ppsspp/GPU/GLES/TextureCache.cpp
2013-07-23 19:31:14 +08:00

1646 lines
48 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <map>
#include <algorithm>
#include "Core/MemMap.h"
#include "Core/Reporting.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#include "GPU/GLES/TextureCache.h"
#include "GPU/GLES/Framebuffer.h"
#include "Core/Config.h"
#include "native/ext/cityhash/city.h"
#ifdef _M_SSE
#include <xmmintrin.h>
#endif
// If a texture hasn't been seen for this many frames, get rid of it.
#define TEXTURE_KILL_AGE 200
#define TEXTURE_KILL_AGE_LOWMEM 60
// Not used in lowmem mode.
#define TEXTURE_SECOND_KILL_AGE 100
extern int g_iNumVideos;
u32 RoundUpToPowerOf2(u32 v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
static inline u32 GetLevelBufw(int level, u32 texaddr) {
// Special rules for kernel textures (PPGe):
if (texaddr < PSP_GetUserMemoryBase())
return gstate.texbufwidth[level] & 0x1FFF;
return gstate.texbufwidth[level] & 0x7FF;
}
TextureCache::TextureCache() : clearCacheNextFrame_(false), lowMemoryMode_(false), clutBuf_(NULL) {
lastBoundTexture = -1;
// This is 5MB of temporary storage. Might be possible to shrink it.
tmpTexBuf32.resize(1024 * 512); // 2MB
tmpTexBuf16.resize(1024 * 512); // 1MB
tmpTexBufRearrange.resize(1024 * 512); // 2MB
clutBufConverted_ = new u32[4096]; // 16KB
clutBufRaw_ = new u32[4096]; // 16KB
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAnisotropyLevel);
}
TextureCache::~TextureCache() {
delete [] clutBufConverted_;
delete [] clutBufRaw_;
}
void TextureCache::Clear(bool delete_them) {
glBindTexture(GL_TEXTURE_2D, 0);
lastBoundTexture = -1;
if (delete_them) {
for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ++iter) {
DEBUG_LOG(G3D, "Deleting texture %i", iter->second.texture);
glDeleteTextures(1, &iter->second.texture);
}
for (TexCache::iterator iter = secondCache.begin(); iter != secondCache.end(); ++iter) {
DEBUG_LOG(G3D, "Deleting texture %i", iter->second.texture);
glDeleteTextures(1, &iter->second.texture);
}
}
if (cache.size() + secondCache.size()) {
INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)(cache.size() + secondCache.size()));
cache.clear();
secondCache.clear();
}
}
// Removes old textures.
void TextureCache::Decimate() {
glBindTexture(GL_TEXTURE_2D, 0);
lastBoundTexture = -1;
int killAge = lowMemoryMode_ ? TEXTURE_KILL_AGE_LOWMEM : TEXTURE_KILL_AGE;
for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ) {
if (iter->second.lastFrame + TEXTURE_KILL_AGE < gpuStats.numFrames) {
glDeleteTextures(1, &iter->second.texture);
cache.erase(iter++);
}
else
++iter;
}
for (TexCache::iterator iter = secondCache.begin(); iter != secondCache.end(); ) {
if (lowMemoryMode_ || iter->second.lastFrame + TEXTURE_KILL_AGE < gpuStats.numFrames) {
glDeleteTextures(1, &iter->second.texture);
secondCache.erase(iter++);
}
else
++iter;
}
}
void TextureCache::Invalidate(u32 addr, int size, GPUInvalidationType type) {
addr &= 0xFFFFFFF;
u32 addr_end = addr + size;
// They could invalidate inside the texture, let's just give a bit of leeway.
const int LARGEST_TEXTURE_SIZE = 512 * 512 * 4;
u64 startKey = addr - LARGEST_TEXTURE_SIZE;
u64 endKey = addr + size + LARGEST_TEXTURE_SIZE;
for (TexCache::iterator iter = cache.lower_bound(startKey), end = cache.upper_bound(endKey); iter != end; ++iter) {
u32 texAddr = iter->second.addr;
u32 texEnd = iter->second.addr + iter->second.sizeInRAM;
if (texAddr < addr_end && addr < texEnd) {
if ((iter->second.status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_RELIABLE) {
// Clear status -> STATUS_HASHING.
iter->second.status &= ~TexCacheEntry::STATUS_MASK;
}
if (type != GPU_INVALIDATE_ALL) {
gpuStats.numTextureInvalidations++;
// Start it over from 0 (unless it's safe.)
iter->second.numFrames = type == GPU_INVALIDATE_SAFE ? 256 : 0;
iter->second.framesUntilNextFullHash = 0;
} else {
iter->second.invalidHint++;
}
}
}
}
void TextureCache::InvalidateAll(GPUInvalidationType /*unused*/) {
for (TexCache::iterator iter = cache.begin(), end = cache.end(); iter != end; ++iter) {
if ((iter->second.status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_RELIABLE) {
// Clear status -> STATUS_HASHING.
iter->second.status &= ~TexCacheEntry::STATUS_MASK;
}
iter->second.invalidHint++;
}
}
void TextureCache::ClearNextFrame() {
clearCacheNextFrame_ = true;
}
TextureCache::TexCacheEntry *TextureCache::GetEntryAt(u32 texaddr) {
// If no CLUT, as in framebuffer textures, cache key is simply texaddr shifted up.
auto iter = cache.find((u64)texaddr << 32);
if (iter != cache.end() && iter->second.addr == texaddr)
return &iter->second;
else
return 0;
}
void TextureCache::NotifyFramebuffer(u32 address, VirtualFramebuffer *framebuffer) {
// Must be in VRAM so | 0x04000000 it is.
TexCacheEntry *entry = GetEntryAt(address | 0x04000000);
if (entry) {
DEBUG_LOG(HLE, "Render to texture detected at %08x!", address);
if (!entry->framebuffer) {
entry->framebuffer = framebuffer;
// TODO: Delete the original non-fbo texture too.
} else {
// Force a re-bind, fixes map in Tactics Ogre.
glBindTexture(GL_TEXTURE_2D, 0);
lastBoundTexture = -1;
}
}
}
void TextureCache::NotifyFramebufferDestroyed(u32 address, VirtualFramebuffer *framebuffer) {
TexCacheEntry *entry = GetEntryAt(address | 0x04000000);
if (entry && entry->framebuffer == framebuffer) {
// There's at least one. We're going to have to loop through all textures unfortunately to be
// 100% safe.
for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ++iter) {
if (iter->second.framebuffer == framebuffer) {
iter->second.framebuffer = 0;
}
}
// entry->framebuffer = 0;
}
}
static u32 GetClutAddr() {
return ((gstate.clutaddr & 0xFFFFFF) | ((gstate.clutaddrupper << 8) & 0x0F000000));
}
static u32 GetClutIndex(u32 index) {
const u32 clutBase = gstate.getClutIndexStartPos();
const u32 clutMask = gstate.getClutIndexMask();
const u8 clutShift = gstate.getClutIndexShift();
return ((index >> clutShift) & clutMask) | clutBase;
}
void *TextureCache::UnswizzleFromMem(u32 texaddr, u32 bufw, u32 bytesPerPixel, u32 level) {
const u32 rowWidth = (bytesPerPixel > 0) ? (bufw * bytesPerPixel) : (bufw / 2);
const u32 pitch = rowWidth / 4;
const int bxc = rowWidth / 16;
int byc = ((1 << ((gstate.texsize[level] >> 8) & 0xf)) + 7) / 8;
if (byc == 0)
byc = 1;
u32 ydest = 0;
if (rowWidth >= 16) {
const u32 *src = (u32 *) Memory::GetPointer(texaddr);
u32 *ydest = tmpTexBuf32.data();
for (int by = 0; by < byc; by++) {
u32 *xdest = ydest;
for (int bx = 0; bx < bxc; bx++) {
u32 *dest = xdest;
for (int n = 0; n < 8; n++) {
memcpy(dest, src, 16);
dest += pitch;
src += 4;
}
xdest += 4;
}
ydest += (rowWidth * 8) / 4;
}
} else if (rowWidth == 8) {
const u32 *src = (u32 *) Memory::GetPointer(texaddr);
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 8; n++, ydest += 2) {
tmpTexBuf32[ydest + 0] = *src++;
tmpTexBuf32[ydest + 1] = *src++;
src += 2; // skip two u32
}
}
} else if (rowWidth == 4) {
const u32 *src = (u32 *) Memory::GetPointer(texaddr);
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 8; n++, ydest++) {
tmpTexBuf32[ydest] = *src++;
src += 3;
}
}
} else if (rowWidth == 2) {
const u16 *src = (u16 *) Memory::GetPointer(texaddr);
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 4; n++, ydest++) {
u16 n1 = src[0];
u16 n2 = src[8];
tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 16);
src += 16;
}
}
} else if (rowWidth == 1) {
const u8 *src = (u8 *) Memory::GetPointer(texaddr);
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 2; n++, ydest++) {
u8 n1 = src[ 0];
u8 n2 = src[16];
u8 n3 = src[32];
u8 n4 = src[48];
tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 8) | ((u32)n3 << 16) | ((u32)n4 << 24);
src += 64;
}
}
}
return tmpTexBuf32.data();
}
template <typename IndexT, typename ClutT>
inline void DeIndexTexture(ClutT *dest, const IndexT *indexed, int length, const ClutT *clut) {
// Usually, there is no special offset, mask, or shift.
const bool nakedIndex = gstate.isClutIndexSimple();
if (nakedIndex) {
if (sizeof(IndexT) == 1) {
for (int i = 0; i < length; ++i) {
*dest++ = clut[*indexed++];
}
} else {
for (int i = 0; i < length; ++i) {
*dest++ = clut[(*indexed++) & 0xFF];
}
}
} else {
for (int i = 0; i < length; ++i) {
*dest++ = clut[GetClutIndex(*indexed++)];
}
}
}
template <typename IndexT, typename ClutT>
inline void DeIndexTexture(ClutT *dest, const u32 texaddr, int length, const ClutT *clut) {
const IndexT *indexed = (const IndexT *) Memory::GetPointer(texaddr);
DeIndexTexture(dest, indexed, length, clut);
}
template <typename ClutT>
inline void DeIndexTexture4(ClutT *dest, const u8 *indexed, int length, const ClutT *clut) {
// Usually, there is no special offset, mask, or shift.
const bool nakedIndex = gstate.isClutIndexSimple();
if (nakedIndex) {
for (int i = 0; i < length; i += 2) {
u8 index = *indexed++;
dest[i + 0] = clut[(index >> 0) & 0xf];
dest[i + 1] = clut[(index >> 4) & 0xf];
}
} else {
for (int i = 0; i < length; i += 2) {
u8 index = *indexed++;
dest[i + 0] = clut[GetClutIndex((index >> 0) & 0xf)];
dest[i + 1] = clut[GetClutIndex((index >> 4) & 0xf)];
}
}
}
template <typename ClutT>
inline void DeIndexTexture4Optimal(ClutT *dest, const u8 *indexed, int length, ClutT color) {
for (int i = 0; i < length; i += 2) {
u8 index = *indexed++;
dest[i + 0] = color | ((index >> 0) & 0xf);
dest[i + 1] = color | ((index >> 4) & 0xf);
}
}
template <>
inline void DeIndexTexture4Optimal<u16>(u16 *dest, const u8 *indexed, int length, u16 color) {
const u16 *indexed16 = (const u16 *)indexed;
const u32 color32 = (color << 16) | color;
u32 *dest32 = (u32 *)dest;
for (int i = 0; i < length / 2; i += 2) {
u16 index = *indexed16++;
dest32[i + 0] = color32 | ((index & 0x00f0) << 12) | ((index & 0x000f) >> 0);
dest32[i + 1] = color32 | ((index & 0xf000) << 4) | ((index & 0x0f00) >> 8);
}
}
template <typename ClutT>
inline void DeIndexTexture4(ClutT *dest, const u32 texaddr, int length, const ClutT *clut) {
const u8 *indexed = (const u8 *) Memory::GetPointer(texaddr);
DeIndexTexture4(dest, indexed, length, clut);
}
template <typename ClutT>
inline void DeIndexTexture4Optimal(ClutT *dest, const u32 texaddr, int length, ClutT color) {
const u8 *indexed = (const u8 *) Memory::GetPointer(texaddr);
DeIndexTexture4Optimal(dest, indexed, length, color);
}
void *TextureCache::readIndexedTex(int level, u32 texaddr, int bytesPerIndex, GLuint dstFmt) {
int bufw = GetLevelBufw(level, texaddr);
int w = 1 << (gstate.texsize[0] & 0xf);
int h = 1 << ((gstate.texsize[0] >> 8) & 0xf);
int length = bufw * h;
void *buf = NULL;
switch (gstate.getClutPaletteFormat()) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
tmpTexBuf16.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
const u16 *clut = GetCurrentClut<u16>();
if (!(gstate.texmode & 1)) {
switch (bytesPerIndex) {
case 1:
DeIndexTexture<u8>(tmpTexBuf16.data(), texaddr, length, clut);
break;
case 2:
DeIndexTexture<u16>(tmpTexBuf16.data(), texaddr, length, clut);
break;
case 4:
DeIndexTexture<u32>(tmpTexBuf16.data(), texaddr, length, clut);
break;
}
} else {
tmpTexBuf32.resize(std::max(bufw, w) * h);
UnswizzleFromMem(texaddr, bufw, bytesPerIndex, level);
switch (bytesPerIndex) {
case 1:
DeIndexTexture(tmpTexBuf16.data(), (u8 *) tmpTexBuf32.data(), length, clut);
break;
case 2:
DeIndexTexture(tmpTexBuf16.data(), (u16 *) tmpTexBuf32.data(), length, clut);
break;
case 4:
DeIndexTexture(tmpTexBuf16.data(), (u32 *) tmpTexBuf32.data(), length, clut);
break;
}
}
buf = tmpTexBuf16.data();
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
const u32 *clut = GetCurrentClut<u32>();
if (!(gstate.texmode & 1)) {
switch (bytesPerIndex) {
case 1:
DeIndexTexture<u8>(tmpTexBuf32.data(), texaddr, length, clut);
break;
case 2:
DeIndexTexture<u16>(tmpTexBuf32.data(), texaddr, length, clut);
break;
case 4:
DeIndexTexture<u32>(tmpTexBuf32.data(), texaddr, length, clut);
break;
}
buf = tmpTexBuf32.data();
} else {
UnswizzleFromMem(texaddr, bufw, bytesPerIndex, level);
// Since we had to unswizzle to tmpTexBuf32, let's output to tmpTexBuf16.
tmpTexBuf16.resize(std::max(bufw, w) * h * 2);
u32 *dest32 = (u32 *) tmpTexBuf16.data();
switch (bytesPerIndex) {
case 1:
DeIndexTexture(dest32, (u8 *) tmpTexBuf32.data(), length, clut);
buf = dest32;
break;
case 2:
DeIndexTexture(dest32, (u16 *) tmpTexBuf32.data(), length, clut);
buf = dest32;
break;
case 4:
// TODO: If a game actually uses this mode, check if using dest32 or tmpTexBuf32 is faster.
DeIndexTexture(tmpTexBuf32.data(), tmpTexBuf32.data(), length, clut);
buf = tmpTexBuf32.data();
break;
}
}
}
break;
default:
ERROR_LOG(G3D, "Unhandled clut texture mode %d!!!", (gstate.clutformat & 3));
break;
}
return buf;
}
GLenum getClutDestFormat(GEPaletteFormat format) {
switch (format) {
case GE_CMODE_16BIT_ABGR4444:
return GL_UNSIGNED_SHORT_4_4_4_4;
case GE_CMODE_16BIT_ABGR5551:
return GL_UNSIGNED_SHORT_5_5_5_1;
case GE_CMODE_16BIT_BGR5650:
return GL_UNSIGNED_SHORT_5_6_5;
case GE_CMODE_32BIT_ABGR8888:
return GL_UNSIGNED_BYTE;
}
return 0;
}
static const u8 texByteAlignMap[] = {2, 2, 2, 4};
static const GLuint MinFiltGL[8] = {
GL_NEAREST,
GL_LINEAR,
GL_NEAREST,
GL_LINEAR,
GL_NEAREST_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_LINEAR,
};
static const GLuint MagFiltGL[2] = {
GL_NEAREST,
GL_LINEAR
};
// This should not have to be done per texture! OpenGL is silly yo
// TODO: Dirty-check this against the current texture.
void TextureCache::UpdateSamplingParams(TexCacheEntry &entry, bool force) {
int minFilt = gstate.texfilter & 0x7;
int magFilt = (gstate.texfilter>>8) & 1;
bool sClamp = gstate.texwrap & 1;
bool tClamp = (gstate.texwrap>>8) & 1;
bool noMip = (gstate.texlevel & 0xFFFFFF) == 0x000001 || (gstate.texlevel & 0xFFFFFF) == 0x100001 ; // Fix texlevel at 0
if (entry.maxLevel == 0) {
// Enforce no mip filtering, for safety.
minFilt &= 1; // no mipmaps yet
} else {
// TODO: Is this a signed value? Which direction?
float lodBias = 0.0; // -(float)((gstate.texlevel >> 16) & 0xFF) / 16.0f;
if (force || entry.lodBias != lodBias) {
#ifndef USING_GLES2
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_LOD_BIAS, lodBias);
#endif
entry.lodBias = lodBias;
}
}
if ((g_Config.iTexFiltering == LINEAR || (g_Config.iTexFiltering == LINEARFMV && g_iNumVideos)) && !gstate.isColorTestEnabled()) {
magFilt |= 1;
minFilt |= 1;
}
if (g_Config.iTexFiltering == NEAREST) {
magFilt &= ~1;
minFilt &= ~1;
}
if (!g_Config.bMipMap || noMip) {
magFilt &= 1;
minFilt &= 1;
}
if (force || entry.minFilt != minFilt) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, MinFiltGL[minFilt]);
entry.minFilt = minFilt;
}
if (force || entry.magFilt != magFilt) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, MagFiltGL[magFilt]);
entry.magFilt = magFilt;
}
if (force || entry.sClamp != sClamp) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, sClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT);
entry.sClamp = sClamp;
}
if (force || entry.tClamp != tClamp) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, tClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT);
entry.tClamp = tClamp;
}
}
// All these DXT structs are in the reverse order, as compared to PC.
// On PC, alpha comes before color, and interpolants are before the tile data.
struct DXT1Block {
u8 lines[4];
u16 color1;
u16 color2;
};
struct DXT3Block {
DXT1Block color;
u16 alphaLines[4];
};
struct DXT5Block {
DXT1Block color;
u32 alphadata2;
u16 alphadata1;
u8 alpha1; u8 alpha2;
};
static inline u32 makecol(int r, int g, int b, int a) {
return (a << 24) | (r << 16) | (g << 8) | b;
}
// This could probably be done faster by decoding two or four blocks at a time with SSE/NEON.
static void decodeDXT1Block(u32 *dst, const DXT1Block *src, int pitch, bool ignore1bitAlpha = false) {
// S3TC Decoder
// Needs more speed and debugging.
u16 c1 = (src->color1);
u16 c2 = (src->color2);
int red1 = Convert5To8(c1 & 0x1F);
int red2 = Convert5To8(c2 & 0x1F);
int green1 = Convert6To8((c1 >> 5) & 0x3F);
int green2 = Convert6To8((c2 >> 5) & 0x3F);
int blue1 = Convert5To8((c1 >> 11) & 0x1F);
int blue2 = Convert5To8((c2 >> 11) & 0x1F);
u32 colors[4];
colors[0] = makecol(red1, green1, blue1, 255);
colors[1] = makecol(red2, green2, blue2, 255);
if (c1 > c2 || ignore1bitAlpha) {
int blue3 = ((blue2 - blue1) >> 1) - ((blue2 - blue1) >> 3);
int green3 = ((green2 - green1) >> 1) - ((green2 - green1) >> 3);
int red3 = ((red2 - red1) >> 1) - ((red2 - red1) >> 3);
colors[2] = makecol(red1 + red3, green1 + green3, blue1 + blue3, 255);
colors[3] = makecol(red2 - red3, green2 - green3, blue2 - blue3, 255);
} else {
colors[2] = makecol((red1 + red2 + 1) / 2, // Average
(green1 + green2 + 1) / 2,
(blue1 + blue2 + 1) / 2, 255);
colors[3] = makecol(red2, green2, blue2, 0); // Color2 but transparent
}
for (int y = 0; y < 4; y++) {
int val = src->lines[y];
for (int x = 0; x < 4; x++) {
dst[x] = colors[val & 3];
val >>= 2;
}
dst += pitch;
}
}
static void decodeDXT3Block(u32 *dst, const DXT3Block *src, int pitch)
{
decodeDXT1Block(dst, &src->color, pitch, true);
for (int y = 0; y < 4; y++) {
u32 line = src->alphaLines[y];
for (int x = 0; x < 4; x++) {
const u8 a4 = line & 0xF;
dst[x] = (dst[x] & 0xFFFFFF) | (a4 << 24) | (a4 << 28);
line >>= 4;
}
dst += pitch;
}
}
static inline u8 lerp8(const DXT5Block *src, int n) {
float d = n / 7.0f;
return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d);
}
static inline u8 lerp6(const DXT5Block *src, int n) {
float d = n / 5.0f;
return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d);
}
// The alpha channel is not 100% correct
static void decodeDXT5Block(u32 *dst, const DXT5Block *src, int pitch) {
decodeDXT1Block(dst, &src->color, pitch, true);
u8 alpha[8];
alpha[0] = src->alpha1;
alpha[1] = src->alpha2;
if (alpha[0] > alpha[1]) {
alpha[2] = lerp8(src, 1);
alpha[3] = lerp8(src, 2);
alpha[4] = lerp8(src, 3);
alpha[5] = lerp8(src, 4);
alpha[6] = lerp8(src, 5);
alpha[7] = lerp8(src, 6);
} else {
alpha[2] = lerp6(src, 1);
alpha[3] = lerp6(src, 2);
alpha[4] = lerp6(src, 3);
alpha[5] = lerp6(src, 4);
alpha[6] = 0;
alpha[7] = 255;
}
u64 data = ((u64)src->alphadata1 << 32) | src->alphadata2;
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
dst[x] = (dst[x] & 0xFFFFFF) | (alpha[data & 7] << 24);
data >>= 3;
}
dst += pitch;
}
}
static void ConvertColors(void *dstBuf, const void *srcBuf, GLuint dstFmt, int numPixels) {
const u32 *src = (const u32 *)srcBuf;
u32 *dst = (u32 *)dstBuf;
// TODO: All these can be further sped up with SSE or NEON.
switch (dstFmt) {
case GL_UNSIGNED_SHORT_4_4_4_4:
{
for (int i = 0; i < (numPixels + 1) / 2; i++) {
u32 c = src[i];
dst[i] = ((c >> 12) & 0x000F000F) |
((c >> 4) & 0x00F000F0) |
((c << 4) & 0x0F000F00) |
((c << 12) & 0xF000F000);
}
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
{
for (int i = 0; i < (numPixels + 1) / 2; i++) {
u32 c = src[i];
dst[i] = ((c >> 15) & 0x00010001) |
((c >> 9) & 0x003E003E) |
((c << 1) & 0x07C007C0) |
((c << 11) & 0xF800F800);
}
}
break;
case GL_UNSIGNED_SHORT_5_6_5:
{
for (int i = 0; i < (numPixels + 1) / 2; i++) {
u32 c = src[i];
dst[i] = ((c >> 11) & 0x001F001F) |
((c >> 0) & 0x07E007E0) |
((c << 11) & 0xF800F800);
}
}
break;
default:
{
// No need to convert RGBA8888, right order already
if (dst != src)
memcpy(dst, src, numPixels * sizeof(u32));
}
break;
}
}
void TextureCache::StartFrame() {
lastBoundTexture = -1;
if(clearCacheNextFrame_) {
Clear(true);
clearCacheNextFrame_ = false;
} else {
Decimate();
}
}
static const u8 bitsPerPixel[16] = {
16, //GE_TFMT_5650,
16, //GE_TFMT_5551,
16, //GE_TFMT_4444,
32, //GE_TFMT_8888,
4, //GE_TFMT_CLUT4,
8, //GE_TFMT_CLUT8,
16, //GE_TFMT_CLUT16,
32, //GE_TFMT_CLUT32,
4, //GE_TFMT_DXT1,
8, //GE_TFMT_DXT3,
8, //GE_TFMT_DXT5,
0, // INVALID,
0, // INVALID,
0, // INVALID,
0, // INVALID,
0, // INVALID,
};
static inline u32 MiniHash(const u32 *ptr) {
return ptr[0];
}
static inline u32 QuickClutHash(const u8 *clut, u32 bytes) {
// CLUTs always come in multiples of 32 bytes, can't load them any other way.
_dbg_assert_msg_(G3D, (bytes & 31) == 0, "CLUT should always have a multiple of 32 bytes.");
const u32 prime = 2246822519U;
u32 hash = 0;
#ifdef _M_SSE
if ((((u32)(intptr_t)clut) & 0xf) == 0) {
__m128i cursor = _mm_set1_epi32(0);
const __m128i mult = _mm_set1_epi32(prime);
const __m128i *p = (const __m128i *)clut;
for (u32 i = 0; i < bytes / 16; ++i) {
cursor = _mm_add_epi32(cursor, _mm_mul_epu32(_mm_load_si128(&p[i]), mult));
}
// Add the four parts into the low i32.
cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 8));
cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 4));
hash = _mm_cvtsi128_si32(cursor);
} else {
#else
// TODO: ARM NEON implementation (using CPUDetect to be sure it has NEON.)
{
#endif
for (const u32 *p = (u32 *)clut, *end = (u32 *)(clut + bytes); p < end; ) {
hash += *p++ * prime;
}
}
return hash;
}
static inline u32 QuickTexHash(u32 addr, int bufw, int w, int h, GETextureFormat format) {
const u32 sizeInRAM = (bitsPerPixel[format] * bufw * h) / 8;
const u32 *checkp = (const u32 *) Memory::GetPointer(addr);
u32 check = 0;
#ifdef _M_SSE
// Make sure both the size and start are aligned, OR will get either.
if ((((u32)(intptr_t)checkp | sizeInRAM) & 0x1f) == 0) {
__m128i cursor = _mm_set1_epi32(0);
const __m128i *p = (const __m128i *)checkp;
for (u32 i = 0; i < sizeInRAM / 16; i += 2) {
cursor = _mm_add_epi32(cursor, _mm_load_si128(&p[i]));
cursor = _mm_xor_si128(cursor, _mm_load_si128(&p[i + 1]));
}
// Add the four parts into the low i32.
cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 8));
cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 4));
check = _mm_cvtsi128_si32(cursor);
} else {
#else
// TODO: ARM NEON implementation (using CPUDetect to be sure it has NEON.)
{
#endif
for (u32 i = 0; i < sizeInRAM / 8; ++i) {
check += *checkp++;
check ^= *checkp++;
}
}
return check;
}
inline bool TextureCache::TexCacheEntry::Matches(u16 dim2, u8 format2, int maxLevel2) {
return dim == dim2 && format == format2 && maxLevel == maxLevel2;
}
void TextureCache::LoadClut() {
u32 clutAddr = GetClutAddr();
clutTotalBytes_ = (gstate.loadclut & 0x3f) * 32;
if (Memory::IsValidAddress(clutAddr)) {
Memory::Memcpy(clutBufRaw_, clutAddr, clutTotalBytes_);
} else {
memset(clutBufRaw_, 0xFF, clutTotalBytes_);
}
// Reload the clut next time.
clutLastFormat_ = 0xFFFFFFFF;
}
void TextureCache::UpdateCurrentClut() {
const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat();
const u32 clutBase = gstate.getClutIndexStartPos();
const u32 clutBaseBytes = clutBase * (clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16));
// Technically, these extra bytes weren't loaded, but hopefully it was loaded earlier.
// If not, we're going to hash random data, which hopefully doesn't cause a performance issue.
const u32 clutExtendedBytes = clutTotalBytes_ + clutBaseBytes;
// QuickClutHash is not quite good enough apparently.
// clutHash_ = QuickClutHash((const u8 *)clutBufRaw_, clutExtendedBytes);
clutHash_ = CityHash32((const char *)clutBufRaw_, clutExtendedBytes);
// Avoid a copy when we don't need to convert colors.
if (clutFormat != GE_CMODE_32BIT_ABGR8888) {
ConvertColors(clutBufConverted_, clutBufRaw_, getClutDestFormat(clutFormat), clutExtendedBytes / sizeof(u16));
clutBuf_ = clutBufConverted_;
} else {
clutBuf_ = clutBufRaw_;
}
// Special optimization: fonts typically draw clut4 with just alpha values in a single color.
clutAlphaLinear_ = false;
clutAlphaLinearColor_ = 0;
if (gstate.getClutPaletteFormat() == GE_CMODE_16BIT_ABGR4444 && gstate.isClutIndexSimple()) {
const u16 *clut = GetCurrentClut<u16>();
clutAlphaLinear_ = true;
clutAlphaLinearColor_ = clut[15] & 0xFFF0;
for (int i = 0; i < 16; ++i) {
if ((clut[i] & 0xf) != i) {
clutAlphaLinear_ = false;
break;
}
// Alpha 0 doesn't matter.
if (i != 0 && (clut[i] & 0xFFF0) != clutAlphaLinearColor_) {
clutAlphaLinear_ = false;
break;
}
}
}
clutLastFormat_ = gstate.clutformat;
}
template <typename T>
inline const T *TextureCache::GetCurrentClut() {
return (const T *)clutBuf_;
}
inline u32 TextureCache::GetCurrentClutHash() {
return clutHash_;
}
// #define DEBUG_TEXTURES
#ifdef DEBUG_TEXTURES
bool SetDebugTexture() {
static const int highlightFrames = 30;
static int numTextures = 0;
static int lastFrames = 0;
static int mostTextures = 1;
if (lastFrames != gpuStats.numFrames) {
mostTextures = std::max(mostTextures, numTextures);
numTextures = 0;
lastFrames = gpuStats.numFrames;
}
static GLuint solidTexture = 0;
bool changed = false;
if (((gpuStats.numFrames / highlightFrames) % mostTextures) == numTextures) {
if (gpuStats.numFrames % highlightFrames == 0) {
NOTICE_LOG(HLE, "Highlighting texture # %d / %d", numTextures, mostTextures);
}
static const u32 solidTextureData[] = {0x99AA99FF};
if (solidTexture == 0) {
glGenTextures(1, &solidTexture);
glBindTexture(GL_TEXTURE_2D, solidTexture);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, solidTextureData);
} else {
glBindTexture(GL_TEXTURE_2D, solidTexture);
}
changed = true;
}
++numTextures;
return changed;
}
#endif
void TextureCache::SetTexture() {
#ifdef DEBUG_TEXTURES
if (SetDebugTexture()) {
// A different texture was bound, let's rebind next time.
lastBoundTexture = -1;
return;
}
#endif
u32 texaddr = (gstate.texaddr[0] & 0xFFFFF0) | ((gstate.texbufwidth[0]<<8) & 0x0F000000);
if (!Memory::IsValidAddress(texaddr)) {
// Bind a null texture and return.
glBindTexture(GL_TEXTURE_2D, 0);
lastBoundTexture = -1;
return;
}
GETextureFormat format = gstate.getTextureFormat();
if (format >= 11) {
ERROR_LOG_REPORT(G3D, "Unknown texture format %i", format);
// TODO: Better assumption?
format = GE_TFMT_5650;
}
bool hasClut = gstate.isTextureFormatIndexed();
u64 cachekey = (u64)texaddr << 32;
u32 cluthash;
if (hasClut) {
if (clutLastFormat_ != gstate.clutformat) {
// We update here because the clut format can be specified after the load.
UpdateCurrentClut();
}
cluthash = GetCurrentClutHash() ^ gstate.clutformat;
cachekey |= cluthash;
} else {
cluthash = 0;
}
int w = 1 << (gstate.texsize[0] & 0xf);
int h = 1 << ((gstate.texsize[0] >> 8) & 0xf);
int bufw = GetLevelBufw(0, texaddr);
int maxLevel = ((gstate.texmode >> 16) & 0x7);
u32 texhash = MiniHash((const u32 *)Memory::GetPointer(texaddr));
u32 fullhash = 0;
TexCache::iterator iter = cache.find(cachekey);
TexCacheEntry *entry = NULL;
gstate_c.flipTexture = false;
gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE;
bool useBufferedRendering = g_Config.iRenderingMode != 0 ? 1 : 0;
bool replaceImages = false;
if (iter != cache.end()) {
entry = &iter->second;
// Check for FBO - slow!
if (entry->framebuffer) {
entry->framebuffer->usageFlags |= FB_USAGE_TEXTURE;
if (useBufferedRendering) {
if (entry->framebuffer->fbo) {
fbo_bind_color_as_texture(entry->framebuffer->fbo, 0);
} else {
glBindTexture(GL_TEXTURE_2D, 0);
lastBoundTexture = -1;
gstate_c.skipDrawReason |= SKIPDRAW_BAD_FB_TEXTURE;
}
UpdateSamplingParams(*entry, false);
// This isn't right.
gstate_c.curTextureWidth = entry->framebuffer->width;
gstate_c.curTextureHeight = entry->framebuffer->height;
gstate_c.flipTexture = true;
gstate_c.textureFullAlpha = entry->framebuffer->format == GE_FORMAT_565;
entry->lastFrame = gpuStats.numFrames;
} else {
if (entry->framebuffer->fbo)
entry->framebuffer->fbo = 0;
glBindTexture(GL_TEXTURE_2D, 0);
lastBoundTexture = -1;
entry->lastFrame = gpuStats.numFrames;
}
return;
}
// Validate the texture here (width, height etc)
int dim = gstate.texsize[0] & 0xF0F;
bool match = entry->Matches(dim, format, maxLevel);
bool rehash = (entry->status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_UNRELIABLE;
bool doDelete = true;
if (match) {
if (entry->lastFrame != gpuStats.numFrames) {
entry->numFrames++;
}
if (entry->framesUntilNextFullHash == 0) {
// Exponential backoff up to 2048 frames. Textures are often reused.
entry->framesUntilNextFullHash = std::min(2048, entry->numFrames);
rehash = true;
} else {
--entry->framesUntilNextFullHash;
}
// If it's not huge or has been invalidated many times, recheck the whole texture.
if (entry->invalidHint > 180 || (entry->invalidHint > 15 && dim <= 0x909)) {
entry->invalidHint = 0;
rehash = true;
}
bool hashFail = false;
if (texhash != entry->hash) {
fullhash = QuickTexHash(texaddr, bufw, w, h, format);
hashFail = true;
rehash = false;
}
if (rehash && (entry->status & TexCacheEntry::STATUS_MASK) != TexCacheEntry::STATUS_RELIABLE) {
fullhash = QuickTexHash(texaddr, bufw, w, h, format);
if (fullhash != entry->fullhash) {
hashFail = true;
} else if ((entry->status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_UNRELIABLE && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) {
// Reset to STATUS_HASHING.
entry->status &= ~TexCacheEntry::STATUS_MASK;
}
}
if (hashFail) {
match = false;
entry->status |= TexCacheEntry::STATUS_UNRELIABLE;
entry->numFrames = 0;
// Don't give up just yet. Let's try the secondary cache if it's been invalidated before.
// If it's failed a bunch of times, then the second cache is just wasting time and VRAM.
if (entry->numInvalidated > 2 && entry->numInvalidated < 128 && !lowMemoryMode_) {
u64 secondKey = fullhash | (u64)cluthash << 32;
TexCache::iterator secondIter = secondCache.find(secondKey);
if (secondIter != secondCache.end()) {
TexCacheEntry *secondEntry = &secondIter->second;
if (secondEntry->Matches(dim, format, maxLevel)) {
// Reset the numInvalidated value lower, we got a match.
if (entry->numInvalidated > 8) {
--entry->numInvalidated;
}
entry = secondEntry;
match = true;
}
} else {
secondKey = entry->fullhash | (u64)entry->cluthash << 32;
secondCache[secondKey] = *entry;
doDelete = false;
}
}
}
}
if (match) {
// TODO: Mark the entry reliable if it's been safe for long enough?
//got one!
entry->lastFrame = gpuStats.numFrames;
if (entry->texture != lastBoundTexture) {
glBindTexture(GL_TEXTURE_2D, entry->texture);
lastBoundTexture = entry->texture;
gstate_c.textureFullAlpha = (entry->status & TexCacheEntry::STATUS_ALPHA_MASK) == TexCacheEntry::STATUS_ALPHA_FULL;
}
UpdateSamplingParams(*entry, false);
DEBUG_LOG(G3D, "Texture at %08x Found in Cache, applying", texaddr);
return; //Done!
} else {
entry->numInvalidated++;
gpuStats.numTextureInvalidations++;
INFO_LOG(G3D, "Texture different or overwritten, reloading at %08x", texaddr);
if (doDelete) {
if (entry->maxLevel == maxLevel && entry->dim == (gstate.texsize[0] & 0xF0F) && entry->format == format && g_Config.iTexScalingLevel <= 1) {
// Actually, if size and number of levels match, let's try to avoid deleting and recreating.
// Instead, let's use glTexSubImage to replace the images.
replaceImages = true;
} else {
if (entry->texture == lastBoundTexture) {
lastBoundTexture = -1;
}
glDeleteTextures(1, &entry->texture);
}
}
if (entry->status == TexCacheEntry::STATUS_RELIABLE) {
entry->status = TexCacheEntry::STATUS_HASHING;
}
}
} else {
INFO_LOG(G3D, "No texture in cache, decoding...");
TexCacheEntry entryNew = {0};
cache[cachekey] = entryNew;
entry = &cache[cachekey];
entry->status = TexCacheEntry::STATUS_HASHING;
}
if ((bufw == 0 || (gstate.texbufwidth[0] & 0xf800) != 0) && texaddr >= PSP_GetUserMemoryBase()) {
ERROR_LOG_REPORT(HLE, "Texture with unexpected bufw (full=%d)", gstate.texbufwidth[0] & 0xffff);
}
// We have to decode it, let's setup the cache entry first.
entry->addr = texaddr;
entry->hash = texhash;
entry->format = format;
entry->lastFrame = gpuStats.numFrames;
entry->framebuffer = 0;
entry->maxLevel = maxLevel;
entry->lodBias = 0.0f;
entry->dim = gstate.texsize[0] & 0xF0F;
// This would overestimate the size in many case so we underestimate instead
// to avoid excessive clearing caused by cache invalidations.
entry->sizeInRAM = (bitsPerPixel[format] * bufw * h / 2) / 8;
entry->fullhash = fullhash == 0 ? QuickTexHash(texaddr, bufw, w, h, format) : fullhash;
entry->cluthash = cluthash;
entry->status &= ~TexCacheEntry::STATUS_ALPHA_MASK;
gstate_c.curTextureWidth = w;
gstate_c.curTextureHeight = h;
if (!replaceImages) {
glGenTextures(1, &entry->texture);
}
glBindTexture(GL_TEXTURE_2D, entry->texture);
lastBoundTexture = entry->texture;
// Adjust maxLevel to actually present levels..
for (int i = 0; i <= maxLevel; i++) {
// If encountering levels pointing to nothing, adjust max level.
u32 levelTexaddr = (gstate.texaddr[i] & 0xFFFFF0) | ((gstate.texbufwidth[i] << 8) & 0x0F000000);
if (!Memory::IsValidAddress(levelTexaddr)) {
maxLevel = i - 1;
break;
}
}
if (g_Config.bMipMap) {
#ifdef USING_GLES2
// GLES2 doesn't have support for a "Max lod" which is critical as PSP games often
// don't specify mips all the way down. As a result, we either need to manually generate
// the bottom few levels or rely on OpenGL's autogen mipmaps instead, which might not
// be as good quality as the game's own (might even be better in some cases though).
// For now, I choose to use autogen mips on GLES2 and the game's own on other platforms.
// As is usual, GLES3 will solve this problem nicely but wide distribution of that is
// years away.
LoadTextureLevel(*entry, 0, replaceImages);
if (maxLevel > 0)
glGenerateMipmap(GL_TEXTURE_2D);
#else
for (int i = 0; i <= maxLevel; i++) {
LoadTextureLevel(*entry, i, replaceImages);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, maxLevel);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_LOD, (float)maxLevel);
#endif
} else {
LoadTextureLevel(*entry, 0, replaceImages);
#ifndef USING_GLES2
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
#endif
}
int aniso = 1 << g_Config.iAnisotropyLevel;
float anisotropyLevel = (float) aniso > maxAnisotropyLevel ? maxAnisotropyLevel : (float) aniso;
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisotropyLevel);
UpdateSamplingParams(*entry, true);
//glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
//glPixelStorei(GL_PACK_ROW_LENGTH, 0);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
gstate_c.textureFullAlpha = (entry->status & TexCacheEntry::STATUS_ALPHA_MASK) == TexCacheEntry::STATUS_ALPHA_FULL;
}
void *TextureCache::DecodeTextureLevel(GETextureFormat format, GEPaletteFormat clutformat, int level, u32 &texByteAlign, GLenum &dstFmt) {
void *finalBuf = NULL;
u32 texaddr = (gstate.texaddr[level] & 0xFFFFF0) | ((gstate.texbufwidth[level] << 8) & 0x0F000000);
int bufw = GetLevelBufw(level, texaddr);
int w = 1 << (gstate.texsize[level] & 0xf);
int h = 1 << ((gstate.texsize[level] >> 8) & 0xf);
const u8 *texptr = Memory::GetPointer(texaddr);
switch (format)
{
case GE_TFMT_CLUT4:
{
dstFmt = getClutDestFormat(clutformat);
const bool mipmapShareClut = (gstate.texmode & 0x100) == 0;
const int clutSharingOffset = mipmapShareClut ? 0 : level * 16;
switch (clutformat) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
tmpTexBuf16.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
const u16 *clut = GetCurrentClut<u16>() + clutSharingOffset;
texByteAlign = 2;
if (!(gstate.texmode & 1)) {
if (clutAlphaLinear_ && mipmapShareClut) {
DeIndexTexture4Optimal(tmpTexBuf16.data(), texaddr, bufw * h, clutAlphaLinearColor_);
} else {
DeIndexTexture4(tmpTexBuf16.data(), texaddr, bufw * h, clut);
}
} else {
tmpTexBuf32.resize(std::max(bufw, w) * h);
UnswizzleFromMem(texaddr, bufw, 0, level);
if (clutAlphaLinear_ && mipmapShareClut) {
DeIndexTexture4Optimal(tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), bufw * h, clutAlphaLinearColor_);
} else {
DeIndexTexture4(tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), bufw * h, clut);
}
}
finalBuf = tmpTexBuf16.data();
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
const u32 *clut = GetCurrentClut<u32>() + clutSharingOffset;
if (!(gstate.texmode & 1)) {
DeIndexTexture4(tmpTexBuf32.data(), texaddr, bufw * h, clut);
finalBuf = tmpTexBuf32.data();
} else {
UnswizzleFromMem(texaddr, bufw, 0, level);
// Let's reuse tmpTexBuf16, just need double the space.
tmpTexBuf16.resize(std::max(bufw, w) * h * 2);
DeIndexTexture4((u32 *)tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), bufw * h, clut);
finalBuf = tmpTexBuf16.data();
}
}
break;
default:
ERROR_LOG(G3D, "Unknown CLUT4 texture mode %d", gstate.getClutPaletteFormat());
return NULL;
}
}
break;
case GE_TFMT_CLUT8:
dstFmt = getClutDestFormat(gstate.getClutPaletteFormat());
texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()];
finalBuf = readIndexedTex(level, texaddr, 1, dstFmt);
break;
case GE_TFMT_CLUT16:
dstFmt = getClutDestFormat(gstate.getClutPaletteFormat());
texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()];
finalBuf = readIndexedTex(level, texaddr, 2, dstFmt);
break;
case GE_TFMT_CLUT32:
dstFmt = getClutDestFormat(gstate.getClutPaletteFormat());
texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()];
finalBuf = readIndexedTex(level, texaddr, 4, dstFmt);
break;
case GE_TFMT_4444:
case GE_TFMT_5551:
case GE_TFMT_5650:
if (format == GE_TFMT_4444)
dstFmt = GL_UNSIGNED_SHORT_4_4_4_4;
else if (format == GE_TFMT_5551)
dstFmt = GL_UNSIGNED_SHORT_5_5_5_1;
else if (format == GE_TFMT_5650)
dstFmt = GL_UNSIGNED_SHORT_5_6_5;
texByteAlign = 2;
if (!(gstate.texmode & 1)) {
int len = std::max(bufw, w) * h;
tmpTexBuf16.resize(len);
tmpTexBufRearrange.resize(len);
finalBuf = tmpTexBuf16.data();
ConvertColors(finalBuf, Memory::GetPointer(texaddr), dstFmt, bufw * h);
} else {
tmpTexBuf32.resize(std::max(bufw, w) * h);
finalBuf = UnswizzleFromMem(texaddr, bufw, 2, level);
ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h);
}
break;
case GE_TFMT_8888:
dstFmt = GL_UNSIGNED_BYTE;
if (!(gstate.texmode & 1)) {
// Special case: if we don't need to deal with packing, we don't need to copy.
if (w == bufw) {
finalBuf = Memory::GetPointer(texaddr);
} else {
int len = bufw * h;
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
Memory::Memcpy(tmpTexBuf32.data(), texaddr, len * sizeof(u32));
finalBuf = tmpTexBuf32.data();
}
}
else {
tmpTexBuf32.resize(std::max(bufw, w) * h);
finalBuf = UnswizzleFromMem(texaddr, bufw, 4, level);
}
ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h);
break;
case GE_TFMT_DXT1:
dstFmt = GL_UNSIGNED_BYTE;
{
int minw = std::min(bufw, w);
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
u32 *dst = tmpTexBuf32.data();
DXT1Block *src = (DXT1Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < minw; x += 4) {
decodeDXT1Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
finalBuf = tmpTexBuf32.data();
w = (w + 3) & ~3;
}
break;
case GE_TFMT_DXT3:
dstFmt = GL_UNSIGNED_BYTE;
{
int minw = std::min(bufw, w);
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
u32 *dst = tmpTexBuf32.data();
DXT3Block *src = (DXT3Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < minw; x += 4) {
decodeDXT3Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
w = (w + 3) & ~3;
finalBuf = tmpTexBuf32.data();
}
break;
case GE_TFMT_DXT5:
dstFmt = GL_UNSIGNED_BYTE;
{
int minw = std::min(bufw, w);
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
u32 *dst = tmpTexBuf32.data();
DXT5Block *src = (DXT5Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < minw; x += 4) {
decodeDXT5Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
w = (w + 3) & ~3;
finalBuf = tmpTexBuf32.data();
}
break;
default:
ERROR_LOG_REPORT(G3D, "Unknown Texture Format %d!!!", format);
return NULL;
}
if (!finalBuf) {
ERROR_LOG_REPORT(G3D, "NO finalbuf! Will crash!");
}
if (w != bufw) {
int pixelSize;
switch (dstFmt) {
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_5_6_5:
pixelSize = 2;
break;
default:
pixelSize = 4;
break;
}
// Need to rearrange the buffer to simulate GL_UNPACK_ROW_LENGTH etc.
int inRowBytes = bufw * pixelSize;
int outRowBytes = w * pixelSize;
const u8 *read = (const u8 *)finalBuf;
u8 *write = 0;
if (w > bufw) {
write = (u8 *)tmpTexBufRearrange.data();
finalBuf = tmpTexBufRearrange.data();
} else {
write = (u8 *)finalBuf;
}
for (int y = 0; y < h; y++) {
memmove(write, read, outRowBytes);
read += inRowBytes;
write += outRowBytes;
}
}
return finalBuf;
}
void TextureCache::CheckAlpha(TexCacheEntry &entry, u32 *pixelData, GLenum dstFmt, int w, int h) {
// TODO: Could probably be optimized more.
u32 hitZeroAlpha = 0;
u32 hitSomeAlpha = 0;
switch (dstFmt) {
case GL_UNSIGNED_SHORT_4_4_4_4:
{
const u32 *p = pixelData;
for (int i = 0; i < (w * h + 1) / 2; ++i) {
u32 a = p[i] & 0x000F000F;
hitZeroAlpha |= a ^ 0x000F000F;
if (a != 0x000F000F && a != 0x0000000F && a != 0x000F0000 && a != 0) {
hitSomeAlpha = 1;
break;
}
}
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
{
const u32 *p = pixelData;
for (int i = 0; i < (w * h + 1) / 2; ++i) {
u32 a = p[i] & 0x00010001;
hitZeroAlpha |= a ^ 0x00010001;
}
}
break;
case GL_UNSIGNED_SHORT_5_6_5:
{
// Never has any alpha.
}
break;
default:
{
const u32 *p = pixelData;
for (int i = 0; i < w * h; ++i) {
u32 a = p[i] & 0xFF000000;
hitZeroAlpha |= a ^ 0xFF000000;
if (a != 0xFF000000 && a != 0) {
hitSomeAlpha = 1;
break;
}
}
}
break;
}
if (hitSomeAlpha != 0)
entry.status |= TexCacheEntry::STATUS_ALPHA_UNKNOWN;
else if (hitZeroAlpha != 0)
entry.status |= TexCacheEntry::STATUS_ALPHA_SIMPLE;
else
entry.status |= TexCacheEntry::STATUS_ALPHA_FULL;
}
void TextureCache::LoadTextureLevel(TexCacheEntry &entry, int level, bool replaceImages) {
// TODO: only do this once
u32 texByteAlign = 1;
// TODO: Look into using BGRA for 32-bit textures when the GL_EXT_texture_format_BGRA8888 extension is available, as it's faster than RGBA on some chips.
GLenum dstFmt = 0;
GEPaletteFormat clutformat = gstate.getClutPaletteFormat();
void *finalBuf = DecodeTextureLevel(GETextureFormat(entry.format), clutformat, level, texByteAlign, dstFmt);
if (finalBuf == NULL) {
return;
}
int w = 1 << (gstate.texsize[level] & 0xf);
int h = 1 << ((gstate.texsize[level] >> 8) & 0xf);
gpuStats.numTexturesDecoded++;
// Can restore these and remove the fixup at the end of DecodeTextureLevel on desktop GL and GLES 3.
// glPixelStorei(GL_UNPACK_ROW_LENGTH, bufw);
// glPixelStorei(GL_PACK_ROW_LENGTH, bufw);
glPixelStorei(GL_UNPACK_ALIGNMENT, texByteAlign);
glPixelStorei(GL_PACK_ALIGNMENT, texByteAlign);
int scaleFactor = g_Config.iTexScalingLevel;
// Don't scale the PPGe texture.
if (entry.addr > 0x05000000 && entry.addr < 0x08800000)
scaleFactor = 1;
u32 *pixelData = (u32 *)finalBuf;
if (scaleFactor > 1 && entry.numInvalidated == 0)
scaler.Scale(pixelData, dstFmt, w, h, scaleFactor);
// Or always?
if (entry.numInvalidated == 0)
CheckAlpha(entry, pixelData, dstFmt, w, h);
else
entry.status |= TexCacheEntry::STATUS_ALPHA_UNKNOWN;
GLuint components = dstFmt == GL_UNSIGNED_SHORT_5_6_5 ? GL_RGB : GL_RGBA;
if (replaceImages) {
glTexSubImage2D(GL_TEXTURE_2D, level, 0, 0, w, h, components, dstFmt, pixelData);
} else {
glTexImage2D(GL_TEXTURE_2D, level, components, w, h, 0, components, dstFmt, pixelData);
GLenum err = glGetError();
if (err == GL_OUT_OF_MEMORY) {
lowMemoryMode_ = true;
Decimate();
// Try again.
glTexImage2D(GL_TEXTURE_2D, level, components, w, h, 0, components, dstFmt, pixelData);
}
}
}
// Only used by Qt UI?
bool TextureCache::DecodeTexture(u8* output, GPUgstate state)
{
GPUgstate oldState = gstate;
gstate = state;
u32 texaddr = (gstate.texaddr[0] & 0xFFFFF0) | ((gstate.texbufwidth[0]<<8) & 0x0F000000);
if (!Memory::IsValidAddress(texaddr)) {
return false;
}
u32 texByteAlign = 1;
GLenum dstFmt = 0;
GETextureFormat format = gstate.getTextureFormat();
GEPaletteFormat clutformat = gstate.getClutPaletteFormat();
u8 level = 0;
int bufw = GetLevelBufw(level, texaddr);
int w = 1 << (gstate.texsize[level] & 0xf);
int h = 1 << ((gstate.texsize[level]>>8) & 0xf);
void *finalBuf = DecodeTextureLevel(format, clutformat, level, texByteAlign, dstFmt);
if (finalBuf == NULL) {
return false;
}
switch (dstFmt)
{
case GL_UNSIGNED_SHORT_4_4_4_4:
for(int y = 0; y < h; y++)
for(int x = 0; x < bufw; x++)
{
u32 val = ((u16*)finalBuf)[y*bufw + x];
u32 r = ((val>>12) & 0xF) * 17;
u32 g = ((val>> 8) & 0xF) * 17;
u32 b = ((val>> 4) & 0xF) * 17;
u32 a = ((val>> 0) & 0xF) * 17;
((u32*)output)[y*w + x] = (a << 24) | (r << 16) | (g << 8) | b;
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
for(int y = 0; y < h; y++)
for(int x = 0; x < bufw; x++)
{
u32 val = ((u16*)finalBuf)[y*bufw + x];
u32 r = Convert5To8((val>>11) & 0x1F);
u32 g = Convert5To8((val>> 6) & 0x1F);
u32 b = Convert5To8((val>> 1) & 0x1F);
u32 a = (val & 0x1) * 255;
((u32*)output)[y*w + x] = (a << 24) | (r << 16) | (g << 8) | b;
}
break;
case GL_UNSIGNED_SHORT_5_6_5:
for(int y = 0; y < h; y++)
for(int x = 0; x < bufw; x++)
{
u32 val = ((u16*)finalBuf)[y*bufw + x];
u32 a = 0xFF;
u32 r = Convert5To8((val>>11) & 0x1F);
u32 g = Convert6To8((val>> 5) & 0x3F);
u32 b = Convert5To8((val ) & 0x1F);
((u32*)output)[y*w + x] = (a << 24) | (r << 16) | (g << 8) | b;
}
break;
default:
for(int y = 0; y < h; y++)
for(int x = 0; x < bufw; x++)
{
u32 val = ((u32*)finalBuf)[y*bufw + x];
((u32*)output)[y*w + x] = ((val & 0xFF000000)) | ((val & 0x00FF0000)>>16) | ((val & 0x0000FF00)) | ((val & 0x000000FF)<<16);
}
break;
}
gstate = oldState;
return true;
}