ppsspp/GPU/GLES/ShaderManagerGLES.cpp
Unknown W. Brackets a73c15babc GPU: Correct shader gen with weights as floats.
For now, this supports the option.  We should probably just move to
everything being floats, but we already prefer software skinning.

Fixes #13903.
2021-01-10 08:52:28 -08:00

1045 lines
35 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#if defined(_WIN32) && defined(SHADERLOG)
#include "Common/CommonWindows.h"
#endif
#include <cmath>
#include <cstdio>
#include <map>
#include "Common/Data/Convert/SmallDataConvert.h"
#include "Common/GPU/OpenGL/GLDebugLog.h"
#include "Common/GPU/OpenGL/GLFeatures.h"
#include "Common/Data/Text/I18n.h"
#include "Common/Math/math_util.h"
#include "Common/Math/lin/matrix4x4.h"
#include "Common/Profiler/Profiler.h"
#include "Common/GPU/Shader.h"
#include "Common/GPU/thin3d.h"
#include "Common/GPU/OpenGL/GLRenderManager.h"
#include "Common/Log.h"
#include "Common/File/FileUtil.h"
#include "Common/TimeUtil.h"
#include "Core/Config.h"
#include "Core/Host.h"
#include "Core/Reporting.h"
#include "Core/System.h"
#include "GPU/Math3D.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "GPU/Common/ShaderUniforms.h"
#include "GPU/GLES/ShaderManagerGLES.h"
#include "GPU/GLES/DrawEngineGLES.h"
#include "GPU/GLES/FramebufferManagerGLES.h"
using namespace Lin;
Shader::Shader(GLRenderManager *render, const char *code, const std::string &desc, uint32_t glShaderType, bool useHWTransform, uint32_t attrMask, uint64_t uniformMask)
: render_(render), failed_(false), useHWTransform_(useHWTransform), attrMask_(attrMask), uniformMask_(uniformMask) {
PROFILE_THIS_SCOPE("shadercomp");
isFragment_ = glShaderType == GL_FRAGMENT_SHADER;
source_ = code;
#ifdef SHADERLOG
#ifdef _WIN32
OutputDebugStringUTF8(code);
#else
printf("%s\n", code);
#endif
#endif
shader = render->CreateShader(glShaderType, source_, desc);
}
Shader::~Shader() {
render_->DeleteShader(shader);
}
LinkedShader::LinkedShader(GLRenderManager *render, VShaderID VSID, Shader *vs, FShaderID FSID, Shader *fs, bool useHWTransform, bool preloading)
: render_(render), useHWTransform_(useHWTransform) {
PROFILE_THIS_SCOPE("shaderlink");
vs_ = vs;
std::vector<GLRShader *> shaders;
shaders.push_back(vs->shader);
shaders.push_back(fs->shader);
std::vector<GLRProgram::Semantic> semantics;
semantics.push_back({ ATTR_POSITION, "position" });
semantics.push_back({ ATTR_TEXCOORD, "texcoord" });
semantics.push_back({ ATTR_NORMAL, "normal" });
semantics.push_back({ ATTR_W1, "w1" });
semantics.push_back({ ATTR_W2, "w2" });
semantics.push_back({ ATTR_COLOR0, "color0" });
semantics.push_back({ ATTR_COLOR1, "color1" });
std::vector<GLRProgram::UniformLocQuery> queries;
queries.push_back({ &u_tex, "tex" });
queries.push_back({ &u_proj, "u_proj" });
queries.push_back({ &u_proj_through, "u_proj_through" });
queries.push_back({ &u_proj, "u_proj" });
queries.push_back({ &u_proj_through, "u_proj_through" });
queries.push_back({ &u_texenv, "u_texenv" });
queries.push_back({ &u_fogcolor, "u_fogcolor" });
queries.push_back({ &u_fogcoef, "u_fogcoef" });
queries.push_back({ &u_alphacolorref, "u_alphacolorref" });
queries.push_back({ &u_alphacolormask, "u_alphacolormask" });
queries.push_back({ &u_colorWriteMask, "u_colorWriteMask" });
queries.push_back({ &u_stencilReplaceValue, "u_stencilReplaceValue" });
queries.push_back({ &u_testtex, "testtex" });
queries.push_back({ &u_fbotex, "fbotex" });
queries.push_back({ &u_blendFixA, "u_blendFixA" });
queries.push_back({ &u_blendFixB, "u_blendFixB" });
queries.push_back({ &u_fbotexSize, "u_fbotexSize" });
queries.push_back({ &u_pal, "pal" });
// Transform
queries.push_back({ &u_view, "u_view" });
queries.push_back({ &u_world, "u_world" });
queries.push_back({ &u_texmtx, "u_texmtx" });
if (VSID.Bit(VS_BIT_ENABLE_BONES))
numBones = TranslateNumBones(VSID.Bits(VS_BIT_BONES, 3) + 1);
else
numBones = 0;
queries.push_back({ &u_depthRange, "u_depthRange" });
queries.push_back({ &u_cullRangeMin, "u_cullRangeMin" });
queries.push_back({ &u_cullRangeMax, "u_cullRangeMax" });
#ifdef USE_BONE_ARRAY
queries.push_back({ &u_bone, "u_bone" });
#else
static const char * const boneNames[8] = { "u_bone0", "u_bone1", "u_bone2", "u_bone3", "u_bone4", "u_bone5", "u_bone6", "u_bone7", };
for (int i = 0; i < 8; i++) {
queries.push_back({ &u_bone[i], boneNames[i] });
}
#endif
// Lighting, texturing
queries.push_back({ &u_ambient, "u_ambient" });
queries.push_back({ &u_matambientalpha, "u_matambientalpha" });
queries.push_back({ &u_matdiffuse, "u_matdiffuse" });
queries.push_back({ &u_matspecular, "u_matspecular" });
queries.push_back({ &u_matemissive, "u_matemissive" });
queries.push_back({ &u_uvscaleoffset, "u_uvscaleoffset" });
queries.push_back({ &u_texclamp, "u_texclamp" });
queries.push_back({ &u_texclampoff, "u_texclampoff" });
for (int i = 0; i < 4; i++) {
static const char * const lightPosNames[4] = { "u_lightpos0", "u_lightpos1", "u_lightpos2", "u_lightpos3", };
queries.push_back({ &u_lightpos[i], lightPosNames[i] });
static const char * const lightdir_names[4] = { "u_lightdir0", "u_lightdir1", "u_lightdir2", "u_lightdir3", };
queries.push_back({ &u_lightdir[i], lightdir_names[i] });
static const char * const lightatt_names[4] = { "u_lightatt0", "u_lightatt1", "u_lightatt2", "u_lightatt3", };
queries.push_back({ &u_lightatt[i], lightatt_names[i] });
static const char * const lightangle_spotCoef_names[4] = { "u_lightangle_spotCoef0", "u_lightangle_spotCoef1", "u_lightangle_spotCoef2", "u_lightangle_spotCoef3", };
queries.push_back({ &u_lightangle_spotCoef[i], lightangle_spotCoef_names[i] });
static const char * const lightambient_names[4] = { "u_lightambient0", "u_lightambient1", "u_lightambient2", "u_lightambient3", };
queries.push_back({ &u_lightambient[i], lightambient_names[i] });
static const char * const lightdiffuse_names[4] = { "u_lightdiffuse0", "u_lightdiffuse1", "u_lightdiffuse2", "u_lightdiffuse3", };
queries.push_back({ &u_lightdiffuse[i], lightdiffuse_names[i] });
static const char * const lightspecular_names[4] = { "u_lightspecular0", "u_lightspecular1", "u_lightspecular2", "u_lightspecular3", };
queries.push_back({ &u_lightspecular[i], lightspecular_names[i] });
}
// We need to fetch these unconditionally, gstate_c.spline or bezier will not be set if we
// create this shader at load time from the shader cache.
queries.push_back({ &u_tess_points, "u_tess_points" });
queries.push_back({ &u_tess_weights_u, "u_tess_weights_u" });
queries.push_back({ &u_tess_weights_v, "u_tess_weights_v" });
queries.push_back({ &u_spline_counts, "u_spline_counts" });
queries.push_back({ &u_depal_mask_shift_off_fmt, "u_depal_mask_shift_off_fmt" });
attrMask = vs->GetAttrMask();
availableUniforms = vs->GetUniformMask() | fs->GetUniformMask();
std::vector<GLRProgram::Initializer> initialize;
initialize.push_back({ &u_tex, 0, 0 });
initialize.push_back({ &u_fbotex, 0, 1 });
initialize.push_back({ &u_testtex, 0, 2 });
initialize.push_back({ &u_pal, 0, 3 }); // CLUT
initialize.push_back({ &u_tess_points, 0, 4 }); // Control Points
initialize.push_back({ &u_tess_weights_u, 0, 5 });
initialize.push_back({ &u_tess_weights_v, 0, 6 });
program = render->CreateProgram(shaders, semantics, queries, initialize, gstate_c.featureFlags & GPU_SUPPORTS_DUALSOURCE_BLEND);
// The rest, use the "dirty" mechanism.
dirtyUniforms = DIRTY_ALL_UNIFORMS;
}
LinkedShader::~LinkedShader() {
render_->DeleteProgram(program);
}
// Utility
static inline void SetFloatUniform(GLRenderManager *render, GLint *uniform, float value) {
render->SetUniformF(uniform, 1, &value);
}
static inline void SetFloatUniform2(GLRenderManager *render, GLint *uniform, float value[2]) {
render->SetUniformF(uniform, 2, value);
}
static inline void SetColorUniform3(GLRenderManager *render, GLint *uniform, u32 color) {
float f[4];
Uint8x4ToFloat4(f, color);
render->SetUniformF(uniform, 3, f);
}
static void SetColorUniform3Alpha(GLRenderManager *render, GLint *uniform, u32 color, u8 alpha) {
float f[4];
Uint8x3ToFloat4_AlphaUint8(f, color, alpha);
render->SetUniformF(uniform, 4, f);
}
// This passes colors unscaled (e.g. 0 - 255 not 0 - 1.)
static void SetColorUniform3Alpha255(GLRenderManager *render, GLint *uniform, u32 color, u8 alpha) {
if (gl_extensions.gpuVendor == GPU_VENDOR_IMGTEC) {
const float col[4] = {
(float)((color & 0xFF) >> 0) * (1.0f / 255.0f),
(float)((color & 0xFF00) >> 8) * (1.0f / 255.0f),
(float)((color & 0xFF0000) >> 16) * (1.0f / 255.0f),
(float)alpha * (1.0f / 255.0f)
};
render->SetUniformF(uniform, 4, col);
} else {
const float col[4] = {
(float)((color & 0xFF) >> 0),
(float)((color & 0xFF00) >> 8),
(float)((color & 0xFF0000) >> 16),
(float)alpha
};
render->SetUniformF(uniform, 4, col);
}
}
static void SetColorUniform3iAlpha(GLRenderManager *render, GLint *uniform, u32 color, u8 alpha) {
const int col[4] = {
(int)((color & 0xFF) >> 0),
(int)((color & 0xFF00) >> 8),
(int)((color & 0xFF0000) >> 16),
(int)alpha,
};
render->SetUniformI(uniform, 4, col);
}
static void SetColorUniform3ExtraFloat(GLRenderManager *render, GLint *uniform, u32 color, float extra) {
const float col[4] = {
((color & 0xFF)) / 255.0f,
((color & 0xFF00) >> 8) / 255.0f,
((color & 0xFF0000) >> 16) / 255.0f,
extra
};
render->SetUniformF(uniform, 4, col);
}
static void SetFloat24Uniform3(GLRenderManager *render, GLint *uniform, const uint32_t data[3]) {
float f[4];
ExpandFloat24x3ToFloat4(f, data);
render->SetUniformF(uniform, 3, f);
}
static void SetFloatUniform4(GLRenderManager *render, GLint *uniform, float data[4]) {
render->SetUniformF(uniform, 4, data);
}
static void SetMatrix4x3(GLRenderManager *render, GLint *uniform, const float *m4x3) {
float m4x4[16];
ConvertMatrix4x3To4x4Transposed(m4x4, m4x3);
render->SetUniformM4x4(uniform, m4x4);
}
static inline void ScaleProjMatrix(Matrix4x4 &in, bool useBufferedRendering) {
float yOffset = gstate_c.vpYOffset;
if (!useBufferedRendering) {
// GL upside down is a pain as usual.
yOffset = -yOffset;
}
const Vec3 trans(gstate_c.vpXOffset, yOffset, gstate_c.vpZOffset);
const Vec3 scale(gstate_c.vpWidthScale, gstate_c.vpHeightScale, gstate_c.vpDepthScale);
in.translateAndScale(trans, scale);
}
void LinkedShader::use(const ShaderID &VSID) {
render_->BindProgram(program);
// Note that we no longer track attr masks here - we do it for the input layouts instead.
}
void LinkedShader::UpdateUniforms(u32 vertType, const ShaderID &vsid, bool useBufferedRendering) {
u64 dirty = dirtyUniforms & availableUniforms;
dirtyUniforms = 0;
if (!dirty)
return;
if (dirty & DIRTY_DEPAL) {
int indexMask = gstate.getClutIndexMask();
int indexShift = gstate.getClutIndexShift();
int indexOffset = gstate.getClutIndexStartPos() >> 4;
int format = gstate_c.depalFramebufferFormat;
uint32_t val = BytesToUint32(indexMask, indexShift, indexOffset, format);
// Poke in a bilinear filter flag in the top bit.
val |= gstate.isMagnifyFilteringEnabled() << 31;
render_->SetUniformUI1(&u_depal_mask_shift_off_fmt, val);
}
// Update any dirty uniforms before we draw
if (dirty & DIRTY_PROJMATRIX) {
Matrix4x4 flippedMatrix;
memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float));
const bool invertedY = useBufferedRendering ? (gstate_c.vpHeight < 0) : (gstate_c.vpHeight > 0);
if (invertedY) {
flippedMatrix[1] = -flippedMatrix[1];
flippedMatrix[5] = -flippedMatrix[5];
flippedMatrix[9] = -flippedMatrix[9];
flippedMatrix[13] = -flippedMatrix[13];
}
const bool invertedX = gstate_c.vpWidth < 0;
if (invertedX) {
flippedMatrix[0] = -flippedMatrix[0];
flippedMatrix[4] = -flippedMatrix[4];
flippedMatrix[8] = -flippedMatrix[8];
flippedMatrix[12] = -flippedMatrix[12];
}
// In Phantasy Star Portable 2, depth range sometimes goes negative and is clamped by glDepthRange to 0,
// causing graphics clipping glitch (issue #1788). This hack modifies the projection matrix to work around it.
if (gstate_c.Supports(GPU_USE_DEPTH_RANGE_HACK)) {
float zScale = gstate.getViewportZScale() / 65535.0f;
float zCenter = gstate.getViewportZCenter() / 65535.0f;
// if far depth range < 0
if (zCenter + zScale < 0.0f) {
// if perspective projection
if (flippedMatrix[11] < 0.0f) {
float depthMax = gstate.getDepthRangeMax() / 65535.0f;
float depthMin = gstate.getDepthRangeMin() / 65535.0f;
float a = flippedMatrix[10];
float b = flippedMatrix[14];
float n = b / (a - 1.0f);
float f = b / (a + 1.0f);
f = (n * f) / (n + ((zCenter + zScale) * (n - f) / (depthMax - depthMin)));
a = (n + f) / (n - f);
b = (2.0f * n * f) / (n - f);
if (!my_isnan(a) && !my_isnan(b)) {
flippedMatrix[10] = a;
flippedMatrix[14] = b;
}
}
}
}
ScaleProjMatrix(flippedMatrix, useBufferedRendering);
render_->SetUniformM4x4(&u_proj, flippedMatrix.m);
}
if (dirty & DIRTY_PROJTHROUGHMATRIX)
{
Matrix4x4 proj_through;
if (useBufferedRendering) {
proj_through.setOrtho(0.0f, gstate_c.curRTWidth, 0.0f, gstate_c.curRTHeight, 0.0f, 1.0f);
} else {
proj_through.setOrtho(0.0f, gstate_c.curRTWidth, gstate_c.curRTHeight, 0.0f, 0.0f, 1.0f);
}
render_->SetUniformM4x4(&u_proj_through, proj_through.getReadPtr());
}
if (dirty & DIRTY_TEXENV) {
SetColorUniform3(render_, &u_texenv, gstate.texenvcolor);
}
if (dirty & DIRTY_ALPHACOLORREF) {
SetColorUniform3Alpha255(render_, &u_alphacolorref, gstate.getColorTestRef(), gstate.getAlphaTestRef() & gstate.getAlphaTestMask());
}
if (dirty & DIRTY_ALPHACOLORMASK) {
SetColorUniform3iAlpha(render_, &u_alphacolormask, gstate.colortestmask, gstate.getAlphaTestMask());
}
if (dirty & DIRTY_COLORWRITEMASK) {
render_->SetUniformUI1(&u_colorWriteMask, ~((gstate.pmska << 24) | (gstate.pmskc & 0xFFFFFF)));
}
if (dirty & DIRTY_FOGCOLOR) {
SetColorUniform3(render_, &u_fogcolor, gstate.fogcolor);
}
if (dirty & DIRTY_FOGCOEF) {
float fogcoef[2] = {
getFloat24(gstate.fog1),
getFloat24(gstate.fog2),
};
// The PSP just ignores infnan here (ignoring IEEE), so take it down to a valid float.
// Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988
if (my_isnanorinf(fogcoef[0])) {
// Not really sure what a sensible value might be, but let's try 64k.
fogcoef[0] = std::signbit(fogcoef[0]) ? -65535.0f : 65535.0f;
}
if (my_isnanorinf(fogcoef[1])) {
fogcoef[1] = std::signbit(fogcoef[1]) ? -65535.0f : 65535.0f;
}
render_->SetUniformF(&u_fogcoef, 2, fogcoef);
}
if (dirty & DIRTY_UVSCALEOFFSET) {
const float invW = 1.0f / (float)gstate_c.curTextureWidth;
const float invH = 1.0f / (float)gstate_c.curTextureHeight;
const int w = gstate.getTextureWidth(0);
const int h = gstate.getTextureHeight(0);
const float widthFactor = (float)w * invW;
const float heightFactor = (float)h * invH;
float uvscaleoff[4];
if (gstate_c.submitType == SubmitType::HW_BEZIER || gstate_c.submitType == SubmitType::HW_SPLINE) {
// When we are generating UV coordinates through the bezier/spline, we need to apply the scaling.
// However, this is missing a check that we're not getting our UV:s supplied for us in the vertices.
uvscaleoff[0] = gstate_c.uv.uScale * widthFactor;
uvscaleoff[1] = gstate_c.uv.vScale * heightFactor;
uvscaleoff[2] = gstate_c.uv.uOff * widthFactor;
uvscaleoff[3] = gstate_c.uv.vOff * heightFactor;
} else {
uvscaleoff[0] = widthFactor;
uvscaleoff[1] = heightFactor;
uvscaleoff[2] = 0.0f;
uvscaleoff[3] = 0.0f;
}
render_->SetUniformF(&u_uvscaleoffset, 4, uvscaleoff);
}
if ((dirty & DIRTY_TEXCLAMP) && u_texclamp != -1) {
const float invW = 1.0f / (float)gstate_c.curTextureWidth;
const float invH = 1.0f / (float)gstate_c.curTextureHeight;
const int w = gstate.getTextureWidth(0);
const int h = gstate.getTextureHeight(0);
const float widthFactor = (float)w * invW;
const float heightFactor = (float)h * invH;
// First wrap xy, then half texel xy (for clamp.)
const float texclamp[4] = {
widthFactor,
heightFactor,
invW * 0.5f,
invH * 0.5f,
};
const float texclampoff[2] = {
gstate_c.curTextureXOffset * invW,
gstate_c.curTextureYOffset * invH,
};
render_->SetUniformF(&u_texclamp, 4, texclamp);
if (u_texclampoff != -1) {
render_->SetUniformF(&u_texclampoff, 2, texclampoff);
}
}
// Transform
if (dirty & DIRTY_WORLDMATRIX) {
SetMatrix4x3(render_, &u_world, gstate.worldMatrix);
}
if (dirty & DIRTY_VIEWMATRIX) {
SetMatrix4x3(render_, &u_view, gstate.viewMatrix);
}
if (dirty & DIRTY_TEXMATRIX) {
SetMatrix4x3(render_, &u_texmtx, gstate.tgenMatrix);
}
if (dirty & DIRTY_DEPTHRANGE) {
// Since depth is [-1, 1] mapping to [minz, maxz], this is easyish.
float vpZScale = gstate.getViewportZScale();
float vpZCenter = gstate.getViewportZCenter();
// These are just the reverse of the formulas in GPUStateUtils.
float halfActualZRange = vpZScale / gstate_c.vpDepthScale;
float minz = -((gstate_c.vpZOffset * halfActualZRange) - vpZCenter) - halfActualZRange;
float viewZScale = halfActualZRange;
float viewZCenter = minz + halfActualZRange;
if (!gstate_c.Supports(GPU_SUPPORTS_ACCURATE_DEPTH)) {
viewZScale = vpZScale;
viewZCenter = vpZCenter;
}
float viewZInvScale;
if (viewZScale != 0.0) {
viewZInvScale = 1.0f / viewZScale;
} else {
viewZInvScale = 0.0;
}
float data[4] = { viewZScale, viewZCenter, viewZCenter, viewZInvScale };
SetFloatUniform4(render_, &u_depthRange, data);
}
if (dirty & DIRTY_CULLRANGE) {
float minValues[4], maxValues[4];
CalcCullRange(minValues, maxValues, !useBufferedRendering, true);
SetFloatUniform4(render_, &u_cullRangeMin, minValues);
SetFloatUniform4(render_, &u_cullRangeMax, maxValues);
}
if (dirty & DIRTY_STENCILREPLACEVALUE) {
float f = (float)gstate.getStencilTestRef() * (1.0f / 255.0f);
render_->SetUniformF(&u_stencilReplaceValue, 1, &f);
}
float bonetemp[16];
for (int i = 0; i < numBones; i++) {
if (dirty & (DIRTY_BONEMATRIX0 << i)) {
ConvertMatrix4x3To4x4Transposed(bonetemp, gstate.boneMatrix + 12 * i);
render_->SetUniformM4x4(&u_bone[i], bonetemp);
}
}
if (dirty & DIRTY_SHADERBLEND) {
if (u_blendFixA != -1) {
SetColorUniform3(render_, &u_blendFixA, gstate.getFixA());
}
if (u_blendFixB != -1) {
SetColorUniform3(render_, &u_blendFixB, gstate.getFixB());
}
const float fbotexSize[2] = {
1.0f / (float)gstate_c.curRTRenderWidth,
1.0f / (float)gstate_c.curRTRenderHeight,
};
if (u_fbotexSize != -1) {
render_->SetUniformF(&u_fbotexSize, 2, fbotexSize);
}
}
// Lighting
if (dirty & DIRTY_AMBIENT) {
SetColorUniform3Alpha(render_, &u_ambient, gstate.ambientcolor, gstate.getAmbientA());
}
if (dirty & DIRTY_MATAMBIENTALPHA) {
SetColorUniform3Alpha(render_, &u_matambientalpha, gstate.materialambient, gstate.getMaterialAmbientA());
}
if (dirty & DIRTY_MATDIFFUSE) {
SetColorUniform3(render_, &u_matdiffuse, gstate.materialdiffuse);
}
if (dirty & DIRTY_MATEMISSIVE) {
SetColorUniform3(render_, &u_matemissive, gstate.materialemissive);
}
if (dirty & DIRTY_MATSPECULAR) {
SetColorUniform3ExtraFloat(render_, &u_matspecular, gstate.materialspecular, getFloat24(gstate.materialspecularcoef));
}
for (int i = 0; i < 4; i++) {
if (dirty & (DIRTY_LIGHT0 << i)) {
if (gstate.isDirectionalLight(i)) {
// Prenormalize
float x = getFloat24(gstate.lpos[i * 3 + 0]);
float y = getFloat24(gstate.lpos[i * 3 + 1]);
float z = getFloat24(gstate.lpos[i * 3 + 2]);
float len = sqrtf(x*x + y*y + z*z);
if (len == 0.0f)
len = 1.0f;
else
len = 1.0f / len;
float vec[3] = { x * len, y * len, z * len };
render_->SetUniformF(&u_lightpos[i], 3, vec);
} else {
SetFloat24Uniform3(render_, &u_lightpos[i], &gstate.lpos[i * 3]);
}
if (u_lightdir[i] != -1) SetFloat24Uniform3(render_, &u_lightdir[i], &gstate.ldir[i * 3]);
if (u_lightatt[i] != -1) SetFloat24Uniform3(render_, &u_lightatt[i], &gstate.latt[i * 3]);
if (u_lightangle_spotCoef[i] != -1) {
float lightangle_spotCoef[2] = { getFloat24(gstate.lcutoff[i]), getFloat24(gstate.lconv[i]) };
SetFloatUniform2(render_, &u_lightangle_spotCoef[i], lightangle_spotCoef);
}
if (u_lightambient[i] != -1) SetColorUniform3(render_, &u_lightambient[i], gstate.lcolor[i * 3]);
if (u_lightdiffuse[i] != -1) SetColorUniform3(render_, &u_lightdiffuse[i], gstate.lcolor[i * 3 + 1]);
if (u_lightspecular[i] != -1) SetColorUniform3(render_, &u_lightspecular[i], gstate.lcolor[i * 3 + 2]);
}
}
if (dirty & DIRTY_BEZIERSPLINE) {
if (u_spline_counts != -1) {
render_->SetUniformI1(&u_spline_counts, gstate_c.spline_num_points_u);
}
}
}
ShaderManagerGLES::ShaderManagerGLES(Draw::DrawContext *draw)
: ShaderManagerCommon(draw), fsCache_(16), vsCache_(16) {
render_ = (GLRenderManager *)draw->GetNativeObject(Draw::NativeObject::RENDER_MANAGER);
codeBuffer_ = new char[16384];
lastFSID_.set_invalid();
lastVSID_.set_invalid();
}
ShaderManagerGLES::~ShaderManagerGLES() {
delete [] codeBuffer_;
}
void ShaderManagerGLES::Clear() {
DirtyLastShader();
for (auto iter = linkedShaderCache_.begin(); iter != linkedShaderCache_.end(); ++iter) {
delete iter->ls;
}
fsCache_.Iterate([&](const FShaderID &key, Shader *shader) {
delete shader;
});
vsCache_.Iterate([&](const VShaderID &key, Shader *shader) {
delete shader;
});
linkedShaderCache_.clear();
fsCache_.Clear();
vsCache_.Clear();
DirtyShader();
}
void ShaderManagerGLES::ClearCache(bool deleteThem) {
// TODO: Recreate all from the diskcache when we come back.
Clear();
}
void ShaderManagerGLES::DeviceLost() {
Clear();
}
void ShaderManagerGLES::DeviceRestore(Draw::DrawContext *draw) {
render_ = (GLRenderManager *)draw->GetNativeObject(Draw::NativeObject::RENDER_MANAGER);
draw_ = draw;
}
void ShaderManagerGLES::DirtyShader() {
// Forget the last shader ID
lastFSID_.set_invalid();
lastVSID_.set_invalid();
DirtyLastShader();
gstate_c.Dirty(DIRTY_ALL_UNIFORMS | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE);
shaderSwitchDirtyUniforms_ = 0;
}
void ShaderManagerGLES::DirtyLastShader() {
lastShader_ = nullptr;
lastVShaderSame_ = false;
}
Shader *ShaderManagerGLES::CompileFragmentShader(FShaderID FSID) {
uint64_t uniformMask;
std::string errorString;
if (!GenerateFragmentShader(FSID, codeBuffer_, draw_->GetShaderLanguageDesc(), draw_->GetBugs(), &uniformMask, &errorString)) {
ERROR_LOG(G3D, "Shader gen error: %s", errorString.c_str());
return nullptr;
}
std::string desc = FragmentShaderDesc(FSID);
return new Shader(render_, codeBuffer_, desc, GL_FRAGMENT_SHADER, false, 0, uniformMask);
}
Shader *ShaderManagerGLES::CompileVertexShader(VShaderID VSID) {
bool useHWTransform = VSID.Bit(VS_BIT_USE_HW_TRANSFORM);
uint32_t attrMask;
uint64_t uniformMask;
std::string errorString;
if (!GenerateVertexShader(VSID, codeBuffer_, draw_->GetShaderLanguageDesc(), draw_->GetBugs(), &attrMask, &uniformMask, &errorString)) {
ERROR_LOG(G3D, "Shader gen error: %s", errorString.c_str());
return nullptr;
}
std::string desc = VertexShaderDesc(VSID);
return new Shader(render_, codeBuffer_, desc, GL_VERTEX_SHADER, useHWTransform, attrMask, uniformMask);
}
Shader *ShaderManagerGLES::ApplyVertexShader(bool useHWTransform, bool useHWTessellation, u32 vertType, bool weightsAsFloat, VShaderID *VSID) {
if (gstate_c.IsDirty(DIRTY_VERTEXSHADER_STATE)) {
gstate_c.Clean(DIRTY_VERTEXSHADER_STATE);
ComputeVertexShaderID(VSID, vertType, useHWTransform, useHWTessellation, weightsAsFloat);
} else {
*VSID = lastVSID_;
}
if (lastShader_ != nullptr && *VSID == lastVSID_) {
lastVShaderSame_ = true;
return lastShader_->vs_; // Already all set.
} else {
lastVShaderSame_ = false;
}
lastVSID_ = *VSID;
Shader *vs = vsCache_.Get(*VSID);
if (!vs) {
// Vertex shader not in cache. Let's compile it.
vs = CompileVertexShader(*VSID);
if (vs->Failed()) {
auto gr = GetI18NCategory("Graphics");
ERROR_LOG(G3D, "Shader compilation failed, falling back to software transform");
if (!g_Config.bHideSlowWarnings) {
host->NotifyUserMessage(gr->T("hardware transform error - falling back to software"), 2.5f, 0xFF3030FF);
}
delete vs;
// TODO: Look for existing shader with the appropriate ID, use that instead of generating a new one - however, need to make sure
// that that shader ID is not used when computing the linked shader ID below, because then IDs won't match
// next time and we'll do this over and over...
// Can still work with software transform.
VShaderID vsidTemp;
ComputeVertexShaderID(&vsidTemp, vertType, false, false, weightsAsFloat);
vs = CompileVertexShader(vsidTemp);
}
vsCache_.Insert(*VSID, vs);
diskCacheDirty_ = true;
}
return vs;
}
LinkedShader *ShaderManagerGLES::ApplyFragmentShader(VShaderID VSID, Shader *vs, u32 vertType, bool useBufferedRendering) {
uint64_t dirty = gstate_c.GetDirtyUniforms();
if (dirty) {
if (lastShader_)
lastShader_->dirtyUniforms |= dirty;
shaderSwitchDirtyUniforms_ |= dirty;
gstate_c.CleanUniforms();
}
FShaderID FSID;
if (gstate_c.IsDirty(DIRTY_FRAGMENTSHADER_STATE)) {
gstate_c.Clean(DIRTY_FRAGMENTSHADER_STATE);
ComputeFragmentShaderID(&FSID, draw_->GetBugs());
} else {
FSID = lastFSID_;
}
if (lastVShaderSame_ && FSID == lastFSID_) {
lastShader_->UpdateUniforms(vertType, VSID, useBufferedRendering);
return lastShader_;
}
lastFSID_ = FSID;
Shader *fs = fsCache_.Get(FSID);
if (!fs) {
// Fragment shader not in cache. Let's compile it.
// Can't really tell if we succeeded since the compile is on the GPU thread later.
fs = CompileFragmentShader(FSID);
fsCache_.Insert(FSID, fs);
diskCacheDirty_ = true;
}
// Okay, we have both shaders. Let's see if there's a linked one.
LinkedShader *ls = nullptr;
u64 switchDirty = shaderSwitchDirtyUniforms_;
for (auto iter = linkedShaderCache_.begin(); iter != linkedShaderCache_.end(); ++iter) {
// Deferred dirtying! Let's see if we can make this even more clever later.
iter->ls->dirtyUniforms |= switchDirty;
if (iter->vs == vs && iter->fs == fs) {
ls = iter->ls;
}
}
shaderSwitchDirtyUniforms_ = 0;
if (ls == nullptr) {
_dbg_assert_(FSID.Bit(FS_BIT_LMODE) == VSID.Bit(VS_BIT_LMODE));
_dbg_assert_(FSID.Bit(FS_BIT_DO_TEXTURE) == VSID.Bit(VS_BIT_DO_TEXTURE));
_dbg_assert_(FSID.Bit(FS_BIT_ENABLE_FOG) == VSID.Bit(VS_BIT_ENABLE_FOG));
_dbg_assert_(FSID.Bit(FS_BIT_FLATSHADE) == VSID.Bit(VS_BIT_FLATSHADE));
// Check if we can link these.
ls = new LinkedShader(render_, VSID, vs, FSID, fs, vs->UseHWTransform());
ls->use(VSID);
const LinkedShaderCacheEntry entry(vs, fs, ls);
linkedShaderCache_.push_back(entry);
} else {
ls->use(VSID);
}
ls->UpdateUniforms(vertType, VSID, useBufferedRendering);
lastShader_ = ls;
return ls;
}
std::string Shader::GetShaderString(DebugShaderStringType type, ShaderID id) const {
switch (type) {
case SHADER_STRING_SOURCE_CODE:
return source_;
case SHADER_STRING_SHORT_DESC:
return isFragment_ ? FragmentShaderDesc(FShaderID(id)) : VertexShaderDesc(VShaderID(id));
default:
return "N/A";
}
}
std::vector<std::string> ShaderManagerGLES::DebugGetShaderIDs(DebugShaderType type) {
std::string id;
std::vector<std::string> ids;
switch (type) {
case SHADER_TYPE_VERTEX:
{
vsCache_.Iterate([&](const VShaderID &id, Shader *shader) {
std::string idstr;
id.ToString(&idstr);
ids.push_back(idstr);
});
}
break;
case SHADER_TYPE_FRAGMENT:
{
fsCache_.Iterate([&](const FShaderID &id, Shader *shader) {
std::string idstr;
id.ToString(&idstr);
ids.push_back(idstr);
});
}
break;
default:
break;
}
return ids;
}
std::string ShaderManagerGLES::DebugGetShaderString(std::string id, DebugShaderType type, DebugShaderStringType stringType) {
ShaderID shaderId;
shaderId.FromString(id);
switch (type) {
case SHADER_TYPE_VERTEX:
{
Shader *vs = vsCache_.Get(VShaderID(shaderId));
return vs ? vs->GetShaderString(stringType, shaderId) : "";
}
case SHADER_TYPE_FRAGMENT:
{
Shader *fs = fsCache_.Get(FShaderID(shaderId));
return fs->GetShaderString(stringType, shaderId);
}
default:
return "N/A";
}
}
// Shader pseudo-cache.
//
// We simply store the IDs of the shaders used during gameplay. On next startup of
// the same game, we simply compile all the shaders from the start, so we don't have to
// compile them on the fly later. Ideally we would store the actual compiled shaders
// rather than just their IDs, but OpenGL does not support this, except for a few obscure
// vendor-specific extensions.
//
// If things like GPU supported features have changed since the last time, we discard the cache
// as sometimes these features might have an effect on the ID bits.
#define CACHE_HEADER_MAGIC 0x83277592
#define CACHE_VERSION 15
struct CacheHeader {
uint32_t magic;
uint32_t version;
uint32_t featureFlags;
uint32_t reserved;
int numVertexShaders;
int numFragmentShaders;
int numLinkedPrograms;
};
void ShaderManagerGLES::Load(const std::string &filename) {
File::IOFile f(filename, "rb");
u64 sz = f.GetSize();
if (!f.IsOpen()) {
return;
}
CacheHeader header;
if (!f.ReadArray(&header, 1)) {
return;
}
if (header.magic != CACHE_HEADER_MAGIC || header.version != CACHE_VERSION || header.featureFlags != gstate_c.featureFlags) {
return;
}
diskCachePending_.start = time_now_d();
diskCachePending_.Clear();
// Sanity check the file contents
if (header.numFragmentShaders > 1000 || header.numVertexShaders > 1000 || header.numLinkedPrograms > 1000) {
ERROR_LOG(G3D, "Corrupt shader cache file header, aborting.");
return;
}
// Also make sure the size makes sense, in case there's corruption.
u64 expectedSize = sizeof(header);
expectedSize += header.numVertexShaders * sizeof(VShaderID);
expectedSize += header.numFragmentShaders * sizeof(FShaderID);
expectedSize += header.numLinkedPrograms * (sizeof(VShaderID) + sizeof(FShaderID));
if (sz != expectedSize) {
ERROR_LOG(G3D, "Shader cache file is wrong size: %lld instead of %lld", sz, expectedSize);
return;
}
diskCachePending_.vert.resize(header.numVertexShaders);
if (!f.ReadArray(&diskCachePending_.vert[0], header.numVertexShaders)) {
diskCachePending_.vert.clear();
return;
}
diskCachePending_.frag.resize(header.numFragmentShaders);
if (!f.ReadArray(&diskCachePending_.frag[0], header.numFragmentShaders)) {
diskCachePending_.vert.clear();
diskCachePending_.frag.clear();
return;
}
for (int i = 0; i < header.numLinkedPrograms; i++) {
VShaderID vsid;
FShaderID fsid;
if (!f.ReadArray(&vsid, 1)) {
return;
}
if (!f.ReadArray(&fsid, 1)) {
return;
}
diskCachePending_.link.push_back(std::make_pair(vsid, fsid));
}
// Actual compilation happens in ContinuePrecompile(), called by GPU_GLES's IsReady.
NOTICE_LOG(G3D, "Precompiling the shader cache from '%s'", filename.c_str());
diskCacheDirty_ = false;
}
bool ShaderManagerGLES::ContinuePrecompile(float sliceTime) {
auto &pending = diskCachePending_;
if (pending.Done()) {
return true;
}
PSP_SetLoading("Compiling shaders...");
double start = time_now_d();
// Let's try to keep it under sliceTime if possible.
double end = start + sliceTime;
for (size_t &i = pending.vertPos; i < pending.vert.size(); i++) {
if (time_now_d() >= end) {
// We'll finish later.
return false;
}
const VShaderID &id = pending.vert[i];
if (!vsCache_.Get(id)) {
if (id.Bit(VS_BIT_IS_THROUGH) && id.Bit(VS_BIT_USE_HW_TRANSFORM)) {
// Clearly corrupt, bailing.
ERROR_LOG_REPORT(G3D, "Corrupt shader cache: Both IS_THROUGH and USE_HW_TRANSFORM set.");
pending.Clear();
return false;
}
Shader *vs = CompileVertexShader(id);
if (vs->Failed()) {
// Give up on using the cache, just bail. We can't safely create the fallback shaders here
// without trying to deduce the vertType from the VSID.
ERROR_LOG(G3D, "Failed to compile a vertex shader loading from cache. Skipping rest of shader cache.");
delete vs;
pending.Clear();
return false;
}
vsCache_.Insert(id, vs);
} else {
WARN_LOG(G3D, "Duplicate vertex shader found in GL shader cache, ignoring");
}
}
for (size_t &i = pending.fragPos; i < pending.frag.size(); i++) {
if (time_now_d() >= end) {
// We'll finish later.
return false;
}
const FShaderID &id = pending.frag[i];
if (!fsCache_.Get(id)) {
fsCache_.Insert(id, CompileFragmentShader(id));
} else {
WARN_LOG(G3D, "Duplicate fragment shader found in GL shader cache, ignoring");
}
}
for (size_t &i = pending.linkPos; i < pending.link.size(); i++) {
if (time_now_d() >= end) {
// We'll finish later.
return false;
}
const VShaderID &vsid = pending.link[i].first;
const FShaderID &fsid = pending.link[i].second;
Shader *vs = vsCache_.Get(vsid);
Shader *fs = fsCache_.Get(fsid);
if (vs && fs) {
LinkedShader *ls = new LinkedShader(render_, vsid, vs, fsid, fs, vs->UseHWTransform(), true);
LinkedShaderCacheEntry entry(vs, fs, ls);
linkedShaderCache_.push_back(entry);
}
}
// Okay, finally done. Time to report status.
double finish = time_now_d();
NOTICE_LOG(G3D, "Precompile: Compiled and linked %d programs (%d vertex, %d fragment) in %0.1f milliseconds", (int)pending.link.size(), (int)pending.vert.size(), (int)pending.frag.size(), 1000 * (finish - pending.start));
pending.Clear();
return true;
}
void ShaderManagerGLES::CancelPrecompile() {
diskCachePending_.Clear();
}
void ShaderManagerGLES::Save(const std::string &filename) {
if (!diskCacheDirty_) {
return;
}
if (linkedShaderCache_.empty()) {
return;
}
INFO_LOG(G3D, "Saving the shader cache to '%s'", filename.c_str());
FILE *f = File::OpenCFile(filename, "wb");
if (!f) {
// Can't save, give up for now.
diskCacheDirty_ = false;
return;
}
CacheHeader header;
header.magic = CACHE_HEADER_MAGIC;
header.version = CACHE_VERSION;
header.reserved = 0;
header.featureFlags = gstate_c.featureFlags;
header.numVertexShaders = GetNumVertexShaders();
header.numFragmentShaders = GetNumFragmentShaders();
header.numLinkedPrograms = GetNumPrograms();
fwrite(&header, 1, sizeof(header), f);
vsCache_.Iterate([&](const ShaderID &id, Shader *shader) {
fwrite(&id, 1, sizeof(id), f);
});
fsCache_.Iterate([&](const ShaderID &id, Shader *shader) {
fwrite(&id, 1, sizeof(id), f);
});
for (auto iter : linkedShaderCache_) {
ShaderID vsid, fsid;
vsCache_.Iterate([&](const ShaderID &id, Shader *shader) {
if (iter.vs == shader)
vsid = id;
});
fsCache_.Iterate([&](const ShaderID &id, Shader *shader) {
if (iter.fs == shader)
fsid = id;
});
fwrite(&vsid, 1, sizeof(vsid), f);
fwrite(&fsid, 1, sizeof(fsid), f);
}
fclose(f);
diskCacheDirty_ = false;
}