ppsspp/GPU/Directx9/TextureCacheDX9.cpp

1527 lines
46 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <map>
#include <algorithm>
#include "Core/MemMap.h"
#include "Core/Reporting.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#include "GPU/Directx9/TextureCacheDX9.h"
#include "GPU/Directx9/FramebufferDX9.h"
#include "GPU/Common/TextureDecoder.h"
#include "Core/Config.h"
#include "ext/xxhash.h"
#include "math/math_util.h"
extern int g_iNumVideos;
namespace DX9 {
#define INVALID_TEX (LPDIRECT3DTEXTURE9)(-1)
// If a texture hasn't been seen for this many frames, get rid of it.
#define TEXTURE_KILL_AGE 200
#define TEXTURE_KILL_AGE_LOWMEM 60
// Not used in lowmem mode.
#define TEXTURE_SECOND_KILL_AGE 100
// Try to be prime to other decimation intervals.
#define TEXCACHE_DECIMATION_INTERVAL 13
TextureCacheDX9::TextureCacheDX9() : clearCacheNextFrame_(false), lowMemoryMode_(false), clutBuf_(NULL) {
lastBoundTexture = INVALID_TEX;
decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL;
// This is 5MB of temporary storage. Might be possible to shrink it.
tmpTexBuf32.resize(1024 * 512); // 2MB
tmpTexBuf16.resize(1024 * 512); // 1MB
tmpTexBufRearrange.resize(1024 * 512); // 2MB
clutBufConverted_ = new u32[4096]; // 16KB
clutBufRaw_ = new u32[4096]; // 16KB
// glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAnisotropyLevel);
maxAnisotropyLevel = 16;
#ifdef _XBOX
lowMemoryMode_ = true;
#endif
}
TextureCacheDX9::~TextureCacheDX9() {
delete [] clutBufConverted_;
delete [] clutBufRaw_;
}
void TextureCacheDX9::Clear(bool delete_them) {
pD3Ddevice->SetTexture(0, NULL);
lastBoundTexture = INVALID_TEX;
if (delete_them) {
for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ++iter) {
DEBUG_LOG(G3D, "Deleting texture %i", iter->second.texture);
iter->second.texture->Release();
}
for (TexCache::iterator iter = secondCache.begin(); iter != secondCache.end(); ++iter) {
DEBUG_LOG(G3D, "Deleting texture %i", iter->second.texture);
iter->second.texture->Release();
}
}
if (cache.size() + secondCache.size()) {
INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)(cache.size() + secondCache.size()));
cache.clear();
secondCache.clear();
}
}
// Removes old textures.
void TextureCacheDX9::Decimate() {
if (--decimationCounter_ <= 0) {
decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL;
} else {
return;
}
pD3Ddevice->SetTexture(0, NULL);
lastBoundTexture = INVALID_TEX;
int killAge = lowMemoryMode_ ? TEXTURE_KILL_AGE_LOWMEM : TEXTURE_KILL_AGE;
for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ) {
if (iter->second.lastFrame + TEXTURE_KILL_AGE < gpuStats.numFlips) {
iter->second.texture->Release();
cache.erase(iter++);
}
else
++iter;
}
for (TexCache::iterator iter = secondCache.begin(); iter != secondCache.end(); ) {
if (lowMemoryMode_ || iter->second.lastFrame + TEXTURE_KILL_AGE < gpuStats.numFlips) {
iter->second.texture->Release();
secondCache.erase(iter++);
}
else
++iter;
}
}
void TextureCacheDX9::Invalidate(u32 addr, int size, GPUInvalidationType type) {
addr &= 0x0FFFFFFF;
u32 addr_end = addr + size;
// They could invalidate inside the texture, let's just give a bit of leeway.
const int LARGEST_TEXTURE_SIZE = 512 * 512 * 4;
u64 startKey = addr - LARGEST_TEXTURE_SIZE;
u64 endKey = addr + size + LARGEST_TEXTURE_SIZE;
for (TexCache::iterator iter = cache.lower_bound(startKey), end = cache.upper_bound(endKey); iter != end; ++iter) {
u32 texAddr = iter->second.addr;
u32 texEnd = iter->second.addr + iter->second.sizeInRAM;
if (texAddr < addr_end && addr < texEnd) {
if ((iter->second.status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_RELIABLE) {
// Clear status -> STATUS_HASHING.
iter->second.status &= ~TexCacheEntry::STATUS_MASK;
}
if (type != GPU_INVALIDATE_ALL) {
gpuStats.numTextureInvalidations++;
// Start it over from 0 (unless it's safe.)
iter->second.numFrames = type == GPU_INVALIDATE_SAFE ? 256 : 0;
iter->second.framesUntilNextFullHash = 0;
} else {
iter->second.invalidHint++;
}
}
}
}
void TextureCacheDX9::InvalidateAll(GPUInvalidationType /*unused*/) {
for (TexCache::iterator iter = cache.begin(), end = cache.end(); iter != end; ++iter) {
if ((iter->second.status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_RELIABLE) {
// Clear status -> STATUS_HASHING.
iter->second.status &= ~TexCacheEntry::STATUS_MASK;
}
iter->second.invalidHint++;
}
}
void TextureCacheDX9::ClearNextFrame() {
clearCacheNextFrame_ = true;
}
template <typename T>
inline void AttachFramebufferValid(T &entry, VirtualFramebufferDX9 *framebuffer) {
const bool hasInvalidFramebuffer = entry->framebuffer == 0 || entry->invalidHint == -1;
const bool hasOlderFramebuffer = entry->framebuffer != 0 && entry->framebuffer->last_frame_render < framebuffer->last_frame_render;
if (hasInvalidFramebuffer || hasOlderFramebuffer) {
entry->framebuffer = framebuffer;
entry->invalidHint = 0;
host->GPUNotifyTextureAttachment(entry->addr);
}
}
template <typename T>
inline void AttachFramebufferInvalid(T &entry, VirtualFramebufferDX9 *framebuffer) {
if (entry->framebuffer == 0 || entry->framebuffer == framebuffer) {
entry->framebuffer = framebuffer;
entry->invalidHint = -1;
host->GPUNotifyTextureAttachment(entry->addr);
}
}
inline void TextureCacheDX9::AttachFramebuffer(TexCacheEntry *entry, u32 address, VirtualFramebufferDX9 *framebuffer, bool exactMatch) {
// If they match exactly, it's non-CLUT and from the top left.
if (exactMatch) {
DEBUG_LOG(G3D, "Render to texture detected at %08x!", address);
if (!entry->framebuffer || entry->invalidHint == -1) {
if (entry->format != framebuffer->format) {
WARN_LOG_REPORT_ONCE(diffFormat1, G3D, "Render to texture with different formats %d != %d", entry->format, framebuffer->format);
// If it already has one, let's hope that one is correct.
// If "AttachFramebufferValid" , Evangelion Jo and Kurohyou 2 will be 'blue background' in-game
AttachFramebufferInvalid(entry, framebuffer);
} else {
AttachFramebufferValid(entry, framebuffer);
}
// TODO: Delete the original non-fbo texture too.
}
} else if (g_Config.iRenderingMode == FB_NON_BUFFERED_MODE || g_Config.iRenderingMode == FB_BUFFERED_MODE) {
// 3rd Birthday (and possibly other games) render to a 16 bit clut texture.
const bool compatFormat = framebuffer->format == entry->format
|| (framebuffer->format == GE_FORMAT_8888 && entry->format == GE_TFMT_CLUT32)
|| (framebuffer->format != GE_FORMAT_8888 && entry->format == GE_TFMT_CLUT16);
// Is it at least the right stride?
if (framebuffer->fb_stride == entry->bufw && compatFormat) {
if (framebuffer->format != entry->format) {
WARN_LOG_REPORT_ONCE(diffFormat2, G3D, "Render to texture with different formats %d != %d at %08x", entry->format, framebuffer->format, address);
// TODO: Use an FBO to translate the palette?
// If 'AttachFramebufferInvalid' , Kurohyou 2 will be missing battle scene in-game and FF Type-0 will have black box shadow/'blue fog' and 3rd birthday will have 'blue fog'
// If 'AttachFramebufferValid' , DBZ VS Tag will have 'burning effect' ,
AttachFramebufferValid(entry, framebuffer);
} else if ((entry->addr - address) / entry->bufw < framebuffer->height) {
WARN_LOG_REPORT_ONCE(subarea, G3D, "Render to area containing texture at %08x", address);
// TODO: Keep track of the y offset.
// If "AttachFramebufferValid" , God of War Ghost of Sparta/Chains of Olympus will be missing special effect.
AttachFramebufferInvalid(entry, framebuffer);
}
}
}
}
inline void TextureCacheDX9::DetachFramebuffer(TexCacheEntry *entry, u32 address, VirtualFramebufferDX9 *framebuffer) {
if (entry->framebuffer == framebuffer) {
entry->framebuffer = 0;
host->GPUNotifyTextureAttachment(entry->addr);
}
}
void TextureCacheDX9::NotifyFramebuffer(u32 address, VirtualFramebufferDX9 *framebuffer, FramebufferNotification msg) {
// This is a rough heuristic, because sometimes our framebuffers are too tall.
static const u32 MAX_SUBAREA_Y_OFFSET = 32;
// Must be in VRAM so | 0x04000000 it is.
const u64 cacheKey = (u64)(address | 0x04000000) << 32;
// If it has a clut, those are the low 32 bits, so it'll be inside this range.
// Also, if it's a subsample of the buffer, it'll also be within the FBO.
const u64 cacheKeyEnd = cacheKey + ((u64)(framebuffer->fb_stride * MAX_SUBAREA_Y_OFFSET) << 32);
switch (msg) {
case NOTIFY_FB_CREATED:
case NOTIFY_FB_UPDATED:
// Ensure it's in the framebuffer cache.
if (std::find(fbCache_.begin(), fbCache_.end(), framebuffer) == fbCache_.end()) {
fbCache_.push_back(framebuffer);
}
for (auto it = cache.lower_bound(cacheKey), end = cache.upper_bound(cacheKeyEnd); it != end; ++it) {
AttachFramebuffer(&it->second, address | 0x04000000, framebuffer, it->first == cacheKey);
}
break;
case NOTIFY_FB_DESTROYED:
for (auto it = cache.lower_bound(cacheKey), end = cache.upper_bound(cacheKeyEnd); it != end; ++it) {
DetachFramebuffer(&it->second, address | 0x04000000, framebuffer);
}
break;
}
}
void *TextureCacheDX9::UnswizzleFromMem(u32 texaddr, u32 bufw, u32 bytesPerPixel, u32 level) {
const u32 rowWidth = (bytesPerPixel > 0) ? (bufw * bytesPerPixel) : (bufw / 2);
const u32 pitch = rowWidth / 4;
const int bxc = rowWidth / 16;
int byc = (gstate.getTextureHeight(level) + 7) / 8;
if (byc == 0)
byc = 1;
u32 ydest = 0;
if (rowWidth >= 16) {
const u32 *src = (u32 *) Memory::GetPointer(texaddr);
u32 *ydestp = tmpTexBuf32.data();
for (int by = 0; by < byc; by++) {
u32 *xdest = ydestp;
for (int bx = 0; bx < bxc; bx++) {
u32 *dest = xdest;
for (int n = 0; n < 8; n++) {
memcpy(dest, src, 16);
dest += pitch;
src += 4;
}
xdest += 4;
}
ydestp += (rowWidth * 8) / 4;
}
} else if (rowWidth == 8) {
const u32 *src = (u32 *) Memory::GetPointer(texaddr);
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 8; n++, ydest += 2) {
tmpTexBuf32[ydest + 0] = *src++;
tmpTexBuf32[ydest + 1] = *src++;
src += 2; // skip two u32
}
}
} else if (rowWidth == 4) {
const u32 *src = (u32 *) Memory::GetPointer(texaddr);
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 8; n++, ydest++) {
tmpTexBuf32[ydest] = *src++;
src += 3;
}
}
} else if (rowWidth == 2) {
const u16 *src = (u16 *) Memory::GetPointer(texaddr);
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 4; n++, ydest++) {
u16 n1 = src[0];
u16 n2 = src[8];
tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 16);
src += 16;
}
}
} else if (rowWidth == 1) {
const u8 *src = (u8 *) Memory::GetPointer(texaddr);
for (int by = 0; by < byc; by++) {
for (int n = 0; n < 2; n++, ydest++) {
u8 n1 = src[ 0];
u8 n2 = src[16];
u8 n3 = src[32];
u8 n4 = src[48];
tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 8) | ((u32)n3 << 16) | ((u32)n4 << 24);
src += 64;
}
}
}
return tmpTexBuf32.data();
}
void *TextureCacheDX9::ReadIndexedTex(int level, u32 texaddr, int bytesPerIndex, u32 dstFmt, int bufw) {
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
int length = bufw * h;
void *buf = NULL;
switch (gstate.getClutPaletteFormat()) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
tmpTexBuf16.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
const u16 *clut = GetCurrentClut<u16>();
if (!gstate.isTextureSwizzled()) {
switch (bytesPerIndex) {
case 1:
DeIndexTexture<u8>(tmpTexBuf16.data(), texaddr, length, clut);
break;
case 2:
DeIndexTexture<u16_le>(tmpTexBuf16.data(), texaddr, length, clut);
break;
case 4:
DeIndexTexture<u32_le>(tmpTexBuf16.data(), texaddr, length, clut);
break;
}
} else {
tmpTexBuf32.resize(std::max(bufw, w) * h);
UnswizzleFromMem(texaddr, bufw, bytesPerIndex, level);
switch (bytesPerIndex) {
case 1:
DeIndexTexture(tmpTexBuf16.data(), (u8 *) tmpTexBuf32.data(), length, clut);
break;
case 2:
DeIndexTexture(tmpTexBuf16.data(), (u16 *) tmpTexBuf32.data(), length, clut);
break;
case 4:
DeIndexTexture(tmpTexBuf16.data(), (u32 *) tmpTexBuf32.data(), length, clut);
break;
}
}
buf = tmpTexBuf16.data();
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
const u32 *clut = GetCurrentClut<u32>();
if (!gstate.isTextureSwizzled()) {
switch (bytesPerIndex) {
case 1:
DeIndexTexture<u8>(tmpTexBuf32.data(), texaddr, length, clut);
break;
case 2:
DeIndexTexture<u16_le>(tmpTexBuf32.data(), texaddr, length, clut);
break;
case 4:
DeIndexTexture<u32_le>(tmpTexBuf32.data(), texaddr, length, clut);
break;
}
buf = tmpTexBuf32.data();
} else {
UnswizzleFromMem(texaddr, bufw, bytesPerIndex, level);
// Since we had to unswizzle to tmpTexBuf32, let's output to tmpTexBuf16.
tmpTexBuf16.resize(std::max(bufw, w) * h * 2);
u32 *dest32 = (u32 *) tmpTexBuf16.data();
switch (bytesPerIndex) {
case 1:
DeIndexTexture(dest32, (u8 *) tmpTexBuf32.data(), length, clut);
buf = dest32;
break;
case 2:
DeIndexTexture(dest32, (u16 *) tmpTexBuf32.data(), length, clut);
buf = dest32;
break;
case 4:
// TODO: If a game actually uses this mode, check if using dest32 or tmpTexBuf32 is faster.
DeIndexTexture(tmpTexBuf32.data(), tmpTexBuf32.data(), length, clut);
buf = tmpTexBuf32.data();
break;
}
}
}
break;
default:
ERROR_LOG(G3D, "Unhandled clut texture mode %d!!!", (gstate.clutformat & 3));
break;
}
return buf;
}
D3DFORMAT getClutDestFormat(GEPaletteFormat format) {
switch (format) {
case GE_CMODE_16BIT_ABGR4444:
return D3DFMT_A4R4G4B4;
case GE_CMODE_16BIT_ABGR5551:
return D3DFMT_A1R5G5B5;
case GE_CMODE_16BIT_BGR5650:
return D3DFMT_R5G6B5;
case GE_CMODE_32BIT_ABGR8888:
return D3DFMT_A8R8G8B8;
}
// Should never be here !
return D3DFMT_A8R8G8B8;
}
static const u8 texByteAlignMap[] = {2, 2, 2, 4};
static const u32 MinFilt[8] = {
D3DTEXF_POINT,
D3DTEXF_LINEAR,
D3DTEXF_POINT,
D3DTEXF_LINEAR,
D3DTEXF_POINT, // GL_NEAREST_MIPMAP_NEAREST,
D3DTEXF_LINEAR, // GL_LINEAR_MIPMAP_NEAREST,
D3DTEXF_POINT, // GL_NEAREST_MIPMAP_LINEAR,
D3DTEXF_LINEAR, // GL_LINEAR_MIPMAP_LINEAR,
};
static const u32 MipFilt[8] = {
D3DTEXF_POINT,
D3DTEXF_LINEAR,
D3DTEXF_POINT,
D3DTEXF_LINEAR,
D3DTEXF_POINT, // GL_NEAREST_MIPMAP_NEAREST,
D3DTEXF_POINT, // GL_LINEAR_MIPMAP_NEAREST,
D3DTEXF_LINEAR, // GL_NEAREST_MIPMAP_LINEAR,
D3DTEXF_LINEAR, // GL_LINEAR_MIPMAP_LINEAR,
};
static const u32 MagFilt[2] = {
D3DTEXF_POINT,
D3DTEXF_LINEAR
};
// This should not have to be done per texture! OpenGL is silly yo
// TODO: Dirty-check this against the current texture.
void TextureCacheDX9::UpdateSamplingParams(TexCacheEntry &entry, bool force) {
int minFilt = gstate.texfilter & 0x7;
int magFilt = (gstate.texfilter>>8) & 1;
bool sClamp = gstate.isTexCoordClampedS();
bool tClamp = gstate.isTexCoordClampedT();
// Always force !!
force = true;
bool noMip = (gstate.texlevel & 0xFFFFFF) == 0x000001 || (gstate.texlevel & 0xFFFFFF) == 0x100001 ; // Fix texlevel at 0
if (entry.maxLevel == 0) {
// Enforce no mip filtering, for safety.
minFilt &= 1; // no mipmaps yet
} else {
// TODO: Is this a signed value? Which direction?
float lodBias = 0.0; // -(float)((gstate.texlevel >> 16) & 0xFF) / 16.0f;
if (force || entry.lodBias != lodBias) {
entry.lodBias = lodBias;
}
}
if ((g_Config.iTexFiltering == LINEAR || (g_Config.iTexFiltering == LINEARFMV && g_iNumVideos)) && !gstate.isColorTestEnabled()) {
magFilt |= 1;
minFilt |= 1;
}
if (g_Config.iTexFiltering == NEAREST) {
magFilt &= ~1;
minFilt &= ~1;
}
if (!g_Config.bMipMap || noMip) {
magFilt &= 1;
minFilt &= 1;
}
if (force || entry.minFilt != minFilt) {
pD3Ddevice->SetSamplerState(0, D3DSAMP_MINFILTER, MinFilt[minFilt]);
pD3Ddevice->SetSamplerState(0, D3DSAMP_MIPFILTER, MipFilt[minFilt]);
entry.minFilt = minFilt;
}
if (force || entry.magFilt != magFilt) {
pD3Ddevice->SetSamplerState(0, D3DSAMP_MAGFILTER, MagFilt[magFilt]);
entry.magFilt = magFilt;
}
if (force || entry.sClamp != sClamp) {
pD3Ddevice->SetSamplerState(0, D3DSAMP_ADDRESSU, sClamp ? D3DTADDRESS_CLAMP : D3DTADDRESS_WRAP);
entry.sClamp = sClamp;
}
if (force || entry.tClamp != tClamp) {
pD3Ddevice->SetSamplerState(0, D3DSAMP_ADDRESSV, tClamp ? D3DTADDRESS_CLAMP : D3DTADDRESS_WRAP);
entry.tClamp = tClamp;
}
#ifdef _XBOX
pD3Ddevice->SetRenderState(D3DRS_HALFPIXELOFFSET, TRUE );
#endif
}
static inline u32 ABGR2RGBA(u32 src) {
#ifndef _XBOX
return ((src & 0xFF000000)) |
((src & 0x00FF0000) >> 16) |
((src & 0x0000FF00)) |
((src & 0x000000FF) << 16);
#else
return (src >> 8) | (src << 24);
#endif
}
static void ClutConvertColors(void *dstBuf, const void *srcBuf, u32 dstFmt, int numPixels) {
// TODO: All these can be further sped up with SSE or NEON.
switch (dstFmt) {
case D3DFMT_A1R5G5B5:
{
const u16_le *src = (const u16_le *)srcBuf;
u16 *dst = (u16 *)dstBuf;
for (int i = 0; i < numPixels; i++) {
u16 rgb = (src[i]);
((uint16_t *)dst)[i] = (rgb & 0x83E0) | ((rgb & 0x1F) << 10) | ((rgb & 0x7C00) >> 10);
}
}
break;
case D3DFMT_A4R4G4B4:
{
const u16_le *src = (const u16_le *)srcBuf;
u16_le *dst = (u16_le *)dstBuf;
for (int i = 0; i < numPixels; i++) {
// Already good format
u16 rgb = src[i];
dst[i] = (rgb & 0xF) | (rgb & 0xF0)<<8 | ( rgb & 0xF00) | ((rgb & 0xF000)>>8);
}
}
break;
case D3DFMT_R5G6B5:
{
const u16_le *src = (const u16_le *)srcBuf;
u16 *dst = (u16 *)dstBuf;
for (int i = 0; i < numPixels; i++) {
u16 rgb = src[i];
dst[i] = ((rgb & 0x1f) << 11) | ( rgb & 0x7e0) | ((rgb & 0xF800) >>11 );
}
}
break;
default:
{
const u32 *src = (const u32 *)srcBuf;
u32 *dst = (u32*)dstBuf;
for (int i = 0; i < numPixels; i++) {
dst[i] = ABGR2RGBA(src[i]);
}
}
break;
}
}
void TextureCacheDX9::StartFrame() {
lastBoundTexture = INVALID_TEX;
if(clearCacheNextFrame_) {
Clear(true);
clearCacheNextFrame_ = false;
} else {
Decimate();
}
}
static inline u32 MiniHash(const u32 *ptr) {
return ptr[0];
}
static inline u32 QuickClutHash(const u8 *clut, u32 bytes) {
// CLUTs always come in multiples of 32 bytes, can't load them any other way.
_dbg_assert_msg_(G3D, (bytes & 31) == 0, "CLUT should always have a multiple of 32 bytes.");
const u32 prime = 2246822519U;
u32 hash = 0;
#ifdef _M_SSE
if ((((u32)(intptr_t)clut) & 0xf) == 0) {
__m128i cursor = _mm_set1_epi32(0);
const __m128i mult = _mm_set1_epi32(prime);
const __m128i *p = (const __m128i *)clut;
for (u32 i = 0; i < bytes / 16; ++i) {
cursor = _mm_add_epi32(cursor, _mm_mul_epu32(_mm_load_si128(&p[i]), mult));
}
// Add the four parts into the low i32.
cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 8));
cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 4));
hash = _mm_cvtsi128_si32(cursor);
} else {
#else
// TODO: ARM NEON implementation (using CPUDetect to be sure it has NEON.)
{
#endif
for (const u32 *p = (u32 *)clut, *end = (u32 *)(clut + bytes); p < end; ) {
hash += *p++ * prime;
}
}
return hash;
}
static inline u32 QuickTexHash(u32 addr, int bufw, int w, int h, GETextureFormat format) {
const u32 sizeInRAM = (textureBitsPerPixel[format] * bufw * h) / 8;
const u32 *checkp = (const u32 *) Memory::GetPointer(addr);
u32 check = 0;
#ifdef _M_SSE
// Make sure both the size and start are aligned, OR will get either.
if ((((u32)(intptr_t)checkp | sizeInRAM) & 0x1f) == 0) {
__m128i cursor = _mm_set1_epi32(0);
const __m128i *p = (const __m128i *)checkp;
for (u32 i = 0; i < sizeInRAM / 16; i += 2) {
cursor = _mm_add_epi32(cursor, _mm_load_si128(&p[i]));
cursor = _mm_xor_si128(cursor, _mm_load_si128(&p[i + 1]));
}
// Add the four parts into the low i32.
cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 8));
cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 4));
check = _mm_cvtsi128_si32(cursor);
} else {
#else
// TODO: ARM NEON implementation (using CPUDetect to be sure it has NEON.)
{
#endif
#ifdef _XBOX
if ((((u32)(intptr_t)checkp | sizeInRAM) & 0x1f) == 0) {
__vector4 add, xor;
__vector4 cur = __vzero();
const __vector4 * ptr = (const __vector4*)checkp;
for (u32 i = 0; i < sizeInRAM / 16; i+=2) {
add = __lvx(&ptr[i],0);
xor = __lvx(&ptr[i+1],0);
cur = __vadduwm(cur, add);
cur = __vxor(cur, xor);
}
// Add the four parts into the low i32. // is it possible with vmx ?
check = cur.u[0]+cur.u[1]+cur.u[2]+cur.u[3];
} else
#endif
for (u32 i = 0; i < sizeInRAM / 8; ++i) {
check += *checkp++;
check ^= *checkp++;
}
}
return check;
}
inline bool TextureCacheDX9::TexCacheEntry::Matches(u16 dim2, u8 format2, int maxLevel2) {
return dim == dim2 && format == format2 && maxLevel == maxLevel2;
}
void TextureCacheDX9::LoadClut() {
u32 clutAddr = gstate.getClutAddress();
clutTotalBytes_ = gstate.getClutLoadBytes();
if (Memory::IsValidAddress(clutAddr)) {
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, clutTotalBytes_);
} else {
memset(clutBufRaw_, 0xFF, clutTotalBytes_);
}
// Reload the clut next time.
clutLastFormat_ = 0xFFFFFFFF;
}
void TextureCacheDX9::UpdateCurrentClut() {
const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat();
const u32 clutBase = gstate.getClutIndexStartPos();
const u32 clutBaseBytes = clutBase * (clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16));
// Technically, these extra bytes weren't loaded, but hopefully it was loaded earlier.
// If not, we're going to hash random data, which hopefully doesn't cause a performance issue.
const u32 clutExtendedBytes = clutTotalBytes_ + clutBaseBytes;
clutHash_ = XXH32((const char *)clutBufRaw_, clutExtendedBytes, 0xC0108888);
/*
// Avoid a copy when we don't need to convert colors.
if (clutFormat != GE_CMODE_32BIT_ABGR8888) {
ClutConvertColors(clutBufConverted_, clutBufRaw_, getClutDestFormat(clutFormat), clutExtendedBytes / sizeof(u16));
clutBuf_ = clutBufConverted_;
} else {
clutBuf_ = clutBufRaw_;
}
*/
ClutConvertColors(clutBufConverted_, clutBufRaw_, getClutDestFormat(clutFormat), clutExtendedBytes / sizeof(u16));
clutBuf_ = clutBufConverted_;
//clutBuf_ = clutBufRaw_;
// Special optimization: fonts typically draw clut4 with just alpha values in a single color.
clutAlphaLinear_ = false;
clutAlphaLinearColor_ = 0;
if (gstate.getClutPaletteFormat() == GE_CMODE_16BIT_ABGR4444 && gstate.isClutIndexSimple()) {
const u16_le *clut = (const u16_le*)GetCurrentClut<u16>();
clutAlphaLinear_ = true;
clutAlphaLinearColor_ = clut[15] & 0xFFF0;
for (int i = 0; i < 16; ++i) {
if ((clut[i] & 0xf) != i) {
clutAlphaLinear_ = false;
break;
}
// Alpha 0 doesn't matter.
if (i != 0 && (clut[i] & 0xFFF0) != clutAlphaLinearColor_) {
clutAlphaLinear_ = false;
break;
}
}
}
clutLastFormat_ = gstate.clutformat;
}
template <typename T>
inline const T *TextureCacheDX9::GetCurrentClut() {
return (const T *)clutBuf_;
}
inline u32 TextureCacheDX9::GetCurrentClutHash() {
return clutHash_;
}
// #define DEBUG_TEXTURES
#ifdef DEBUG_TEXTURES
bool SetDebugTexture() {
static const int highlightFrames = 30;
static int numTextures = 0;
static int lastFrames = 0;
static int mostTextures = 1;
if (lastFrames != gpuStats.numFlips) {
mostTextures = std::max(mostTextures, numTextures);
numTextures = 0;
lastFrames = gpuStats.numFlips;
}
static GLuint solidTexture = 0;
bool changed = false;
if (((gpuStats.numFlips / highlightFrames) % mostTextures) == numTextures) {
if (gpuStats.numFlips % highlightFrames == 0) {
NOTICE_LOG(G3D, "Highlighting texture # %d / %d", numTextures, mostTextures);
}
static const u32 solidTextureData[] = {0x99AA99FF};
if (solidTexture == 0) {
glGenTextures(1, &solidTexture);
glBindTexture(GL_TEXTURE_2D, solidTexture);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, solidTextureData);
} else {
glBindTexture(GL_TEXTURE_2D, solidTexture);
}
changed = true;
}
++numTextures;
return changed;
}
#endif
void TextureCacheDX9::SetTextureFramebuffer(TexCacheEntry *entry)
{
entry->framebuffer->usageFlags |= FB_USAGE_TEXTURE;
bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE;
if (useBufferedRendering) {
// For now, let's not bind FBOs that we know are off (invalidHint will be -1.)
// But let's still not use random memory.
if (entry->framebuffer->fbo && entry->invalidHint != -1) {
fbo_bind_color_as_texture(entry->framebuffer->fbo, 0);
// Keep the framebuffer alive.
// TODO: Dangerous if it sets a new one?
entry->framebuffer->last_frame_used = gpuStats.numFlips;
} else {
pD3Ddevice->SetTexture(0, NULL);
gstate_c.skipDrawReason |= SKIPDRAW_BAD_FB_TEXTURE;
}
UpdateSamplingParams(*entry, false);
gstate_c.curTextureWidth = entry->framebuffer->width;
gstate_c.curTextureHeight = entry->framebuffer->height;
gstate_c.flipTexture = true;
gstate_c.textureFullAlpha = entry->framebuffer->format == GE_FORMAT_565;
} else {
if (entry->framebuffer->fbo)
entry->framebuffer->fbo = 0;
pD3Ddevice->SetTexture(0, NULL);
}
}
void TextureCacheDX9::SetTexture() {
#ifdef DEBUG_TEXTURES
if (SetDebugTexture()) {
// A different texture was bound, let's rebind next time.
lastBoundTexture = -1;
return;
}
#endif
u32 texaddr = gstate.getTextureAddress(0);
if (!Memory::IsValidAddress(texaddr)) {
// Bind a null texture and return.
pD3Ddevice->SetTexture(0, NULL);
lastBoundTexture = INVALID_TEX;
return;
}
GETextureFormat format = gstate.getTextureFormat();
if (format >= 11) {
ERROR_LOG_REPORT(G3D, "Unknown texture format %i", format);
// TODO: Better assumption?
format = GE_TFMT_5650;
}
bool hasClut = gstate.isTextureFormatIndexed();
u64 cachekey = (u64)texaddr << 32;
u32 cluthash;
if (hasClut) {
if (clutLastFormat_ != gstate.clutformat) {
// We update here because the clut format can be specified after the load.
UpdateCurrentClut();
}
cluthash = GetCurrentClutHash() ^ gstate.clutformat;
cachekey |= cluthash;
} else {
cluthash = 0;
}
int w = gstate.getTextureWidth(0);
int h = gstate.getTextureHeight(0);
int bufw = GetTextureBufw(0, texaddr, format);
int maxLevel = ((gstate.texmode >> 16) & 0x7);
u32 texhash = MiniHash((const u32 *)Memory::GetPointer(texaddr));
u32 fullhash = 0;
TexCache::iterator iter = cache.find(cachekey);
TexCacheEntry *entry = NULL;
gstate_c.flipTexture = false;
gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE;
bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE;
bool replaceImages = false;
if (iter != cache.end()) {
entry = &iter->second;
// Validate the texture still matches the cache entry.
int dim = gstate.texsize[0] & 0xF0F;
bool match = entry->Matches(dim, format, maxLevel);
#ifndef _XBOX
match &= host->GPUAllowTextureCache(texaddr);
#endif
// Check for FBO - slow!
if (entry->framebuffer && match) {
SetTextureFramebuffer(entry);
lastBoundTexture = INVALID_TEX;
entry->lastFrame = gpuStats.numFlips;
return;
}
bool rehash = (entry->status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_UNRELIABLE;
bool doDelete = true;
if (match) {
if (entry->lastFrame != gpuStats.numFlips) {
entry->numFrames++;
}
if (entry->framesUntilNextFullHash == 0) {
// Exponential backoff up to 2048 frames. Textures are often reused.
entry->framesUntilNextFullHash = std::min(2048, entry->numFrames);
rehash = true;
} else {
--entry->framesUntilNextFullHash;
}
// If it's not huge or has been invalidated many times, recheck the whole texture.
if (entry->invalidHint > 180 || (entry->invalidHint > 15 && dim <= 0x909)) {
entry->invalidHint = 0;
rehash = true;
}
bool hashFail = false;
if (texhash != entry->hash) {
fullhash = QuickTexHash(texaddr, bufw, w, h, format);
hashFail = true;
rehash = false;
}
if (rehash && (entry->status & TexCacheEntry::STATUS_MASK) != TexCacheEntry::STATUS_RELIABLE) {
fullhash = QuickTexHash(texaddr, bufw, w, h, format);
if (fullhash != entry->fullhash) {
hashFail = true;
} else if ((entry->status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_UNRELIABLE && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) {
// Reset to STATUS_HASHING.
entry->status &= ~TexCacheEntry::STATUS_MASK;
}
}
if (hashFail) {
match = false;
entry->status |= TexCacheEntry::STATUS_UNRELIABLE;
entry->numFrames = 0;
// Don't give up just yet. Let's try the secondary cache if it's been invalidated before.
// If it's failed a bunch of times, then the second cache is just wasting time and VRAM.
if (entry->numInvalidated > 2 && entry->numInvalidated < 128 && !lowMemoryMode_) {
u64 secondKey = fullhash | (u64)cluthash << 32;
TexCache::iterator secondIter = secondCache.find(secondKey);
if (secondIter != secondCache.end()) {
TexCacheEntry *secondEntry = &secondIter->second;
if (secondEntry->Matches(dim, format, maxLevel)) {
// Reset the numInvalidated value lower, we got a match.
if (entry->numInvalidated > 8) {
--entry->numInvalidated;
}
entry = secondEntry;
match = true;
}
} else {
secondKey = entry->fullhash | (u64)entry->cluthash << 32;
secondCache[secondKey] = *entry;
doDelete = false;
}
}
}
}
if (match) {
// TODO: Mark the entry reliable if it's been safe for long enough?
//got one!
entry->lastFrame = gpuStats.numFlips;
if (entry->texture != lastBoundTexture) {
pD3Ddevice->SetTexture(0, entry->texture);
lastBoundTexture = entry->texture;
gstate_c.textureFullAlpha = (entry->status & TexCacheEntry::STATUS_ALPHA_MASK) == TexCacheEntry::STATUS_ALPHA_FULL;
}
UpdateSamplingParams(*entry, false);
VERBOSE_LOG(G3D, "Texture at %08x Found in Cache, applying", texaddr);
return; //Done!
} else {
entry->numInvalidated++;
gpuStats.numTextureInvalidations++;
DEBUG_LOG(G3D, "Texture different or overwritten, reloading at %08x", texaddr);
if (doDelete) {
if (entry->maxLevel == maxLevel && entry->dim == (gstate.texsize[0] & 0xF0F) && entry->format == format && g_Config.iTexScalingLevel <= 1) {
// Actually, if size and number of levels match, let's try to avoid deleting and recreating.
// Instead, let's use glTexSubImage to replace the images.
replaceImages = true;
} else {
if (entry->texture == lastBoundTexture) {
lastBoundTexture = INVALID_TEX;
}
entry->texture->Release();
}
}
if (entry->status == TexCacheEntry::STATUS_RELIABLE) {
entry->status = TexCacheEntry::STATUS_HASHING;
}
}
} else {
VERBOSE_LOG(G3D, "No texture in cache, decoding...");
TexCacheEntry entryNew = {0};
cache[cachekey] = entryNew;
entry = &cache[cachekey];
entry->status = TexCacheEntry::STATUS_HASHING;
}
if ((bufw == 0 || (gstate.texbufwidth[0] & 0xf800) != 0) && texaddr >= PSP_GetUserMemoryBase()) {
ERROR_LOG_REPORT(G3D, "Texture with unexpected bufw (full=%d)", gstate.texbufwidth[0] & 0xffff);
}
// We have to decode it, let's setup the cache entry first.
entry->addr = texaddr;
entry->hash = texhash;
entry->format = format;
entry->lastFrame = gpuStats.numFlips;
entry->framebuffer = 0;
entry->maxLevel = maxLevel;
entry->lodBias = 0.0f;
entry->dim = gstate.texsize[0] & 0xF0F;
entry->bufw = bufw;
// This would overestimate the size in many case so we underestimate instead
// to avoid excessive clearing caused by cache invalidations.
entry->sizeInRAM = (textureBitsPerPixel[format] * bufw * h / 2) / 8;
entry->fullhash = fullhash == 0 ? QuickTexHash(texaddr, bufw, w, h, format) : fullhash;
entry->cluthash = cluthash;
entry->status &= ~TexCacheEntry::STATUS_ALPHA_MASK;
gstate_c.curTextureWidth = w;
gstate_c.curTextureHeight = h;
// Before we go reading the texture from memory, let's check for render-to-texture.
for (size_t i = 0, n = fbCache_.size(); i < n; ++i) {
auto framebuffer = fbCache_[i];
// This is a rough heuristic, because sometimes our framebuffers are too tall.
static const u32 MAX_SUBAREA_Y_OFFSET = 32;
// Must be in VRAM so | 0x04000000 it is.
const u64 cacheKeyStart = (u64)(framebuffer->fb_address | 0x04000000) << 32;
// If it has a clut, those are the low 32 bits, so it'll be inside this range.
// Also, if it's a subsample of the buffer, it'll also be within the FBO.
const u64 cacheKeyEnd = cacheKeyStart + ((u64)(framebuffer->fb_stride * MAX_SUBAREA_Y_OFFSET) << 32);
if (cachekey >= cacheKeyStart && cachekey < cacheKeyEnd) {
AttachFramebuffer(entry, framebuffer->fb_address | 0x04000000, framebuffer, cachekey == cacheKeyStart);
}
}
// If we ended up with a framebuffer, attach it - no texture decoding needed.
if (entry->framebuffer) {
SetTextureFramebuffer(entry);
lastBoundTexture = INVALID_TEX;
entry->lastFrame = gpuStats.numFlips;
return;
}
// Adjust maxLevel to actually present levels..
for (int i = 0; i <= maxLevel; i++) {
// If encountering levels pointing to nothing, adjust max level.
u32 levelTexaddr = gstate.getTextureAddress(i);
if (!Memory::IsValidAddress(levelTexaddr)) {
maxLevel = i - 1;
break;
}
}
LoadTextureLevel(*entry, 0, replaceImages);
pD3Ddevice->SetTexture(0, entry->texture);
lastBoundTexture = entry->texture;
DWORD anisotropyLevel = (DWORD) g_Config.iAnisotropyLevel > maxAnisotropyLevel ? maxAnisotropyLevel : g_Config.iAnisotropyLevel;
//glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisotropyLevel);
pD3Ddevice->SetSamplerState(0, D3DSAMP_MAXANISOTROPY, anisotropyLevel);
UpdateSamplingParams(*entry, true);
gstate_c.textureFullAlpha = (entry->status & TexCacheEntry::STATUS_ALPHA_MASK) == TexCacheEntry::STATUS_ALPHA_FULL;
}
void *TextureCacheDX9::DecodeTextureLevel(GETextureFormat format, GEPaletteFormat clutformat, int level, u32 &texByteAlign, u32 &dstFmt) {
void *finalBuf = NULL;
u32 texaddr = gstate.getTextureAddress(level);
int bufw = GetTextureBufw(level, texaddr, format);
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
const u8 *texptr = Memory::GetPointer(texaddr);
switch (format) {
case GE_TFMT_CLUT4:
{
dstFmt = getClutDestFormat(clutformat);
const bool mipmapShareClut = (gstate.texmode & 0x100) == 0;
const int clutSharingOffset = mipmapShareClut ? 0 : level * 16;
switch (clutformat) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
tmpTexBuf16.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
const u16 *clut = GetCurrentClut<u16>() + clutSharingOffset;
texByteAlign = 2;
if (!gstate.isTextureSwizzled()) {
if (clutAlphaLinear_ && mipmapShareClut) {
DeIndexTexture4Optimal(tmpTexBuf16.data(), texaddr, bufw * h, clutAlphaLinearColor_);
} else {
DeIndexTexture4(tmpTexBuf16.data(), texaddr, bufw * h, clut);
}
} else {
tmpTexBuf32.resize(std::max(bufw, w) * h);
UnswizzleFromMem(texaddr, bufw, 0, level);
if (clutAlphaLinear_ && mipmapShareClut) {
DeIndexTexture4Optimal(tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), bufw * h, clutAlphaLinearColor_);
} else {
DeIndexTexture4(tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), bufw * h, clut);
}
}
finalBuf = tmpTexBuf16.data();
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
const u32 *clut = GetCurrentClut<u32>() + clutSharingOffset;
if (!gstate.isTextureSwizzled()) {
DeIndexTexture4(tmpTexBuf32.data(), texaddr, bufw * h, clut);
finalBuf = tmpTexBuf32.data();
} else {
UnswizzleFromMem(texaddr, bufw, 0, level);
// Let's reuse tmpTexBuf16, just need double the space.
tmpTexBuf16.resize(std::max(bufw, w) * h * 2);
DeIndexTexture4((u32 *)tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), bufw * h, clut);
finalBuf = tmpTexBuf16.data();
}
}
break;
default:
ERROR_LOG_REPORT(G3D, "Unknown CLUT4 texture mode %d", gstate.getClutPaletteFormat());
return NULL;
}
}
break;
case GE_TFMT_CLUT8:
dstFmt = getClutDestFormat(gstate.getClutPaletteFormat());
texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()];
finalBuf = ReadIndexedTex(level, texaddr, 1, dstFmt, bufw);
break;
case GE_TFMT_CLUT16:
dstFmt = getClutDestFormat(gstate.getClutPaletteFormat());
texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()];
finalBuf = ReadIndexedTex(level, texaddr, 2, dstFmt, bufw);
break;
case GE_TFMT_CLUT32:
dstFmt = getClutDestFormat(gstate.getClutPaletteFormat());
texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()];
finalBuf = ReadIndexedTex(level, texaddr, 4, dstFmt, bufw);
break;
case GE_TFMT_4444:
case GE_TFMT_5551:
case GE_TFMT_5650:
if (format == GE_TFMT_4444)
dstFmt = D3DFMT_A4R4G4B4;
else if (format == GE_TFMT_5551)
dstFmt = D3DFMT_A1R5G5B5;
else if (format == GE_TFMT_5650)
dstFmt = D3DFMT_R5G6B5;
texByteAlign = 2;
if (!gstate.isTextureSwizzled()) {
int len = std::max(bufw, w) * h;
tmpTexBuf16.resize(len);
tmpTexBufRearrange.resize(len);
Memory::Memcpy(tmpTexBuf16.data(), texaddr, len * sizeof(u16));
finalBuf = tmpTexBuf16.data();
}
else {
tmpTexBuf32.resize(std::max(bufw, w) * h);
finalBuf = UnswizzleFromMem(texaddr, bufw, 2, level);
}
ClutConvertColors(finalBuf, finalBuf, dstFmt, bufw * h);
break;
case GE_TFMT_8888:
dstFmt = D3DFMT_A8R8G8B8;
if (!gstate.isTextureSwizzled()) {
// Special case: if we don't need to deal with packing, we don't need to copy.
//if (w == bufw) {
// finalBuf = Memory::GetPointer(texaddr);
//} else
{
int len = bufw * h;
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
Memory::Memcpy(tmpTexBuf32.data(), texaddr, len * sizeof(u32));
finalBuf = tmpTexBuf32.data();
}
}
else {
tmpTexBuf32.resize(std::max(bufw, w) * h);
finalBuf = UnswizzleFromMem(texaddr, bufw, 4, level);
}
ClutConvertColors(finalBuf, finalBuf, dstFmt, bufw * h);
break;
case GE_TFMT_DXT1:
dstFmt = D3DFMT_A8R8G8B8;
{
int minw = std::min(bufw, w);
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
u32 *dst = tmpTexBuf32.data();
DXT1Block *src = (DXT1Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < minw; x += 4) {
DecodeDXT1Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
finalBuf = tmpTexBuf32.data();
w = (w + 3) & ~3;
}
break;
case GE_TFMT_DXT3:
dstFmt = D3DFMT_A8R8G8B8;
{
int minw = std::min(bufw, w);
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
u32 *dst = tmpTexBuf32.data();
DXT3Block *src = (DXT3Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < minw; x += 4) {
DecodeDXT3Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
w = (w + 3) & ~3;
finalBuf = tmpTexBuf32.data();
}
break;
case GE_TFMT_DXT5: // These work fine now
dstFmt = D3DFMT_A8R8G8B8;
{
int minw = std::min(bufw, w);
tmpTexBuf32.resize(std::max(bufw, w) * h);
tmpTexBufRearrange.resize(std::max(bufw, w) * h);
u32 *dst = tmpTexBuf32.data();
DXT5Block *src = (DXT5Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < minw; x += 4) {
DecodeDXT5Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
w = (w + 3) & ~3;
finalBuf = tmpTexBuf32.data();
}
break;
default:
ERROR_LOG_REPORT(G3D, "Unknown Texture Format %d!!!", format);
return NULL;
}
if (!finalBuf) {
ERROR_LOG_REPORT(G3D, "NO finalbuf! Will crash!");
}
if (w != bufw) {
int pixelSize;
switch (dstFmt) {
case D3DFMT_A4R4G4B4:
case D3DFMT_A1R5G5B5:
case D3DFMT_R5G6B5:
pixelSize = 2;
break;
default:
pixelSize = 4;
break;
}
// Need to rearrange the buffer to simulate GL_UNPACK_ROW_LENGTH etc.
int inRowBytes = bufw * pixelSize;
int outRowBytes = w * pixelSize;
const u8 *read = (const u8 *)finalBuf;
u8 *write = 0;
if (w > bufw) {
write = (u8 *)tmpTexBufRearrange.data();
finalBuf = tmpTexBufRearrange.data();
} else {
write = (u8 *)finalBuf;
}
for (int y = 0; y < h; y++) {
memmove(write, read, outRowBytes);
read += inRowBytes;
write += outRowBytes;
}
}
return finalBuf;
}
void TextureCacheDX9::CheckAlpha(TexCacheEntry &entry, u32 *pixelData, u32 dstFmt, int w, int h) {
// TODO: Could probably be optimized more.
u32 hitZeroAlpha = 0;
u32 hitSomeAlpha = 0;
switch (dstFmt) {
case D3DFMT_A4R4G4B4:
{
const u32 *p = pixelData;
for (int i = 0; i < (w * h + 1) / 2; ++i) {
#ifndef BIG_ENDIAN
u32 a = p[i] & 0x000F000F;
hitZeroAlpha |= a ^ 0x000F000F;
if (a != 0x000F000F && a != 0x0000000F && a != 0x000F0000 && a != 0) {
hitSomeAlpha = 1;
break;
}
#else
u32 a = p[i] & 0xF000F000;
hitZeroAlpha |= a ^ 0xF000F000;
if (a != 0xF000F000 && a != 0x0000F000 && a != 0xF0000000 && a != 0) {
hitSomeAlpha = 1;
break;
}
#endif
}
}
break;
case D3DFMT_A1R5G5B5:
{
const u32 *p = pixelData;
for (int i = 0; i < (w * h + 1) / 2; ++i) {
#ifndef BIG_ENDIAN
u32 a = p[i] & 0x00010001;
hitZeroAlpha |= a ^ 0x00010001;
#else
u32 a = p[i] & 0x10001000;
hitZeroAlpha |= a ^ 0x10001000;
#endif
}
}
break;
case D3DFMT_R5G6B5:
{
// Never has any alpha.
}
break;
default:
{
const u32 *p = pixelData;
for (int i = 0; i < w * h; ++i) {
u32 a = p[i] & 0xFF000000;
hitZeroAlpha |= a ^ 0xFF000000;
if (a != 0xFF000000 && a != 0) {
hitSomeAlpha = 1;
break;
}
}
}
break;
}
if (hitSomeAlpha != 0)
entry.status |= TexCacheEntry::STATUS_ALPHA_UNKNOWN;
else if (hitZeroAlpha != 0)
entry.status |= TexCacheEntry::STATUS_ALPHA_SIMPLE;
else
entry.status |= TexCacheEntry::STATUS_ALPHA_FULL;
}
static inline void copyTexture(int xoffset, int yoffset, int w, int h, int pitch, int srcfmt, int fmt, void * pSrc, void * pDst) {
// Swap color
switch(fmt) {
case D3DFMT_R5G6B5:
case D3DFMT_A4R4G4B4:
case D3DFMT_A1R5G5B5:
// Really needed ?
for(int y = 0; y < h; y++) {
const u16 *src = (const u16 *)((u8*)pSrc + (w*2) * y);
u16 *dst = (u16*)((u8*)pDst + pitch * y);
memcpy(dst, src, w * sizeof(u16));
}
break;
// 32 bit texture
case D3DFMT_A8R8G8B8:
for(int y = 0; y < h; y++) {
const u32 *src = (const u32 *)((u8*)pSrc + (w*4) * y);
u32 *dst = (u32*)((u8*)pDst + pitch * y);
/*
// todo use memcpy
for(int x = 0; x < w; x++) {
unsigned int rgb = src[x];
dst[x] = rgb;
}
*/
memcpy(dst, src, w * sizeof(u32));
}
break;
}
}
void TextureCacheDX9::LoadTextureLevel(TexCacheEntry &entry, int level, bool replaceImages) {
// TODO: only do this once
u32 texByteAlign = 1;
// TODO: Look into using BGRA for 32-bit textures when the GL_EXT_texture_format_BGRA8888 extension is available, as it's faster than RGBA on some chips.
u32 dstFmt = 0;
GEPaletteFormat clutformat = gstate.getClutPaletteFormat();
void *finalBuf = DecodeTextureLevel(GETextureFormat(entry.format), clutformat, level, texByteAlign, dstFmt);
if (finalBuf == NULL) {
return;
}
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
gpuStats.numTexturesDecoded++;
u32 *pixelData = (u32 *)finalBuf;
int scaleFactor = g_Config.iTexScalingLevel;
// Don't scale the PPGe texture.
if (entry.addr > 0x05000000 && entry.addr < 0x08800000)
scaleFactor = 1;
if (scaleFactor > 1 && entry.numInvalidated == 0)
scaler.Scale(pixelData, dstFmt, w, h, scaleFactor);
// Or always?
if (entry.numInvalidated == 0)
CheckAlpha(entry, pixelData, dstFmt, w, h);
else
entry.status |= TexCacheEntry::STATUS_ALPHA_UNKNOWN;
// Ignore mip map atm
if (level == 0) {
if (replaceImages) {
// Unset texture
pD3Ddevice->SetTexture(0, NULL);
D3DLOCKED_RECT rect;
entry.texture->LockRect(level, &rect, NULL, 0);
copyTexture(0, 0, w, h, rect.Pitch, entry.format, dstFmt, pixelData, rect.pBits);
entry.texture->UnlockRect(level);
// Rebind texture
pD3Ddevice->SetTexture(0, entry.texture);
} else {
// Create texture
#ifdef _XBOX
pD3Ddevice->CreateTexture(w, h, 1, 0, (D3DFORMAT)D3DFMT(dstFmt), NULL, &entry.texture, NULL);
#else
pD3Ddevice->CreateTexture(w, h, 1, 0, (D3DFORMAT)D3DFMT(dstFmt), D3DPOOL_MANAGED, &entry.texture, NULL);
#endif
D3DLOCKED_RECT rect;
entry.texture->LockRect(level, &rect, NULL, 0);
copyTexture(0, 0, w, h, rect.Pitch, entry.format, dstFmt, pixelData, rect.pBits);
entry.texture->UnlockRect(level);
}
//#ifdef _DEBUG
#if 0
// Hack save to disk ...
char fname[256];
int fmt = 0;
static int ipic = 0;
switch(dstFmt) {
case D3DFMT_A4R4G4B4:
fmt = 0x4444;
break;
case D3DFMT_A1R5G5B5:
fmt = 0x5551;
break;
case D3DFMT_R5G6B5:
fmt = 0x5650;
break;
case D3DFMT_A8R8G8B8:
fmt = 0x8888;
break;
default:
fmt = 0xDEAD;
break;
}
sprintf(fname, "game:\\pic\\pic.%02x.%04x.%08x.%08x.png", ipic++, fmt, entry.format, clutformat);
D3DXSaveTextureToFile(fname, D3DXIFF_PNG, entry.texture, NULL);
#endif
}
}
// Only used by Qt UI?
bool TextureCacheDX9::DecodeTexture(u8* output, GPUgstate state)
{
OutputDebugStringA("TextureCache::DecodeTexture : FixMe\r\n");
return true;
}
};