + col;
for (int i = 0; i < length; i++)
2016-12-01 17:23:58 +00:00
V(base + ((row+i)&3)*32) = rd[i];
}
} else {
2013-02-15 22:09:02 +00:00
for (int i = 0; i < length; i++) {
if (!currentMIPS->VfpuWriteMask(i)) {
int index = mtx * 4;
if (transpose)
index += ((row+i)&3) + col*32;
else
index += col + ((row+i)&3)*32;
2016-12-01 17:23:58 +00:00
V(index) = rd[i];
}
}
}
2012-11-01 15:19:01 +00:00
}
2019-02-24 13:28:36 +00:00
u32 VFPURewritePrefix(int ctrl, u32 remove, u32 add) {
u32 prefix = currentMIPS->vfpuCtrl[ctrl];
return (prefix & ~remove) | add;
}
2013-02-15 22:09:02 +00:00
void ReadMatrix(float *rd, MatrixSize size, int reg) {
2012-11-01 15:19:01 +00:00
int mtx = (reg >> 2) & 7;
int col = reg & 3;
int row = 0;
int side = 0;
int transpose = (reg >> 5) & 1;
2012-11-01 15:19:01 +00:00
2013-02-15 22:09:02 +00:00
switch (size) {
case M_1x1: transpose = 0; row = (reg >> 5) & 3; side = 1; break;
case M_2x2: row = (reg >> 5) & 2; side = 2; break;
case M_3x3: row = (reg >> 6) & 1; side = 3; break;
case M_4x4: row = (reg >> 5) & 2; side = 4; break;
default: _assert_msg_(false, "%s: Bad matrix size", __FUNCTION__);
2012-11-01 15:19:01 +00:00
}
// The voffset ordering is now integrated in these formulas,
// eliminating a table lookup.
const float *v = currentMIPS->v + (size_t)mtx * 16;
if (transpose) {
if (side == 4 && col == 0 && row == 0) {
2019-08-06 14:39:28 +00:00
// Fast path: Simple 4x4 transpose. TODO: Optimize.
for (int j = 0; j < 4; j++) {
for (int i = 0; i < 4; i++) {
rd[j * 4 + i] = v[i * 4 + j];
}
}
} else {
for (int j = 0; j < side; j++) {
for (int i = 0; i < side; i++) {
int index = ((row + i) & 3) * 4 + ((col + j) & 3);
rd[j * 4 + i] = v[index];
}
}
}
} else {
if (side == 4 && col == 0 && row == 0) {
2019-08-06 14:39:28 +00:00
// Fast path
memcpy(rd, v, sizeof(float) * 16); // rd[j * 4 + i] = v[j * 4 + i];
} else {
for (int j = 0; j < side; j++) {
for (int i = 0; i < side; i++) {
int index = ((col + j) & 3) * 4 + ((row + i) & 3);
rd[j * 4 + i] = v[index];
}
}
2012-11-01 15:19:01 +00:00
}
}
}
2013-02-15 22:09:02 +00:00
void WriteMatrix(const float *rd, MatrixSize size, int reg) {
2012-11-01 15:19:01 +00:00
int mtx = (reg>>2)&7;
int col = reg&3;
int row = 0;
int side = 0;
int transpose = (reg >> 5) & 1;
2012-11-01 15:19:01 +00:00
2013-02-15 22:09:02 +00:00
switch (size) {
case M_1x1: transpose = 0; row = (reg >> 5) & 3; side = 1; break;
case M_2x2: row = (reg >> 5) & 2; side = 2; break;
case M_3x3: row = (reg >> 6) & 1; side = 3; break;
case M_4x4: row = (reg >> 5) & 2; side = 4; break;
default: _assert_msg_(false, "%s: Bad matrix size", __FUNCTION__);
2012-11-01 15:19:01 +00:00
}
if (currentMIPS->VfpuWriteMask() != 0) {
ERROR_LOG_REPORT(CPU, "Write mask used with vfpu matrix instruction.");
}
2012-11-01 15:19:01 +00:00
// The voffset ordering is now integrated in these formulas,
// eliminating a table lookup.
float *v = currentMIPS->v + (size_t)mtx * 16;
if (transpose) {
if (side == 4 && row == 0 && col == 0 && currentMIPS->VfpuWriteMask() == 0x0) {
2019-08-06 14:39:28 +00:00
// Fast path: Simple 4x4 transpose. TODO: Optimize.
for (int j = 0; j < side; j++) {
for (int i = 0; i < side; i++) {
2019-08-06 14:39:28 +00:00
v[i * 4 + j] = rd[j * 4 + i];
}
}
} else {
for (int j = 0; j < side; j++) {
for (int i = 0; i < side; i++) {
if (j != side - 1 || !currentMIPS->VfpuWriteMask(i)) {
int index = ((row + i) & 3) * 4 + ((col + j) & 3);
v[index] = rd[j * 4 + i];
}
}
}
}
} else {
if (side == 4 && row == 0 && col == 0 && currentMIPS->VfpuWriteMask() == 0x0) {
2019-08-06 14:39:28 +00:00
memcpy(v, rd, sizeof(float) * 16); // v[j * 4 + i] = rd[j * 4 + i];
} else {
for (int j = 0; j < side; j++) {
for (int i = 0; i < side; i++) {
if (j != side - 1 || !currentMIPS->VfpuWriteMask(i)) {
int index = ((col + j) & 3) * 4 + ((row + i) & 3);
v[index] = rd[j * 4 + i];
}
}
2012-11-01 15:19:01 +00:00
}
}
}
}
int GetVectorOverlap(int vec1, VectorSize size1, int vec2, VectorSize size2) {
int n1 = GetNumVectorElements(size1);
int n2 = GetNumVectorElements(size2);
u8 regs1[4];
u8 regs2[4];
GetVectorRegs(regs1, size1, vec1);
GetVectorRegs(regs2, size1, vec2);
int count = 0;
for (int i = 0; i < n1; i++) {
for (int j = 0; j < n2; j++) {
if (regs1[i] == regs2[j])
count++;
}
}
return count;
}
2012-11-01 15:19:01 +00:00
2014-12-06 11:19:23 +00:00
int GetNumVectorElements(VectorSize sz) {
switch (sz) {
2012-11-01 15:19:01 +00:00
case V_Single: return 1;
case V_Pair: return 2;
case V_Triple: return 3;
case V_Quad: return 4;
default: return 0;
2012-11-01 15:19:01 +00:00
}
}
VectorSize GetHalfVectorSizeSafe(VectorSize sz) {
2014-12-06 11:19:23 +00:00
switch (sz) {
2012-11-01 15:19:01 +00:00
case V_Pair: return V_Single;
case V_Quad: return V_Pair;
default: return V_Invalid;
2012-11-01 15:19:01 +00:00
}
}
VectorSize GetHalfVectorSize(VectorSize sz) {
VectorSize res = GetHalfVectorSizeSafe(sz);
_assert_msg_(res != V_Invalid, "%s: Bad vector size", __FUNCTION__);
return res;
}
VectorSize GetDoubleVectorSizeSafe(VectorSize sz) {
switch (sz) {
case V_Single: return V_Pair;
case V_Pair: return V_Quad;
default: return V_Invalid;
}
}
VectorSize GetDoubleVectorSize(VectorSize sz) {
VectorSize res = GetDoubleVectorSizeSafe(sz);
_assert_msg_(res != V_Invalid, "%s: Bad vector size", __FUNCTION__);
return res;
}
VectorSize GetVecSizeSafe(MIPSOpcode op) {
int a = (op >> 7) & 1;
int b = (op >> 15) & 1;
a += (b << 1);
switch (a) {
case 0: return V_Single;
case 1: return V_Pair;
case 2: return V_Triple;
case 3: return V_Quad;
default: return V_Invalid;
2012-11-01 15:19:01 +00:00
}
}
VectorSize GetVecSize(MIPSOpcode op) {
VectorSize res = GetVecSizeSafe(op);
_assert_msg_(res != V_Invalid, "%s: Bad vector size", __FUNCTION__);
return res;
}
VectorSize GetVectorSizeSafe(MatrixSize sz) {
switch (sz) {
case M_1x1: return V_Single;
case M_2x2: return V_Pair;
case M_3x3: return V_Triple;
case M_4x4: return V_Quad;
default: return V_Invalid;
}
}
VectorSize GetVectorSize(MatrixSize sz) {
VectorSize res = GetVectorSizeSafe(sz);
_assert_msg_(res != V_Invalid, "%s: Bad vector size", __FUNCTION__);
return res;
}
MatrixSize GetMatrixSizeSafe(VectorSize sz) {
switch (sz) {
case V_Single: return M_1x1;
case V_Pair: return M_2x2;
case V_Triple: return M_3x3;
case V_Quad: return M_4x4;
default: return M_Invalid;
}
}
MatrixSize GetMatrixSize(VectorSize sz) {
MatrixSize res = GetMatrixSizeSafe(sz);
_assert_msg_(res != M_Invalid, "%s: Bad vector size", __FUNCTION__);
return res;
}
MatrixSize GetMtxSizeSafe(MIPSOpcode op) {
int a = (op >> 7) & 1;
int b = (op >> 15) & 1;
a += (b << 1);
2014-12-06 11:19:23 +00:00
switch (a) {
case 0: return M_1x1; // This happens in disassembly of junk, but has predictable behavior.
2012-11-01 15:19:01 +00:00
case 1: return M_2x2;
case 2: return M_3x3;
case 3: return M_4x4;
default: return M_Invalid;
2012-11-01 15:19:01 +00:00
}
}
MatrixSize GetMtxSize(MIPSOpcode op) {
MatrixSize res = GetMtxSizeSafe(op);
_assert_msg_(res != M_Invalid, "%s: Bad matrix size", __FUNCTION__);
return res;
}
VectorSize MatrixVectorSizeSafe(MatrixSize sz) {
switch (sz) {
case M_1x1: return V_Single;
case M_2x2: return V_Pair;
case M_3x3: return V_Triple;
case M_4x4: return V_Quad;
default: return V_Invalid;
}
}
VectorSize MatrixVectorSize(MatrixSize sz) {
VectorSize res = MatrixVectorSizeSafe(sz);
_assert_msg_(res != V_Invalid, "%s: Bad matrix size", __FUNCTION__);
return res;
}
int GetMatrixSideSafe(MatrixSize sz) {
switch (sz) {
case M_1x1: return 1;
2012-11-01 15:19:01 +00:00
case M_2x2: return 2;
case M_3x3: return 3;
case M_4x4: return 4;
default: return 0;
2012-11-01 15:19:01 +00:00
}
}
int GetMatrixSide(MatrixSize sz) {
int res = GetMatrixSideSafe(sz);
_assert_msg_(res != 0, "%s: Bad matrix size", __FUNCTION__);
return res;
}
// TODO: Optimize
MatrixOverlapType GetMatrixOverlap(int mtx1, int mtx2, MatrixSize msize) {
int n = GetMatrixSide(msize);
if (mtx1 == mtx2)
return OVERLAP_EQUAL;
u8 m1[16];
u8 m2[16];
GetMatrixRegs(m1, msize, mtx1);
GetMatrixRegs(m2, msize, mtx2);
// Simply do an exhaustive search.
for (int x = 0; x < n; x++) {
for (int y = 0; y < n; y++) {
int val = m1[y * 4 + x];
for (int a = 0; a < n; a++) {
for (int b = 0; b < n; b++) {
if (m2[a * 4 + b] == val) {
return OVERLAP_PARTIAL;
}
}
}
}
}
return OVERLAP_NONE;
}
2012-11-01 15:19:01 +00:00
const char *GetVectorNotation(int reg, VectorSize size)
{
static char hej[4][16];
static int yo = 0; yo++; yo &= 3;
2012-11-01 15:19:01 +00:00
int mtx = (reg>>2)&7;
int col = reg&3;
int row = 0;
int transpose = (reg>>5)&1;
char c;
switch (size)
{
case V_Single: transpose=0; c='S'; row=(reg>>5)&3; break;
case V_Pair: c='C'; row=(reg>>5)&2; break;
case V_Triple: c='C'; row=(reg>>6)&1; break;
case V_Quad: c='C'; row=(reg>>5)&2; break;
default: c='?'; break;
2012-11-01 15:19:01 +00:00
}
if (transpose && c == 'C') c='R';
2013-02-17 23:11:14 +00:00
if (transpose)
sprintf(hej[yo],"%c%i%i%i",c,mtx,row,col);
else
sprintf(hej[yo],"%c%i%i%i",c,mtx,col,row);
2012-11-01 15:19:01 +00:00
return hej[yo];
}
const char *GetMatrixNotation(int reg, MatrixSize size)
{
static char hej[4][16];
static int yo=0;yo++;yo&=3;
int mtx = (reg>>2)&7;
int col = reg&3;
int row = 0;
int transpose = (reg>>5)&1;
char c;
switch (size)
{
case M_2x2: c='M'; row=(reg>>5)&2; break;
case M_3x3: c='M'; row=(reg>>6)&1; break;
case M_4x4: c='M'; row=(reg>>5)&2; break;
default: c='?'; break;
2012-11-01 15:19:01 +00:00
}
if (transpose && c=='M') c='E';
if (transpose)
sprintf(hej[yo],"%c%i%i%i",c,mtx,row,col);
else
sprintf(hej[yo],"%c%i%i%i",c,mtx,col,row);
2012-11-01 15:19:01 +00:00
return hej[yo];
}
bool GetVFPUCtrlMask(int reg, u32 *mask) {
switch (reg) {
case VFPU_CTRL_SPREFIX:
case VFPU_CTRL_TPREFIX:
*mask = 0x000FFFFF;
return true;
case VFPU_CTRL_DPREFIX:
*mask = 0x00000FFF;
return true;
case VFPU_CTRL_CC:
*mask = 0x0000003F;
return true;
case VFPU_CTRL_INF4:
*mask = 0xFFFFFFFF;
return true;
case VFPU_CTRL_RSV5:
case VFPU_CTRL_RSV6:
case VFPU_CTRL_REV:
// Don't change anything, these regs are read only.
return false;
case VFPU_CTRL_RCX0:
case VFPU_CTRL_RCX1:
case VFPU_CTRL_RCX2:
case VFPU_CTRL_RCX3:
case VFPU_CTRL_RCX4:
case VFPU_CTRL_RCX5:
case VFPU_CTRL_RCX6:
case VFPU_CTRL_RCX7:
*mask = 0x3FFFFFFF;
return true;
default:
return false;
}
}
2012-11-01 15:19:01 +00:00
float Float16ToFloat32(unsigned short l)
{
float2int f2i;
2012-11-01 15:19:01 +00:00
unsigned short float16 = l;
unsigned int sign = (float16 >> VFPU_SH_FLOAT16_SIGN) & VFPU_MASK_FLOAT16_SIGN;
int exponent = (float16 >> VFPU_SH_FLOAT16_EXP) & VFPU_MASK_FLOAT16_EXP;
unsigned int fraction = float16 & VFPU_MASK_FLOAT16_FRAC;
float f;
if (exponent == VFPU_FLOAT16_EXP_MAX)
{
f2i.i = sign << 31;
f2i.i |= 255 << 23;
f2i.i |= fraction;
f = f2i.f;
2012-11-01 15:19:01 +00:00
}
else if (exponent == 0 && fraction == 0)
{
f = sign == 1 ? -0.0f : 0.0f;
2012-11-01 15:19:01 +00:00
}
else
{
if (exponent == 0)
{
do
{
fraction <<= 1;
exponent--;
}
while (!(fraction & (VFPU_MASK_FLOAT16_FRAC + 1)));
fraction &= VFPU_MASK_FLOAT16_FRAC;
}
/* Convert to 32-bit single-precision IEEE754. */
f2i.i = sign << 31;
f2i.i |= (exponent + 112) << 23;
f2i.i |= fraction << 13;
f=f2i.f;
2012-11-01 15:19:01 +00:00
}
return f;
}
static uint32_t get_uexp(uint32_t x) {
return (x >> 23) & 0xFF;
}
int32_t get_exp(uint32_t x) {
return get_uexp(x) - 127;
}
static int32_t get_mant(uint32_t x) {
// Note: this returns the hidden 1.
return (x & 0x007FFFFF) | 0x00800000;
}
static int32_t get_sign(uint32_t x) {
return x & 0x80000000;
}
float vfpu_dot(float a[4], float b[4]) {
static const int EXTRA_BITS = 2;
float2int result;
float2int src[2];
int32_t exps[4];
int32_t mants[4];
int32_t signs[4];
int32_t max_exp = 0;
int32_t last_inf = -1;
for (int i = 0; i < 4; i++) {
src[0].f = a[i];
src[1].f = b[i];
int32_t aexp = get_uexp(src[0].i);
int32_t bexp = get_uexp(src[1].i);
int32_t amant = get_mant(src[0].i) << EXTRA_BITS;
int32_t bmant = get_mant(src[1].i) << EXTRA_BITS;
exps[i] = aexp + bexp - 127;
2019-06-17 01:27:52 +00:00
if (aexp == 255) {
// INF * 0 = NAN
if ((src[0].i & 0x007FFFFF) != 0 || bexp == 0) {
result.i = 0x7F800001;
return result.f;
}
mants[i] = get_mant(0) << EXTRA_BITS;
exps[i] = 255;
2019-06-17 01:27:52 +00:00
} else if (bexp == 255) {
if ((src[1].i & 0x007FFFFF) != 0 || aexp == 0) {
result.i = 0x7F800001;
return result.f;
}
mants[i] = get_mant(0) << EXTRA_BITS;
exps[i] = 255;
} else {
// TODO: Adjust precision?
uint64_t adjust = (uint64_t)amant * (uint64_t)bmant;
mants[i] = (adjust >> (23 + EXTRA_BITS)) & 0x7FFFFFFF;
}
signs[i] = get_sign(src[0].i) ^ get_sign(src[1].i);
if (exps[i] > max_exp) {
max_exp = exps[i];
}
if (exps[i] >= 255) {
// Infinity minus infinity is not a real number.
if (last_inf != -1 && signs[i] != last_inf) {
result.i = 0x7F800001;
return result.f;
2019-06-13 05:17:25 +00:00
}
last_inf = signs[i];
2019-06-13 05:17:25 +00:00
}
}
int32_t mant_sum = 0;
for (int i = 0; i < 4; i++) {
int exp = max_exp - exps[i];
if (exp >= 32) {
mants[i] = 0;
} else {
mants[i] >>= exp;
}
if (signs[i]) {
mants[i] = -mants[i];
}
mant_sum += mants[i];
}
uint32_t sign_sum = 0;
if (mant_sum < 0) {
sign_sum = 0x80000000;
mant_sum = -mant_sum;
}
// Truncate off the extra bits now. We want to zero them for rounding purposes.
mant_sum >>= EXTRA_BITS;
if (mant_sum == 0 || max_exp <= 0) {
return 0.0f;
}
int8_t shift = (int8_t)clz32_nonzero(mant_sum) - 8;
if (shift < 0) {
// Round to even if we'd shift away a 0.5.
const uint32_t round_bit = 1 << (-shift - 1);
if ((mant_sum & round_bit) && (mant_sum & (round_bit << 1))) {
mant_sum += round_bit;
shift = (int8_t)clz32_nonzero(mant_sum) - 8;
} else if ((mant_sum & round_bit) && (mant_sum & (round_bit - 1))) {
mant_sum += round_bit;
shift = (int8_t)clz32_nonzero(mant_sum) - 8;
}
mant_sum >>= -shift;
max_exp += -shift;
} else {
mant_sum <<= shift;
max_exp -= shift;
}
_dbg_assert_msg_((mant_sum & 0x00800000) != 0, "Mantissa wrong: %08x", mant_sum);
if (max_exp >= 255) {
max_exp = 255;
mant_sum = 0;
} else if (max_exp <= 0) {
return 0.0f;
}
result.i = sign_sum | (max_exp << 23) | (mant_sum & 0x007FFFFF);
return result.f;
}
// TODO: This is still not completely accurate compared to the PSP's vsqrt.
float vfpu_sqrt(float a) {
float2int val;
val.f = a;
if ((val.i & 0xff800000) == 0x7f800000) {
if ((val.i & 0x007fffff) != 0) {
val.i = 0x7f800001;
}
return val.f;
}
if ((val.i & 0x7f800000) == 0) {
// Kill any sign.
val.i = 0;
return val.f;
}
if (val.i & 0x80000000) {
val.i = 0x7f800001;
return val.f;
}
int k = get_exp(val.i);
uint32_t sp = get_mant(val.i);
int less_bits = k & 1;
k >>= 1;
uint32_t z = 0x00C00000 >> less_bits;
int64_t halfsp = sp >> 1;
halfsp <<= 23 - less_bits;
for (int i = 0; i < 6; ++i) {
z = (z >> 1) + (uint32_t)(halfsp / z);
}
val.i = ((k + 127) << 23) | ((z << less_bits) & 0x007FFFFF);
// The lower two bits never end up set on the PSP, it seems like.
val.i &= 0xFFFFFFFC;
return val.f;
}
static inline uint32_t mant_mul(uint32_t a, uint32_t b) {
uint64_t m = (uint64_t)a * (uint64_t)b;
if (m & 0x007FFFFF) {
m += 0x01437000;
}
return m >> 23;
}
float vfpu_rsqrt(float a) {
float2int val;
val.f = a;
if (val.i == 0x7f800000) {
return 0.0f;
}
if ((val.i & 0x7fffffff) > 0x7f800000) {
val.i = (val.i & 0x80000000) | 0x7f800001;
return val.f;
}
if ((val.i & 0x7f800000) == 0) {
val.i = (val.i & 0x80000000) | 0x7f800000;
return val.f;
}
if (val.i & 0x80000000) {
val.i = 0xff800001;
return val.f;
}
int k = get_exp(val.i);
uint32_t sp = get_mant(val.i);
int less_bits = k & 1;
k = -(k >> 1);
uint32_t z = 0x00800000 >> less_bits;
uint32_t halfsp = sp >> (1 + less_bits);
for (int i = 0; i < 6; ++i) {
uint32_t zsq = mant_mul(z, z);
uint32_t correction = 0x00C00000 - mant_mul(halfsp, zsq);
z = mant_mul(z, correction);
}
int8_t shift = (int8_t)clz32_nonzero(z) - 8 + less_bits;
if (shift < 1) {
z >>= -shift;
k += -shift;
} else if (shift > 0) {
z <<= shift;
k -= shift;
}
z >>= less_bits;
val.i = ((k + 127) << 23) | (z & 0x007FFFFF);
val.i &= 0xFFFFFFFC;
return val.f;
}
float vfpu_sin(float a) {
float2int val;
val.f = a;
int32_t k = get_uexp(val.i);
if (k == 255) {
val.i = (val.i & 0xFF800001) | 1;
return val.f;
}
if (k < 0x68) {
val.i &= 0x80000000;
return val.f;
}
// Okay, now modulus by 4 to begin with (identical wave every 4.)
int32_t mantissa = get_mant(val.i);
if (k > 0x80) {
const uint8_t over = k & 0x1F;
mantissa = (mantissa << over) & 0x00FFFFFF;
k = 0x80;
}
// This subtracts off the 2. If we do, flip sign to inverse the wave.
if (k == 0x80 && mantissa >= (1 << 23)) {
val.i ^= 0x80000000;
mantissa -= 1 << 23;
}
int8_t norm_shift = mantissa == 0 ? 32 : (int8_t)clz32_nonzero(mantissa) - 8;
mantissa <<= norm_shift;
k -= norm_shift;
if (k <= 0 || mantissa == 0) {
val.i &= 0x80000000;
return val.f;
}
// This is the value with modulus applied.
val.i = (val.i & 0x80000000) | (k << 23) | (mantissa & ~(1 << 23));
val.f = (float)sin((double)val.f * M_PI_2);
val.i &= 0xFFFFFFFC;
return val.f;
}
float vfpu_cos(float a) {
float2int val;
val.f = a;
bool negate = false;
int32_t k = get_uexp(val.i);
if (k == 255) {
// Note: unlike sin, cos always returns +NAN.
val.i = (val.i & 0x7F800001) | 1;
return val.f;
}
if (k < 0x68)
return 1.0f;
// Okay, now modulus by 4 to begin with (identical wave every 4.)
int32_t mantissa = get_mant(val.i);
if (k > 0x80) {
const uint8_t over = k & 0x1F;
mantissa = (mantissa << over) & 0x00FFFFFF;
k = 0x80;
}
// This subtracts off the 2. If we do, negate the result value.
if (k == 0x80 && mantissa >= (1 << 23)) {
mantissa -= 1 << 23;
negate = true;
}
int8_t norm_shift = mantissa == 0 ? 32 : (int8_t)clz32_nonzero(mantissa) - 8;
mantissa <<= norm_shift;
k -= norm_shift;
if (k <= 0 || mantissa == 0)
return negate ? -1.0f : 1.0f;
// This is the value with modulus applied.
val.i = (val.i & 0x80000000) | (k << 23) | (mantissa & ~(1 << 23));
if (val.f == 1.0f || val.f == -1.0f) {
return negate ? 0.0f : -0.0f;
}
val.f = (float)cos((double)val.f * M_PI_2);
val.i &= 0xFFFFFFFC;
return negate ? -val.f : val.f;
}
void vfpu_sincos(float a, float &s, float &c) {
float2int val;
val.f = a;
// For sin, negate the input, for cos negate the output.
bool negate = false;
int32_t k = get_uexp(val.i);
if (k == 255) {
val.i = (val.i & 0xFF800001) | 1;
s = val.f;
val.i &= 0x7F800001;
c = val.f;
return;
}
if (k < 0x68) {
val.i &= 0x80000000;
s = val.f;
c = 1.0f;
return;
}
// Okay, now modulus by 4 to begin with (identical wave every 4.)
int32_t mantissa = get_mant(val.i);
if (k > 0x80) {
const uint8_t over = k & 0x1F;
mantissa = (mantissa << over) & 0x00FFFFFF;
k = 0x80;
}
// This subtracts off the 2. If we do, flip signs.
if (k == 0x80 && mantissa >= (1 << 23)) {
mantissa -= 1 << 23;
negate = true;
}
int8_t norm_shift = mantissa == 0 ? 32 : (int8_t)clz32_nonzero(mantissa) - 8;
mantissa <<= norm_shift;
k -= norm_shift;
if (k <= 0 || mantissa == 0) {
val.i &= 0x80000000;
if (negate)
val.i ^= 0x80000000;
s = val.f;
2021-04-26 02:26:16 +00:00
c = negate ? -1.0f : 1.0f;
return;
}
// This is the value with modulus applied.
val.i = (val.i & 0x80000000) | (k << 23) | (mantissa & ~(1 << 23));
float2int i_sine, i_cosine;
if (val.f == 1.0f) {
i_sine.f = negate ? -1.0f : 1.0f;
i_cosine.f = negate ? 0.0f : -0.0f;
} else if (val.f == -1.0f) {
i_sine.f = negate ? 1.0f : -1.0f;
i_cosine.f = negate ? 0.0f : -0.0f;
} else if (negate) {
i_sine.f = (float)sin((double)-val.f * M_PI_2);
i_cosine.f = -(float)cos((double)val.f * M_PI_2);
} else {
double angle = (double)val.f * M_PI_2;
#if defined(__linux__)
double d_sine;
double d_cosine;
sincos(angle, &d_sine, &d_cosine);
i_sine.f = (float)d_sine;
i_cosine.f = (float)d_cosine;
#else
i_sine.f = (float)sin(angle);
i_cosine.f = (float)cos(angle);
#endif
}
i_sine.i &= 0xFFFFFFFC;
i_cosine.i &= 0xFFFFFFFC;
s = i_sine.f;
c = i_cosine.f;
return ;
}
void InitVFPUSinCos() {
// TODO: Could prepare a CORDIC table here.
}